研究报告大数据技术报告

合集下载

大数据分析与应用研究报告

大数据分析与应用研究报告

大数据分析与应用研究报告一、引言随着信息技术的快速发展,大数据概念越来越被广泛关注和应用。

本文旨在对大数据分析与应用进行深入研究,探讨其在各个领域中的应用价值和潜力。

二、大数据概述1. 定义大数据是指由传统的数据管理工具难以处理的大规模数据集合,包括结构化、半结构化和非结构化数据。

2. 特点大数据具有五个特点:大规模性、高速性、多样性、价值密度低和难以处理。

三、大数据分析方法1. 数据采集对于大数据分析,首先需要进行数据采集,包括传感器数据、交易数据、社交媒体数据等多种形式的数据。

2. 数据存储为了对大数据进行分析,需要使用各种存储技术,如数据仓库、分布式文件系统等。

3. 数据清洗与预处理数据清洗与预处理是大数据分析的关键步骤,它包括数据去重、数据过滤、数据格式转换等操作。

4. 数据分析和挖掘数据分析和挖掘是大数据分析的核心环节,包括数据建模、数据挖掘算法的应用等。

5. 可视化和解释对于分析结果的可视化和解释能够帮助决策者更好地理解数据,发现隐藏的信息和模式。

四、大数据在商业领域的应用1. 市场营销利用大数据分析可以了解消费者的购买需求、购买偏好等信息,从而制定更精准的市场营销策略。

2. 供应链管理通过大数据分析可以实现供应链的优化,提高货运效率和降低成本。

3. 金融风控大数据分析在金融领域中可以用于风险评估、欺诈检测等,提升金融机构的风控能力。

4. 客户关系管理通过大数据分析可以追踪客户行为,提供个性化的服务,提升客户满意度和忠诚度。

五、大数据在医疗领域的应用1. 疾病预测结合大数据分析方法,可以预测某些疾病的发生概率和风险,为医疗机构和个人提供预防和干预措施。

2. 精准医疗通过对大数据的分析,可以实现对个体患者的精准诊断和治疗,提高治疗效果和患者满意度。

3. 医疗资源优化利用大数据分析,可以对医疗资源进行有效的调配和管理,提高资源利用效率和医疗服务质量。

六、大数据在交通领域的应用1. 交通拥堵预测通过对大量交通数据的分析,可以实现对交通流量和交通拥堵情况的准确预测,提供交通优化的方案。

大数据专业调研报告(一)2024

大数据专业调研报告(一)2024

大数据专业调研报告(一)引言概述:当今社会,大数据技术的发展迅速,正在推动各行各业的变革和创新。

为了了解大数据专业的发展现状和趋势,本报告对大数据专业进行了调研。

本文将通过五个大点展开讨论,包括:大数据专业的定义和背景、大数据专业的学习路径、大数据专业的就业前景、大数据专业的发展趋势以及大数据专业的必备技能。

通过对这些方面的研究,我们希望能够为对大数据专业感兴趣的人提供一些参考和指导。

正文内容:一、大数据专业的定义和背景1. 大数据的定义及其重要性2. 大数据专业与其他相关专业的区别3. 大数据专业的背景和起源4. 大数据专业的发展目标和意义5. 大数据专业的应用领域二、大数据专业的学习路径1. 大数据专业的基础知识和技能要求2. 大数据专业的学习资源和课程设置3. 大数据专业的学习方法和技巧4. 大数据专业的实践和项目经验要求5. 大数据专业的学习机会和实习就业建议三、大数据专业的就业前景1. 大数据专业的就业形势和就业率分析2. 大数据专业的就业领域和职位介绍3. 大数据专业的薪资水平和行业排名4. 大数据专业的就业趋势和前景展望5. 大数据专业的就业能力和职业发展建议四、大数据专业的发展趋势1. 大数据技术的发展现状和趋势分析2. 大数据专业的相关技术和工具的发展3. 大数据专业的新兴领域和热点问题4. 大数据专业的国内外发展对比5. 大数据专业的发展挑战和机遇五、大数据专业的必备技能1. 大数据分析和处理的基本技能2. 大数据可视化和数据挖掘的技巧3. 大数据统计和模型建立的方法4. 大数据管理和安全保护的技术5. 大数据团队合作和沟通能力的培养结论:通过本次调研,我们深入了解了大数据专业的定义、学习路径、就业前景、发展趋势以及必备技能。

可以看出,大数据专业在当前社会和未来发展中具有重要作用。

通过系统的学习和实践,掌握必要的技能,并紧跟技术的发展趋势,将能够在大数据行业中获得更好的职业发展机会。

关于大数据的研究报告

关于大数据的研究报告

关于大数据的研究报告摘要:本研究报告旨在深入探讨大数据的概念、特点、应用领域、面临的挑战以及未来发展趋势。

通过对相关数据和案例的分析,揭示大数据在当今社会和经济发展中的重要作用,并为应对其挑战和把握发展机遇提供策略建议。

一、引言随着信息技术的飞速发展,数据的产生和积累速度呈指数级增长,大数据时代已经悄然来临。

大数据不仅改变了人们的生活方式和思维模式,也对企业的经营管理、政府的决策制定以及社会的创新发展产生了深远的影响。

二、大数据的概念与特点(一)大数据的定义大数据并非仅仅指数据量的庞大,而是具有更广泛的含义。

它包括海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)和低价值密度(Value)等特征。

(二)大数据的特点1.数据规模巨大如今,企业和组织所处理的数据量已经从GB、TB 级别跃升至PB、EB 甚至ZB 级别。

2.数据类型多样除了传统的结构化数据,如数据库中的表格数据,还包括大量的非结构化数据,如文本、图像、音频、视频等。

3.处理速度快数据的产生和更新速度极快,要求能够实时或近实时地进行处理和分析。

4.价值密度低海量的数据中,有价值的信息往往隐藏在大量的噪声和冗余之中,需要通过复杂的分析方法来提取。

三、大数据的应用领域(一)商业领域1.市场营销通过对消费者的行为数据进行分析,企业可以精准地进行市场细分和定位,制定个性化的营销策略,提高营销效果和客户满意度。

例如,电商平台根据用户的浏览和购买历史,为用户推荐相关的商品。

2.风险管理金融机构利用大数据分析客户的信用状况和交易行为,评估风险,降低不良贷款率。

3.供应链管理优化库存管理,预测市场需求,提高供应链的效率和灵活性。

(二)医疗健康领域1.疾病预测和防控分析大量的医疗数据,包括病历、流行病学数据等,提前预测疾病的爆发和传播趋势,制定相应的防控措施。

2.个性化医疗根据患者的基因数据和临床症状,为患者提供个性化的诊断和治疗方案。

大数据技术专业 调研报告

大数据技术专业 调研报告

大数据技术专业调研报告一、引言大数据技术是当今信息时代的一个重要领域,具有重要的实践与研究价值。

本调研报告针对大数据技术专业进行全面、详细、完整和深入的探讨,旨在分析其专业背景、学术研究、就业前景等方面的情况。

二、专业背景2.1 专业定义大数据技术专业是指研究和应用大数据相关技术的一门学科,主要包括大数据存储、处理、分析与挖掘等方面的内容。

通过学习大数据技术专业,学生可以掌握大数据处理的核心技术,为企业和组织解决各种数据挖掘与分析问题提供支持。

2.2 专业课程大数据技术专业的课程设置非常全面,包括数据结构与算法、数据库原理与应用、分布式系统、机器学习与数据挖掘、大规模数据处理等方面的内容。

这些课程旨在培养学生的数据处理与分析能力、编程能力以及沟通与团队合作能力。

2.3 专业特色大数据技术专业具有以下特色: - 多学科交叉:大数据技术领域涉及计算机科学、统计学、数学等多个学科,培养学生具备全面的专业知识素养。

- 实践与应用导向:专业课程设置注重实践能力的培养,为学生提供大量的实际项目实践机会。

- 学科前沿研究:培养学生创新思维和科学研究能力,使其能够参与学科前沿研究与应用。

三、学术研究3.1 研究方向大数据技术专业的学术研究方向丰富多样,主要包括以下几个方面: 1. 大数据存储与管理:研究大规模数据的存储和管理技术,提高数据存储的效率和可靠性。

2. 大数据处理与分析:研究高效的大数据处理与分析方法,挖掘数据中的有用信息。

3. 数据挖掘与机器学习:利用数据挖掘和机器学习的方法,发现数据中隐藏的模式和规律。

4. 数据可视化:研究数据可视化技术,将大量的数据以可视化形式展现,帮助用户更好地理解和分析数据。

3.2 学术研究成果大数据技术专业的学术研究成果丰硕,取得了许多重要的研究成果。

近年来,大数据技术在各个领域的应用越来越广泛,如金融、医疗、交通等。

大数据技术的快速发展也得益于各个领域的学术研究成果的推动。

大数据分析技术研究报告

大数据分析技术研究报告

大数据分析技术研究报告在当今数字化的时代,数据已成为企业和组织的重要资产,而大数据分析技术则是挖掘这些资产价值的关键手段。

大数据分析技术能够帮助我们从海量、复杂的数据中提取有价值的信息,为决策提供有力支持。

本文将对大数据分析技术进行深入探讨。

一、大数据分析技术的定义与特点大数据分析技术是指对规模巨大、类型多样、处理速度快、价值密度低的数据进行收集、存储、管理和分析的一系列技术和方法。

其主要特点包括以下几个方面:1、数据量大大数据的规模通常达到 PB 级甚至 EB 级,远远超过传统数据处理技术所能应对的范围。

2、数据类型多样包括结构化数据(如关系型数据库中的表格数据)、半结构化数据(如 XML、JSON 格式的数据)和非结构化数据(如文本、图像、音频、视频等)。

3、处理速度快要求能够在短时间内对大量数据进行快速处理和分析,以满足实时决策的需求。

4、价值密度低在海量数据中,有价值的信息往往只占很小的比例,需要通过有效的分析方法来提取。

二、大数据分析技术的关键技术1、数据采集与预处理数据采集是获取数据的过程,包括从各种数据源(如传感器、网络爬虫、数据库等)收集数据。

预处理则是对采集到的数据进行清洗、转换、集成等操作,以确保数据的质量和一致性。

2、数据存储为了存储大规模的数据,通常采用分布式文件系统(如 HDFS)和分布式数据库(如 HBase、Cassandra 等)。

3、数据处理框架常见的数据处理框架有 MapReduce、Spark 等。

MapReduce 是一种分布式计算框架,适用于大规模数据的批处理;Spark 则具有更高的性能和更丰富的功能,支持批处理、流处理和交互式查询。

4、数据分析算法包括分类算法(如决策树、朴素贝叶斯)、聚类算法(如KMeans、层次聚类)、关联规则挖掘算法(如 Apriori 算法)等。

5、数据可视化将分析结果以直观、易懂的图表形式展示出来,帮助用户更好地理解数据和发现规律。

云计算与大数据技术研究报告

云计算与大数据技术研究报告

云计算与大数据技术研究报告一、引言随着信息技术的快速发展和互联网的普及,云计算和大数据技术成为了当今科技界的热门话题。

云计算通过网络提供各种服务和资源,而大数据技术则致力于处理和分析海量的数据。

本报告将介绍云计算和大数据技术的概念、基本原理以及当前的应用情况。

二、云计算技术1. 概念与定义云计算是一种将计算资源以服务的形式通过网络提供给用户的模式。

它的核心理念是将传统的硬件和软件资源集中管理,用户通过互联网可以随时随地访问到所需的计算资源。

2. 云计算的基本原理云计算基于虚拟化技术,将物理服务器划分为多个独立的虚拟机,每个虚拟机都可以独立运行操作系统和应用程序。

通过资源管理和调度,云计算可以实现按需分配和动态扩展。

3. 云计算的应用领域云计算已经广泛应用于各个领域,如云存储、云服务器、云数据库等。

它为个人用户、企业和政府机构等提供了灵活、高效的计算服务,大大降低了信息技术的成本。

三、大数据技术1. 概念与定义大数据是指无法通过传统的数据管理和处理技术来有效获取、存储和分析的数据集合。

大数据技术是为了解决这种海量数据的处理问题而产生的一种新型技术。

2. 大数据的处理与分析针对大数据的特点,大数据技术包括数据获取、数据存储、数据处理和数据分析等方面的内容。

其中,数据挖掘和机器学习等算法在大数据处理中扮演着重要的角色。

3. 大数据的应用场景大数据技术在金融、医疗、商业智能等领域都有着广泛的应用。

通过对海量数据的深度挖掘和分析,可以帮助企业做出更准确的决策,并提升产品的竞争力。

四、云计算与大数据的结合1. 云计算提供了大数据处理的基础设施和计算资源,为大数据的存储和计算提供了强大支持。

2. 大数据技术为云计算的数据分析和决策提供了有力的工具和方法。

3. 云计算和大数据技术的结合为企业提供了更强大的数据驱动能力,促进了业务创新和发展。

五、云计算与大数据的挑战与展望1. 数据安全和隐私保护是云计算与大数据面临的重要挑战之一,需要制定相应的法律法规和技术手段来保护用户的数据安全。

大数据技术研究报告

大数据技术研究报告

大数据技术研究报告随着互联网的普及和应用场景的扩大,大数据技术逐渐成为现代社会的重要组成部分。

大数据技术的研究与应用对于推动社会经济发展,优化资源配置,提升管理效能,改善人们的生活质量具有重要意义。

本报告主要介绍大数据技术的研究现状和应用前景。

一、大数据技术的研究现状目前,大数据技术的研究主要集中在以下几个方面:1. 数据存储与管理:随着数据量的爆发增长,如何高效地存储和管理海量数据成为了重要课题。

分布式存储系统、云计算、并行计算等技术的应用,有效解决了数据存储与管理问题。

2. 数据挖掘与分析:大数据中蕴含着各种有价值的信息,如何从中提取出有用的知识成为了研究的重点。

数据挖掘、机器学习、自然语言处理等技术的应用,实现了对大数据的深入分析与挖掘。

3. 数据隐私与安全:大数据中包含着各种个人隐私信息,如何保护数据的安全成为了研究的热点。

数据加密、身份认证、访问控制等技术的应用,提高了大数据的隐私与安全性。

4. 数据可视化与传播:大数据分析的结果需要以可视化的方式展现给用户,如何设计有效的可视化界面成为了研究的重要方向。

交互设计、数据可视化技术的应用,使得大数据的结果更加直观易懂,便于用户的理解与传播。

二、大数据技术的应用前景1. 金融领域:借助大数据技术,银行、保险等金融机构可以对客户进行更加准确的风险评估和信用评估,提供个性化的金融服务,优化资金调度策略,降低风险。

2. 医疗健康领域:通过大数据分析,可以挖掘出疾病的特征和规律,提高临床诊断和治疗的效率和准确性。

同时,结合云计算和移动技术,可以实现健康信息的精准采集和监测,为个体提供个性化的健康管理服务。

3. 城市管理领域:大数据技术可以帮助城市实现智慧化管理,优化交通流量、能源供应和环境保护等方面的问题,提高城市的运行效率,改善居民的生活质量。

4. 电商零售领域:通过对用户行为和购买记录的分析,可以进行精准推荐和定制化营销,提高销售额和用户满意度。

大数据技术在商业领域的应用研究报告

大数据技术在商业领域的应用研究报告

大数据技术在商业领域的应用研究报告一、引言在信息时代的背景下,大数据技术逐渐成为商业领域中不可忽视的重要工具。

本文将探讨大数据技术在商业领域的应用,分析其优势和挑战,并探讨进一步发展的前景和可能的发展方向。

二、大数据技术的定义与特点大数据技术是指处理和分析大规模、多样、高速、复杂数据的技术方法和工具。

其特点包括数据量大、种类多样、速度快、价值密度低、质量不确定等。

三、大数据技术在市场营销中的应用大数据技术在市场营销中的应用,可以通过分析海量数据来研究消费者行为、市场趋势和竞争态势,从而制定更精准的营销策略,提升市场竞争力。

四、大数据技术在供应链管理中的应用大数据技术在供应链管理中的应用,可以通过数据分析提升供应链的效率和灵活性,实现精准的库存管理、物流调度和供应链风险控制。

五、大数据技术在金融风控中的应用大数据技术在金融风控中的应用,可以通过对大规模数据的实时分析,帮助金融机构及时发现和预警风险事件,实现精准的风险管理和防范。

六、大数据技术在客户关系管理中的应用大数据技术在客户关系管理中的应用,可以通过数据挖掘和分析,帮助企业了解客户需求、行为和偏好,从而实现个性化的产品推荐和服务定制。

七、大数据技术在人力资源管理中的应用大数据技术在人力资源管理中的应用,可以通过数据分析来优化招聘、培训和绩效管理,提高人力资源的配置效率和员工的满意度。

八、大数据技术在市场预测中的应用大数据技术在市场预测中的应用,可以通过对大规模数据的分析,发现市场趋势和消费者需求,为企业决策提供科学依据,降低市场风险。

九、大数据技术的挑战与发展前景大数据技术在商业领域的应用面临着数据隐私保护、技术成本、人才需求等挑战。

然而,随着技术的不断发展和普及,大数据技术将进一步深入应用,并为商业领域带来更多机遇与创新。

十、结论大数据技术在商业领域的应用具有广泛的意义和潜力。

通过充分发挥大数据技术的优势,商业领域可以实现数据驱动的精细化管理,提高效率和竞争力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生(大数据技术)报告题目:第27组-基于KNN文本分类分析学号姓名专业计算机技术指导教师院(系、所)计算机学院填表注意事项一、本表适用于攻读硕士学位研究生选题报告、学术报告,攻读博士学位研究生文献综述、选题报告、论文中期进展报告、学术报告等。

二、以上各报告内容及要求由相关院(系、所)做具体要求。

三、以上各报告均须存入研究生个人学籍档案。

四、本表填写要求文句通顺、内容明确、字迹工整。

1研究背景1.1研究背景以及现实意义随着Internet的迅速发展,现在处于一个信息爆炸的时代,人们可以在网络上获取更多的信息,如文本、图片、声音、视频等,尤其是文本最为常用和重要。

因此文本的分类在发现有价值的信息中就显得格外重要。

文本分类技术的产生也就应运而生,与日常生活紧密联系,就有较高的实用价值[1]。

文本分类的目的是对文本进行合理管理,使得文本能分门别类,方便用户获取有用的信息。

一般可以分为人工[2]和自动分类。

人工分类是早期的做法,这种方式有较好的服务质量和分类精度,但是耗时、耗力、效率低、费用高。

而随着信息量以惊人的速度增长,这种方式就显得很困难,所以需要一种自动分类的方式来代替人工分类;自动分类节省了人力财力,提高准确力和速度。

1.2国内外研究现状国外对于文本分类的研究开展较早,20世纪50年代末,H.P.Luhn[3]对文本分类进行了开创性的研究将词频统计思想应用于文本分类,1960年,Maro 发表了关于自动分类的第一篇论文,随后,K.Spark,GSalton,R.M.Needham,M.E.Lesk以及K.S.Jones等学者在这一领域进行了卓有成效的研究。

目前,文本分类已经广泛的应用于电子邮件分类、电子会议、数字图书馆]、搜索引擎、信息检索等方面[4]。

至今,国外文本分类技术在以下一些方面取得了不错的研究成果。

(1)向量空间模型[5]的研究日益成熟Salton等人在60年代末提出的向量空间模型在文本分类、自动索引、信息检索等领域得到广泛的应用,已成为最简便高效的文本表示模型之一。

(2)特征项的选择进行了较深入的研究对于英法德等语种,文本可以由单词、单词簇、短语、短语簇或其他特征项进行表示。

国内对于文本分类的研究起步比较晚,1981年,侯汉清教授对于计算机在文本分类工作中的应用作了探讨,并介绍了国外计算机管理分类表、计算机分类检索、计算机自动分类、计算机编制分类表等方面的概况。

此后,我国陆续研究出一批计算机辅助分类系统和自动分类系统。

但是中英文之间存在较大差异,国内的研究无法直接参照国外的研究成果,所以中文文本分类技术还存在这一些问题。

(1)缺少统一的中文语料库不存在标准的用于文本分类的中文语料库,各个学者分头收集自己的训练文本集,并在此基础上开展研究,因此,系统的性能可比性不强。

同时,由于财力人力有限,中文语料库的规模普遍不大。

(2)向量空间模型的研究还不十分成熟国内的学者,例如,吴立德和黄萱菁也提出了如何选择特征项的问题,他们提出可以使用字、词、概念作为特征项来构成向量空间模型,并对以此为基础的文本分类系统进行了初步的性能比较。

但是,在这方面的研究[6]还没有深入的开展,尤其是对于概念的定义不清晰,没有全面的比较和测试系统。

另外,在特征项抽取算法方面也缺少深入的研究。

(3)文本分类算法的研究不十分完整每个分类器通常只实现一种分类算法,然后进行测试和分析,缺少完整的多种分类算法性能的比较和测试。

2解决方案2.1KNN文本分类算法KNN[7]算法最初由Cover和Hart于1968年提出[8],是一个理论上比较成熟的方法。

该算法的基本思想是:根据传统的向量空间模型,文本内容被形式化为特征空间中的加权特征向量,即D=D(T1,W1;T2,W2;…;Tn,Wn)。

对于一个测试文本,计算它与训练样本集中每个文本的相似度,找出K个最相似的文本,根据加权距离和判断测试文本所属的类别。

具体算法步骤如下:(1)对于一个测试文本,根据特征词形成测试文本向量。

(2)计算该测试文本与训练集中每个文本的文本相似度,计算公式为:式中:di为测试文本的特征向量,dj为第j类的中心向量;M为特征向量的维数;Wk为向量的第k维。

(3)按照文本相似度,在训练文本集中选出与测试文本最相似的k个文本。

(4)在测试文本的k个近邻中,依次计算每类的权重,计算公式如下:式中:x为测试文本的特征向量;Sim(x,di)为相似度计算公式;b为阈值,有待于优化选择;而y(di,Cj)的取值为1或0,如果di属于Cj,则函数值为1,否则为0。

(5)比较类的权重,将文本分到权重最大的那个类别中。

KNN方法基于类比学习,是一种非参数的分类技术,在基于统计的模式识别中非常有效,对于未知和非正态分布可以取得较高的分类准确率,具有鲁棒性、概念清晰等优点。

但在文本分类中,KNN方法也存在不足,如KNN算法是懒散的分类算法,各维权值相同,使得特征向量之间的距离计算不够准确,影响分类精度。

针对这些不足,分别提出了相应的改进算法。

下面将详细介绍。

2.2改进的KNN文本分类算法2.2.1提高分类效率的改进算法KNN算法的主要缺点是,当训练样本数量很大时将导致很高的计算开销。

KNN算法是懒散的分类算法,对于分类所需的计算都推迟到分类时才进行,在其分类器中存储有大量的样本向量,在未知类别样本需要分类时,再计算和所有存储样本的距离,对于高维文本向量或样本集规模较大的情况,其时间和空间复杂度较高。

针对这个缺点,提出了一些改进算法:如基于FuzzyART的K-最近邻分类改进算法,该算法用模糊自适应共振理论(FuzzyART)对K-最近邻的训练样本集进行浓缩,以改善K-最近邻的计算速度。

该算法首先用FuzzyART将训练样本集中的每一类样本进行聚类,减少了训练样本集的数据量,提高了算法的计算速度,保持了预测精度,从而使该算法适用于海量数据集的情况。

试验表明,该算法适用于对复杂而数据量较大的数据库进行分类。

提出了一种基于K-近邻方法的渐进式中文文本分类技术,利用文本的标题、摘要、关键词、重点段落进行渐进式的分类处理。

这样,不用分析全文就能将部分待分类文本成功分类,从而提高了文本分类的效率。

试验结果表明,该方法在保证分类准确率的基础上能够有效地提高分类效率。

对于减少KNN计算量的优化而做的研究主要是如何从原始数据集中选取代表实例集,大部分仅对低维的情况适用,而且在代表实例集每增加或删除一个代表实例时,都要对样本进行一次测试,工作量大,为此,根据测试文档在各个样本类中的分布情况提出了基于KNN分类的两个有助于减少大量计算的重要算法:排类算法和归类算法。

从而构建了一个基于KNN的快速文档分类方法。

理论与实验证明,这种方法可以在不影响原有准确率的条件下,提高文档的分类速度。

2.2.2基于模式聚合和特征降维的改进算法在计算相似度时,不考虑特征词间的关联关系。

针对这一不足进行的改进有:主要考虑文档间特征词属性关联与共现对相似度的作用,用一个匹配系数调整两文档间的距离。

它实质上是强化了文本中语义链属性因子的作用,修正了次要因素的噪声影响,使文本分类结果更加理想,已有的测试结果证明了这一点,尤其在测试文本与训练文本集中的某些文本直观上较相似时,结果更佳。

通过分析特征词对分类贡献的大小,提出了一种应用向量聚合技术的KNN文本分类方法,很好的解决了关联特征词的提取问题,该方法根据每个特征词的CHI 分布曲线来确定它们在分类中的贡献,应用向量聚合技术很好地解决了关联特征词的提取问题。

其特点在于:聚合文本向量中相关联的特征词作为特征项,从而取代传统方法中一个特征词对应向量一维的做法,这样不但缩减了向量的维数,而且加强了特征项对文本分类的贡献。

试验表明,该方法明显提高了分类的准确率和召回率。

2.2.3基于特征加权的改进算法KNN方法是建立在VSM模型上的,其样本距离的测度使用欧式距离或余弦距离,各维权值相同,也就是以为各维对于分类的贡献是相同的,这是不符合实际情况的,同等的权重使得特征向量之间距离或夹角余弦的计算不够准确,进而影响分类精度。

针对这一不足,提出了基于神经网络和CHI的改进KNN方法,应用SOM神经网络进行VSM模型各维权重的计算。

该方法首先运用CHI概率统计方法进行初步特征提取和模式聚合,其特征权重的计算原理为:如果某一维在各个类别中取值基本相同,那么此维对于文本分类的贡献率就相对较低,如果在各个类别中取值有较大的差异,那么就具有较强的文本分类能力,而方差正好是反应变量分布均匀状态的主要指标。

该方法有效地提高了文本分类的精度。

提出了利用SVM[9]来确定特征的权重,即基于SVM特征加权算法(FWKNN,featureweightedKNN)。

试验表明,在一定的条件下,FWKNN能够极大地提高分类准确率。

该方法利用SVM可以定量确定样本的每个特征与分类的相关度———由分类函数的权重向量给出:其中为每个样本对应的Lagrange乘子。

特征权重确定后,就可以修改样本之间的距离函数以便更好地反映实际问题。

3实验结果及分析3.1数据集实验数据集由中科院计算所提供的中文文本分类语料库TanCorpV1.0,本语料库收集了12类文本,共14150篇。

该数据集中的文本已通过分词、去除停用词等预处理工作,可为实验节省一定的时间。

本次实验在其中抽取了财经、电脑、教育、科技、体育和娱乐6个类,每个类别随机抽取600篇文本,共3600篇。

计算出平均文本长度后,通过互联网各类论坛搜索出文本长度约为每个类别平均文本长1/5-1/2的测试文本共600篇,每类100篇。

3.2改进的KNN实验方案在3600篇文本中随机抽取每个类中的400篇作为训练文本,其余的1200篇作为待测文本。

反复使用不同Low值,观察分类结果,直到找到合适的值。

3.3改进的KNN实验结果及分析执行3.2中方案,其目的在于观测Low的取值的对查全率、查准率、F1值以及分类耗时的影响,从中找到比较合适的Low值。

其结果如图3-1和图3-2所示。

图3-1 Low/Mid∈[0,1]的分类结果图3-2 Low/Mid∈[0,1]的分类耗时可以看出,当Low/Mid ≥0.6时,KNN分类器的查全率、查准率和F1值开始趋于稳定,并且其分类耗时是随着Low/Mid的增大成正比的。

4总结与展望本文系统地介绍了KNN文本分类算法基本原理,以及针对KNN算法的不足而做的各种改进,对文本分类算法的理论研究和实际应用起了指导作用。

目前,KNN文本分类算法在科技文献分类、网络信息文本分类、中文不良文本的过滤以及对未知病毒的检测等领域取得了一定的成果。

总之,随着互联网和多媒体技术的发展,要求文本分类技术在文本的处理方法、克服噪声干扰、分类精度等方面有进一步的提高。

相关文档
最新文档