电气主接线及设计课件

合集下载

电气主接线及设计

电气主接线及设计
( 1)发电厂或变电所在电力系统中的地位和作用 发电厂和变电所都是电力系统的重要组成部分,其可靠性应与在 系统中的地位和作用一致。
1)系统中的大型发电厂或变电所其供电容量大,范围广地位重要 作用强,应采用可靠性高的主接线形式,反之,应采用可靠性低 的主接线形式。
2)发电厂和变电所接入电力系统方式 接入系统方式指其与电力 系统连接方式
三、电气主接线的设计程序
1. 对原始资料分析 (1)工程情况
发电厂类型、设计容量、 单机容量及台数、最大负 荷利用小时数、可能的运 行方式
(2)电力系统情况
电力系统近远期规划、发电厂 或变电站在电力系统中的位置 和作用、本期工程与电力系统 的连接方式及各级电压中性点 接地方式等
(3)负荷情况
负荷的性质、地理位置、输电电压 等级、出线回路数、输送容量
定性分析和衡量主接线可靠性的基本标准: 1)断路器检修时,能否不影响供电. 2)断路器、线路或母线故障及母线隔离开关检修时,停运的出线
回路数和停电时间的长短,以及能否保证对一类用户供电。 3)发电厂或变电所全部停电的可能性。 4)大型机组突然停运时,对电力系统稳定性的影响与后果。 2.灵活性 1)操作的方便性。 2)调度方便性。主接线能适应系统或本厂所的各种运行方式 3)扩建方便性。具有初期—终期—扩建的灵活方便性。 3.经济性 1)投资省 设备少且廉价(接线简单且选用轻型断路器)。 2)占地面积少 一次设计,分期投资,尽快发展经济效益。 3)电能损耗少 合理选择变压器的容量和台数,避免两次变压。 正确处理可靠性和经济性的矛盾 一般在满足可靠性的前提条件下,
电气主接线是发电厂或变电站电气部分的主体,直接影响运行 的可靠性、对配电装置布置、继电保护配置、自动装置及控制方 式的拟定都有决定性的关系。对电气主接线的基本要求是:可靠 性、灵活性和经济性灵活性。

第六章 电气主接线

第六章 电气主接线

三、电气主接线图中的几个概念 电气主接线图: 用规定的设备图形和文字符号,按照各
电气设备实际的连接顺序而绘成的能够全
面表示电气主接线的电路图,
单相图 三相图
一次设备:变压器T,断路器QF,发电机G 隔离开关QS,母线W,电抗器L,
双绕组变压器,三绕组变压器,自耦变压器
电压互感器TV: 将高电压转换成低 电压,供各种设备 和仪表使用。 电流互感器TA: 变换电流 避雷器B: 保护电气设备免遭 雷电冲击波袭击
第六章 电气主接线
第一节 主接线概述
第二节 有汇流母线的接线
第三节 无汇流母线的接线
第四节 发电厂和变电所主接线举例
第五节 限制短路电流的方法
第一节 电气主接线概述
一、电气主接线的概念
构成了电能生产、汇集和分配的电气主回
路。这个电气主回路被称为电气一次系统,又
叫做电气主接线。
电能生产:发电厂,包括发电机,变压器,母线等
四、双母线接线
1 普通双母线接线
图中W1为工作母 线,W2为备用母 线,两组母线通过 母线联络断路器QF (简称母联)连接
在正常运行时
1、相当于单母线的运行方式 正常运行时,只有工作母 线带电,所有电源和出线回 路都连接到工作母线上,若 其发生故障,可在短时间内 将所有电源和负荷均转移到 备用母线上,迅速恢复供电
二、单母线分段接线
(一)断路器及隔离开关的配置 与一般单母线接线相比, 单母分段接线增加QF以及 QS1、QS2。当负荷量较 大且出线回路很多时,还可以 用几台分段断路器将母线分成
多段,如图
(二)特点及适用范围
优点:

提高供电的可靠性。可 利用QF,使仅有一半 线路停电,另一段母线 上的各回路仍可正常运 行。

11第四章电气主接线及设计(3)

11第四章电气主接线及设计(3)

适用于:35~220kV,线路较长(故障几率 大),雷击率较高和变压器不需要经常切换的发电 厂和变电所。
出线故障,仅故障线路跳闸,
其余回路可继续供电。出线停送
WL1
WL2 电,操作方便。
QF1 QF2 QFq
QS1 QS2 T1 T2
变压器故障、停送电操作复杂:
如:
T1故障,QF1、QFq自动跳 闸,WL1停电。拉开QS1后,再 合上QF1、QFq,可恢复WL1供 电。
接时, G和T之间则需设断路器。由 厂用
于大容量发电机出口断路器制造困难, G
所以大容量(200MW以上)机组很少 (B)
采用这种接线。
优点: (1)接线简单,电器数目少,因而节约了投资和占 地面积,也减少了故障可能性,提高了供电可靠性。 发电机与变压器之间采用封闭母线相连进一步提高 了可靠性。
WL1
WL2
QF1 QF2 QFq
QS1 QS2 T1 T2
QFq QF1 QF2 T1 T2
1. 内桥接线
WL1
WL2
接线特点:出线各接有一台 断路器,桥连断路器接在内侧 (变压器侧)。
QF1 QF2 QFq
正常运行时:出线所有断路 器均闭合。
QS1 QS2 T1 T2
特点:出线回路的投切很方 便,电源或变压器回路的投切比 较复杂。
升高电压
T 厂用
G
对于单机容量较小的机组(小于100MW) 为了在发电机停用的情况下也能从变压器 低压侧取得厂用电源,也可在发电机出口 装断路器。。
对于单机容量大于200MW的发电机,一方面 T
发电机出口断路器制造困难,成本高;另 一方面发电机出线采用封闭母线,发电机 出线回路设备越少越好。所以在发电机出 厂用 口一般不装断路器。

电气主接线及设计-2

电气主接线及设计-2

五. 变压器母线组接线
1.接线形式 2.正常运行时,两组母线和断路器均投 入。 3.变压器故障时,连接于对应母线上的 断路器跳开,但不影响其他回路供电。 4.特点:
调度灵活,电源和负荷可自由调配, 安全可靠,有利于扩建; 一组母线故障或检修时,只减少输 送功率,不会停电。 可靠性较双母线带旁路高,但主变 压器故障即相当于母线故障。
•发电机-三绕组变压器(或自耦变压器)单元接线
1.在发电机出口处需装 设断路器; 2.断路器两侧均应装设 隔离开关; 3.大容量机组一般不宜 采用。
3)发电机—变压器—线路组成单元接线
a) 这种接线方式下,在电厂不设升压配电装置,把电能直接送 到附近的枢纽变电站或开关站,使电厂的布置更为紧凑,节省 占地面积; b) 由于不设高压配电装置,所以不存在火电厂的烟尘及冷却水 塔的水汽对配电装置的污染问题。
(2)发电机定子绕组本身故障时,若变压器高压侧断路器 失灵拒跳,则只能通过失灵保护出口启动母差保护或发 远方跳闸信号使线路对侧断路器跳闸;若因通道原因远 方跳闸信号失效,则只能由对侧后备保护来切除故障, 这样故障切除时间大大延长,会造成发电机、主变压器 严重损坏。
(3)发电机故障跳闸时,将失去厂用工作电源,而这种情 况下备用电源的快速切换极有可能不成功,因而机组面 临厂用电中断的威胁。
四. 一台半断路器接线及三分之四台断路器接线
运行时,两组母线和同一串的3
个断路器都投入工作,称为完
W2
整串运行,形成多环路状供电,
QF1
具有很高的可靠性。
一串中任何一台断路器退出或
检修时,这种运行方式称为不
QF2
完整串运行,此时仍不影响任
ቤተ መጻሕፍቲ ባይዱ
何一个元件的运行。

电气主接线及设计课件

电气主接线及设计课件

出线回路少,并且没有重要
负荷的中小型发电厂和变电所
2. 单母线分段接线
优点:
(1)电源可以并列运行也 可以分列运行
WL1 WL2
WL3 WL4
QS32
(2)重要用户可以从不同
QF3
段引出两回馈线
(3)任一母线或母线隔离 开关检修,只停该段,其 他段继续供电
(4)任一母线段故障,则只 有该母线段停电
电气“五防”是指: 防止误分、合断路器; 防止带负荷分、合隔离开关; 防止带电挂接地线或合接地刀闸; 防止带接地线(接地刀闸)合断路器(隔离开关); 防止误入带电间隔。
防止误操作的措施:除严格按照操作规程实行操作 票制度外,还应加装电磁闭锁、机械闭锁或电脑钥 匙
倒闸操作程序示意图:
接受调令
通告全值
应用范围: 广泛应用于超高压电网中,500kV变电站一般都采用这种接 线方式
五. 变压器母线组接线
优点: 可靠性较高 调度灵活 扩建方便
缺点:使用断路器和隔 离开关多,投资大 适用范围:
远距离、大容量输电系 统中,对系统稳定和供 电可靠性要较高的变电 站中采用
W2 QF1
QF2 W1
无汇流母线的电气主接线 六. 单元接线
适用范围: 200MW及以上大机组一般采用与双绕组变压器组成单元 接线,当电厂具有两种升高电压等级时,则装设联络变 压器。
七. 桥形接线
只有两台变压器和两 条线路时,宜采用桥 形接线,使用断路器 最少。
内桥:桥连断路器设 置在变压器侧
外桥:桥连断路器设 置在线路侧
QS1 QS2 QF1 QF2
QF3
单母线接线
双母线接线
一台半断路器接线
1
1 3

电力工程基础课件——电气主接线

电力工程基础课件——电气主接线
8
有汇流母线-单母线接线
优点:简单清晰、设备少、投资小、运行操作方便, 且有利于扩建 。
缺点是:可靠性和灵活性较差 。 应用: 6~10kV配电装置的出线回路数不超过5回; 35~63kV配电装置的出线回路数不超过3回; 110~220kV配电装置的出线回路数不超过2回。 改进: 单母线分段接线 单母线带旁路接线
间隙击穿。
58
屋内配电装置安全净距
59
屋外配电装置安全净距
60
屋内配电装置安全净距
屋内配电装置的布置应注意:
1、同一回路的电器和导体应布置在一 个间隔内;2、尽量将电源进线布置在 每段的中部;3、较重设备布置在下层; 4、充分利用间隔空间;5、布置对称, 便于操作;6、易于扩建;7、要有必要 的操作通道、维护通道防爆通道;
40
三、配电网的接线方式— 放射式接线
41
三、配电网的接线方式— 树干式接线
42
第五节 低压配电网接线方式
43
一、低压放射式接线
44
一、低压树干接线
45
一、低压混合式接线
46
一、低压链式接线
47
一、低压链式接线
48
第六节 工厂供电系统的主接线
49
工厂供电系统结构图
50
10kV变电所电气主接线典型方案 -路外供电源
37
一、架空线路的结构
优点: 设备简单,建设低;露置在空气中, 易于检修与维护;利用空气绝缘,建 造较为容易。 缺点: 容易遭受雷击和风雨冰雪等自然灾害 的侵袭;需要大片土地作为出线走廊 ;对交通、建筑、市容和人身安全有 影响。
38
二、电缆线路的结构
39
二、电缆线路的结构
优点: 占地少;整齐美观;受气候条件和周围 环境的影响小;传输性能稳定,故障少, 供电可靠性高;维护工作量少。 缺点:电缆线路的投资大;线路不易变 动;寻测故障点难,检修费用大;电缆 终端的制作工艺要求复杂。

电气主接线及其设计

电气主接线及其设计
若一组母线发生故障,只会引起接至故障母线上的部分电 源和引出线停电,经分段的)双母线接线 —运行方式3
③QFC断开,两组母线同时运行
QFC处于热备用状态。 此时相当于分裂为两部分, 各自承担向系统输送功率 的任务。
常用于系统最大运行方式时,限制短路电流。
2)优点: 又节省两台隔离开关。
小结
单母线分段带旁路母线接线的适用范围: A、35kV及以上的电气主接线中,或向特殊重要的一、二 类用户供电,不允许停电检修断路器时,才加设旁路母线。
B、一般电压为35kV出线8回以上,110kV出线6回以上, 220kV出线4回以上的户外装置,可考虑加装带专用旁路断 路器的旁路母线。
或生产流程紊乱且恢复较困难,企业内部运输停顿或出现大 量减产,因而在经济上造成一定的经济损失。
②特点: 一般允许停电几分钟,在工业企业中占得比例最大。 应由两回线路供电,两回线路应尽可能取自不同的变
压器或母线段。
负荷性质(补充) —三级负荷
①概念: 不属于一、二级负荷的用电设备。 例:农业用电、居民用电
3、 单母线分段带旁路母线的接线
为克服支路断路器检修时,该支路必须停电的缺点,可采 用增设旁路母线的方法。
(1)单母线分段带专用旁路断路器的旁路母线接线
1)接线方法
旁路母线: WP 旁路断路器: QFP 母线旁路隔离开关: QSP1、 QSP2、 QSPP 线路旁路隔离开关:QSP
3、 单母线分段带旁路母线的接线
②特点: 对供电无特殊要求,允许较长时间停电,可用单回线
路供电。
总结: 大型企业中,一、二级负荷约占总负荷的60%,即使短
时停电,损失也很大。 此外,各级负荷不能孤立的看待,一个企业中只要有一
个一级负荷,则该企业的总降压变电所对于上级供电部门而 言就是一级负荷。

《变电站电气主接线》课件

《变电站电气主接线》课件

维护与检修
维护
定期对变电站电气主接线进行检查、 清洁、紧固等,确保其正常运行。
检修
根据设备运行状况和计划,对变电站 电气主接线进行全面或部分检查、维 修、更换等,恢复其性能或提高其可 靠性。
常见故障与处理方法
常见故障
接触不良、发热、短路、断路等。
处理方法
针对不同故障采取相应的处理措施,如紧固接触点、更换发热元件、修复短路 点、重新接线等。同时,对故障原因进行分析,采取预防措施,防止类似故障 再次发生。
CHAPTER
05
变电站电气主接线的优化与发 展趋势
主接线的优化方案
减少占地面积
通过优化主接线的设计,可以 减小变电站的占地面积,从而
降低土地资源的使用成本。
提高供电可靠性
优化主接线可以减少故障发生 的可能性,从而提高供电的可 靠性,保障电力系统的稳定运 行。
降低能耗
优化主接线可以降低线路的损 耗,提高能源利用效率,有助 于实现节能减排的目标。
特点
相比单母线接线,双母线接线提 高了可靠性。一条母线故障时, 另一条母线可以继续供电。但结 构较复杂,成本和维护费用相对
较高。
适用场景
适用于对可靠性要求较高的中型 或大型变电站。
桥型接线
定义
桥型接线采用两台断路器和两条母线,将电源和出线分为 两组。
特点
桥型接线结构简单,成本低。正常运行时,断路器断开, 两条母线分列运行。当一条母线故障时,断路器闭合,不 影响另一条母线的正常运行。
作用
电气主接线是变电站的重要组成 部分,它决定了变电站的运行方 式和供电可靠性,是电力系统的 重要组成部分。
主接线的分类
按电压等级分类
可分为一次主接线和二次主接线 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缺点: 单元中任一元件故障或检修都会影响整个单元的工作
适用范围: 200MW及以上大机组一般采用与双绕组变压器组成单元 接线,当电厂具有两种升高电压等级时,则装设联络变 压器。
2021/2/4
也被广泛应用于发电厂的发电机电压配电装置中。 在220-500kV大容量配电装置中,也有采用双母线 四分段接线的。
2021/2/4
20
三、带旁路母线的单母线和双母线接线
1. 单母线分段带旁路母线接线
旁路母线的作用:
检修任一接入旁路母线
的进、出线的断路器时,
使该回路不停电
QFP1
WL1 WL2
QS15 QS13 QF1
接受调令
通告全值
审核调令
填操作票
审核
危险分析
模拟预演
操作准备
核对设备
唱票复诵
实施操作
操作复查
汇报调度 操作评价
2021/2/4
11
优点:接线简单、操作方便、 设备少、经济性好,便于扩建
WL1 WL2 WL3 WL4
缺点: (1)可靠性较差 (2)灵活性较差
QE
QS22
QF2 QS21
适用范围:
QS11
W2 W1
(b)
W2 W1
(c)
28
优点: 不会造成短时停电。 缺点: 1 多装了一台断路器和一套旁母线。 2 投资大,配电装置占地面积增多。 3 增加了误操作的几率。 临时设置跨条:图4-9 趋势:
随着设备可靠性提高,备用容量的增加, 保护的完善,逐步取消旁路接线。
2021/2/4
29
3. 旁路母线设置的原则
2021/2/4
16
(2) 运行方式灵活
WL1
WL2
WL3
①单母线运行
②固定连接方式运行
③两组母线分列运行
分裂为两个电厂,限制 短路电流。
④ 特殊功能
同期或者解列、融冰
(3) 扩建方便
QFc
向双母线的任一方向 扩建,不会影响两组
母线的电源和负荷的自由组合分配,也不 会造成原有回路停电
2021/2/4
QF1
单母线接线 7
(3)每条回路中都装有 断路器和隔离开关。
WL1 WL2 WL3 WL4
断路器:具有专用的灭弧
QE
QS22
装置,可以接通和断开负
荷电流和短路电流
QF2
隔离开关:没有灭弧装置,
QS21
不能带负荷拉、合。 QS11
(4)QE,线路隔离开关的
QF1
接地开关(接地刀闸),
用于线路检修时替代临时
一般适用于6-220kV系统中
QF1
出线回路少,并且没有重要
负荷的中小型发电厂和变电所
2021/2/4
12
2. 单母线分段接线
优点:
(1)电源可以并列运行也 可以分列运行
WL1 WL2
WL3 WL4
QS32
(2)重要用户可以从不同
QF3
段引出两回馈线
(3)任一母线或母线隔离
WI
开关检修,只停该段,其
2021/2/4
W2 QF1 QF2
W1
34
无六汇. 单流元母接线线的电气主接线
~ G
~ G
~ G
(a)
(b)
(c)
(a)发电机-双绕组变压器单元接线; (b)发电机-三绕组变压器单元接线
(c)发电机-变压器-线路单元接线
2021/2/4
35
扩大单元接线
适用范围: 发电机单机容 量偏小(仅为 系统容量的1% -2%)或更小, 而电厂的升高 电压等级又较 高,可采用扩 大单元接线。
WL3 WL4 WP
QFP2
检修QF1:
QS11 WI
WII
合QFP1两侧的隔离
开关→合QFP1 →合
QS15→断开QF1 →
QFd
断开QS13、QS11
S1
2021/2/4
专用旁路断路器
S2
21
检修电源侧断路器 旁路母线通过旁路隔离 开关接至电源,然后断 开电源侧的断路器,出 线不会停电
适用范围: 用于出线较多的110KV 及以上的高压配电装置 中,对35KV以下的有特 殊重要的一、二类用户 时,亦可用这种接线。
他段继续供电
QS31
(
)
WII
(4)任一母线段故障,则只 有该母线段停电
QF1 S1
QFd QF2 S2
(5)电源分列运行时,任一电源 断开,则QFd自动接通
2021/2/4
单母线分段接线
13
缺点:增了分段设备的投资和占地面积;某段母 线故障或检修仍有停电问题;某回路的断路器检 修,该回路停电;扩建时,需向两端均衡扩建
Ⅲ类负荷:Ⅰ、Ⅱ类负荷以外的其他负荷,停 电不会造成大的影响,必要时可长时间停电
2021/2/4
2
(3)设备制造水平 (4)运行经验
定性分析和衡量主接线可靠性的标准: (1)断路器检修时,能否不影响供电
(2)线路、断路器或母线故障时,以及母线或母线隔离开关 检修时,停运出线回路数的多少和停电时间的长短,以
W2
W2
W2
QF
QF
QF
W1
(a)
W1
(b)
W1
(c)
2021/2/4
25
2. 双母线带WL旁1 路W母L2线接线
WL3 WL4 W3
QF2
W2 W1
QF1
具有专用旁路断路器的双母线带旁路接线
2021/2/4
26
2021/2/4
27
母联兼旁路断路器接线形式
W3
W3
W3
W2 W1
(a)
2021/2/4
1. 单母线接线
WL1 WL2 WL3 WL4
(1)供电电源:在发 QE 电厂是发电机或变压器, 在变电站是变压器或高压 进线
(2)电源可以在母线 上并列运行,任一出线可 以从任一电源获得电能, 各出线在母线的布置尽可 能使负荷均衡分配于母线 上,以减小母线中的功率 传输 2021/2/4
QS22 QF2 QS21 QS11
QF3 W1
W1
32
缺点: 所用断路器多,投资大,二次控制线和继电保护复杂,断路 器动作频繁,检修次数多
应用范围: 广泛应用于超高压电网中,500kV变电站一般都采用这种接 线方式
2021/2/4
33
五. 变压器母线组接线
优点: 可靠性较高 调度灵活 扩建方便
缺点:使用断路器和隔 离开关多,投资大 适用范围: 远距离、大容量输电系 统中,对系统稳定和供 电可靠性要较高的变电 站中采用
安全接地线
为什么断路器两侧配有隔离开关? 单母线接线
2021/2/4
8
(5)倒闸操作
操作顺序: 退出线路WL2: 断开QF2 → 断开QS22 → 断开QS21
恢复供电: 合上QS21 → 合上QS22 → 合上QF2
WL1 WL2 WL3 WL4
QE
QS22
QF2 QS21
QS11 QF1
2021/2/4
(1)6-10kV配电装置一般不设旁路母线 (2)35-63kV配电装置,一般也不设旁路母线,当断
路器不允许停电检修时,对于单母分段可设置不 带专用旁路断路器的旁母
(3)110-220kV一般需设旁路母线,出线回数较少时, 可采用分段断路器或母联断路器兼旁路断路器的接线, 下列情况需装设专用旁路断路器: ① 110kV出线7回及以上,220kV出线5回及以上时 ② 对在系统中居重要地位的配电装置 110kV出线6回及以上,220kV出线4回及以上时
以设计任务书为依据,以国家经济建设的方针、政 策、技术规定、标准为准绳,结合工程实际情况,在保证 供电可靠、调度灵活、满足各项技术要求的前提下,兼顾 运行、维护方便,尽可能地节省投资,就近取材,力争设 备元件和设计的先进性与可靠性,坚持可靠、先进、适用、 经济、美观的原则
三、主接线的设计程序
1.对原始资料分析:工程、电力系统、负荷、环境和供货 2.主接线的拟定和选择 3.短路计算和主设备的选择 4.绘制主接线 5.编制工程概算(可行性研究、初步设计、技术设计、施工设
WL1 WL2
QF1p WI
QS15 QS12 QF1 QS11
S1
WL3 WL4 WP
QF2p WII
QFd
S2
2021/2/4
22
2021/2/4
23
分段断路器兼作旁路断路器的接线
WL1 QS15
QS12 QF1 QS11 WI
S1
2021/2/4
WL2 WP
QS3
QS4
QFd
QS1
QS2
WII
QS5
S2
正常运行: QS1、QFd、QS2合, QS3、QS4、QS5断, QFd作为分段断路器
旁路接到I段: QS3→QFd→QS2 旁路接到II段: QS4→QFd→QS1
检修QF1: 合QS5→断开QFd→ 断开QS2→合QS4→合 QFd→合QS15→断开 QF1、QS12、QS11
24
分段断路器兼旁路断路器接线形式
2021/2/4
T
T
G~1
G~2
(a)
G~1
G~2
(b)
(a)发电机-变压器扩大单元接线 (b)发电机-分裂绕组变压器扩大单元接线
36
单元优接点:线的特点:
(1)接线简单,开关设备少,操作简便 (2)故障可能性小,可靠性高 (3)由于没有发电机电压母线,无多台机并列,发电机 出口短路电流相对减小 (4)配电装置简单,占地少,投资省
相关文档
最新文档