数值分析习题-李庆杨 第五章习题
数值分析第五章答案

数值分析第五章答案【篇一:数值分析第五版计算实习题】第二章2-1程序:clear;clc;x1=[0.2 0.4 0.6 0.8 1.0];y1=[0.98 0.92 0.81 0.64 0.38];n=length(y1);c=y1(:);or j=2:n %求差商for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1));endendsyms x df d;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式df(i)=df(i-1)*(x-x1(i-1));d(i)=c(i)*df(i);enddisp(4次牛顿插值多项式);p4=vpa(collect((sum(d))),5) %p4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, variational);%调用三次样条函数 q=pp.coefs;disp(三次样条函数);for i=1:4s=q(i,:)*[(x-x1(i))^3;(x-x1(i))^2;(x-x1(i));1];s=vpa(collect(s),5)endx2=0.2:0.08:1.08;dot=[1 2 11 12];figureezplot(p4,[0.2,1.08]);hold ony2=fnval(pp,x2);x=x2(dot);y3=eval(p4);y4=fnval(pp,x2(dot));plot(x2,y2,r,x2(dot),y3,b*,x2(dot),y4,co);title(4次牛顿插值及三次样条);结果如下:4次牛顿插值多项式p4 = - 0.52083*x^4 + 0.83333*x^3 - 1.1042*x^2 + 0.19167*x + 0.98 三次样条函数x∈[0.2,0.4]时, s = - 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04 x∈[0.4,0.6]时,s = 0.44643*x^3 - 1.3393*x^2 + 0.45*x +0.92571 x∈[0.6,0.8]时,s = - 1.6964*x^3 + 2.5179*x^2 - 1.8643*x + 1.3886 x∈[0.8,1.0]时,s =2.5893*x^3 - 7.7679*x^2 + 6.3643*x - 0.80571 输出图如下2-3(1)程序:clear;clc;x1=[0 1 4 9 16 25 36 49 64];y1=[0 1 2 3 4 5 6 7 8];%插值点n=length(y1);a=ones(n,2);a(:,2)=-x1;c=1;for i=1:nc=conv(c,a(i,:));endq=zeros(n,n);r=zeros(n,n+1);for i=1:n[q(i,:),r(i,:)]=deconv(c,a(i,:));%wn+1/(x-xk)enddw=zeros(1,n);for i=1:ndw(i)=y1(i)/polyval(q(i,:),x1(i));%系数endp=dw*q;syms x l8;for i=1:nl8(i)=p(n-i+1)*x^(i-1);enddisp(8次拉格朗日插值);l8=vpa(collect((sum(l8))),5)xi=0:64;yi=polyval(p,xi);figureplot(xi,yi,x1,y1,r*);hold ontitle(8次拉格朗日插值);结果如下:8次拉格朗日插值l8 =- 3.2806e-10*x^8 + 6.7127e-8*x^7 - 5.4292e-6*x^6 +0.00022297*x^5 - 0.0049807*x^4 + 0.060429*x^3 - 0.38141*x^2 +1.3257*x输出图如下:第五章4-1(3)程序:clc;clear;y= @(x) sqrt(x).*log(x);a=0;b=1;tol=1e-4;p=quad(y,a,b,tol);fprintf(采用自适应辛普森积分结果为: %d \n, p);结果如下:采用自适应辛普森积分结果为: -4.439756e-01第九章9-1(a)程序:clc;clear;a=1;b=2;%定义域h=0.05;%步长n=(b-a)/h;y0=1;%初值f= @(x,y) 1/x^2-y/x;%微分函数xn=linspace(a,b,n+1);%将定义域分为n等份 yn=zeros(1,n);%结果矩阵yn(1)=y0;%赋初值%以下根据改进欧拉公式求解for i=1:nxn=xn(i);xnn=xn(i+1);yn=yn(i);yp=yn+h*f(xn,yn);yc=yn+h*f(xnn,yp);yn=(yp+yc)/2;yn(i+1)=yn;endxn=yn;%以下根据经典四阶r-k法公式求解for i=1:nxn=xn(i);yn=yn(i);k1=f(xn,yn);k2=f(xn+h/2,yn+h/2*k1);k3=f(xn+h/2,yn+h/2*k2);k4=f(xn+h,yn+h*k3);yn=yn+h/6*(k1+2*k2+2*k3+k4);yn(i+1)=yn;enddisp(改进欧拉法四阶经典r-k法); disp([xn yn])结果如下:改进欧拉法四阶经典r-k法 110.998870.998850.99577 0.99780.991140.996940.985320.996340.978570.996030.971110.996060.963110.996450.95470.997230.945980.998410.9370510.92798 1.0020.91883 1.00440.90964 1.00730.90045 1.01060.89129 1.01430.88218 1.01840.87315 1.02290.86421 1.02780.85538 1.03310.84665 1.0388(b)程序:clc;clear;a=0;b=1;%定义域h=[0.1 0.025 0.01];%步长y0=1/3;%初值f= @(x,y) -50*y+50*x^2+2*x;%微分函数 xi=linspace(a,b,11);y=1/3*exp(-50*xi)+xi.^2;%准确解 ym=zeros(1,11);for j=1:3【篇二:数值分析(第五版)计算实习题第五章作业】题:lu分解法:建立m文件function h1=zhijielu(a,b)%h1各阶主子式的行列式值[n n]=size(a);ra=rank(a);if ra~=ndisp(请注意:因为a的n阶行列式h1等于零,所以a不能进行lu 分解。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳育创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x ,相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析第5章习题

1. 过点),(),...,,(),,(551100y x y x y x 的插值多项式P(x)是()次的多项式 A. 6 B. 5 C. 4 D. 3 考查知识点:插值多项式的基本概念 答案:B2. 通过点),(),,(1100y x y x 的拉格朗日插值基函数)(),(10x l x l 满足() A. 0)(,0)(1100==x l x l B. 1)(,0)(1100==x l x l C. 0)(,1)(1100==x l x l D. 1)(,1)(1100==x l x l 考查知识点:拉格朗日插值基函数的性质 答案:D3. 设)(x L 和)(x N 分别是)(x f 满足同一插值条件的n 次拉格朗日和牛顿插值多项式,它们的插值余项分别是)(x r 和)(x e ,则(B.) 考查知识点:插值多项式的存在唯一性 A.)()(),()(x e x r x N x L =≠ B.)()(),()(x e x r x N x L == C.)()(),()(x e x r x N x L ≠=D.)()(),()(x e x r x N x L ≠≠解析:插值多项式存在唯一性定理可知,满足同一插值条件的拉格朗日插值多项式和牛顿插值实际上是同一个多项式,故,余项也相同。
4. =∇+∆k k y y _______ 考查知识点:差分的概念 答案:11-+-k k y y5. ]2,,2,2[]2,,2,2[,13)(817147f f x x x x f 和则+++=为 与[][]!80!8)(22221!7!7!7)(222)8(8710)7(710===⋯⋯===⋯⋯ξξf f f f ,,,,,,,根据差商和导数关系6. 的二次插值多项式为则时当)(4,3,0)(2,1,1x f ,x ,f x -=-= (拉格朗日插值) 解: 4,3,2,1,110210=-===-=y y x x x ,Lagrange 这里插值公式利用二次得,42=y)()()()(2211002x l y x l y x l y x L ++=3723653)1)(1(406)2)(1(32-+=-+⨯++--⨯-=x x x x x x7. 设2)(x x f =,则)(x f 关于节点2,1,0210===x x x 的二阶向前差分为_2_。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳学文创编之欧阳索引创编

第一章 绪论(12)欧阳家百(2021.03.07)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x ,相对误差为****ln ln )(ln )(ln xxx x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e nk k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳与创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x ,相对误差为****ln ln )(ln )(ln xxx x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e nk k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳学创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而xln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x ,相对误差为****ln ln )(ln )(ln xxx x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e nk k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e nk k kεεεε;(3)*4*2/x x 。
矩阵与数值分析课后答案

矩阵与数值分析课后答案【篇一:李庆扬-数值分析第五版第5章习题答案(20130808)】>【篇二:李庆扬-数值分析第五版第5章与第7章习题答案】>【篇三:数值分析习题】(1) 为便于算法在计算机上实现,必须将一个数学问题分解为 (2) 在数值计算中为避免损失有效数字,尽量避免两个数作减法运算;为避免误差的扩大,也尽量避免分母的绝对值分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的; (4) 有效数字越多,相对误差越2. 用例1.4的算法计算,迭代3次,计算结果保留4位有效数字.3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差.4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限.x1?0.3040, x2?5.1?109, x3?400, x4?0.003346,x5?0.875?10?55. 证明1.2.3之定理1.1.6. 若钢珠的的直径d的相对误差为1.0%,则它的体积v的相对误差将为多少。
(假定钢珠为标准的球形)7. 若跑道长的测量有0.1%的误差,对400m成绩为60s的运动员的成绩将会带来多大的误差和相对误差.8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字.9. 一个园柱体的工件,直径d为10.25?0.25mm,高h为40.00?1.00mm,则它的体积v的近似值、误差和相对误差为多少. 10 证明对一元函数运算有?r(f(x))?k??r(x), 其中k?xf?(x)f(x)并求出f(x)?tanx,x?1.57时的k值,从而说明f(x)?tanx在x?11. 定义多元函数运算?2时是病态问题.s??cixi,其中?ci?1,?(xi)??,i?1i?1nn求出?(s)的表达式,并说明ci全为正数时,计算是稳定的,ci有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:(1) y?11?x?,1?2x1?x(x?1)(x?1)1-cos2x(3) y?,(x?1)x(2) y?(4) y?p,(p?0,q?0,p?q)习题21. 填空题(1) gauss消元法求解线性方程组的的过程中若主元素为零会发生 ;. 主元素的绝对值太小会发生 ;(2) gauss消元法求解线性方程组的计算工作量以乘除法次数计大约为平方根法求解对称正定线性方程组的计算工作量以乘除法次数计大约为;(3) 直接lu分解法解线性方程组时的计算量以乘除法计为追赶法解对角占优的三对角方程组时的计算量以乘除法计为; (4) a????11??,a1?, a2?, ?(a)?; ??02??t0???,t?1 ?(a)cond2(a)?0t??(5) a????a???b(6) a???,c?b?a?0 ?(a)cond2(a)?; ?c???2.用gauss消元法求解下列方程组ax?b?11?1???(1)a??12?2?,??211????4??1????3b??0?, (2)a??2?1?????1?321??1????432??1?,b? ???343?1?????1?234????3.用列主元消元法解下列方程组ax?b.??326???(1)a??10?70?,?5?15???4. 用gauss-jordan消元法求:01??02?0??????4???2232????2?b??7?(2)a??,b????7?4?301?6????????61?6?5??6??????11?1????210? ?1?10???5.用直接lu分解方法求1题中两个矩阵的lu分解,并求解此二方程组. 6.用平方根法解方程组ax?b?321??4?????a??221?,b??3??111??6?????7.用追赶法解三对角方程组ax?b?1?2?1000??1???????12?100??0?a??0?12?10?,b??0? ?????00?12?1??0??000?12??0?????8.证明:(1)单位下三角阵的逆仍是单位下三角阵.(2)两个单位下三角阵的乘积仍是单位下三角阵.9.由l?l1l2?ln?1,(见(2.18)式),证明:?1?1?1?1??l211?ll3231?l?????????l?n1ln210.证明向量范数有下列等价性质:1???1ln3?ln,n?1????? ???1??(1)(2)(3)x2?x1?nxxx??2?x1?nx???x2?nx11.求下列矩阵的a1,a2,a?,??a?.?1??13?a???;?12???2??513???a??1102?.?326???12.求cond2?a??10099?1a?????;?9998?13.证明:?cos?2a?????sin??sin???. cos??(1)若a是正交矩阵,即ata?i, 则cond2?a??1;(2)若a是对称正定阵,?1是a的最大特征值,?n是最小特征值,则cond2?a???1. ?n习题31. 填空题:(1) 当a具有严格对角线优势或具有对角优势且ax=b用jacobi迭代法和gauss-seidel迭代法均收敛;(2) 当线性方程组的系数矩阵a对称正定时.(3) 线性方程组迭代法收敛的充分必要条件是迭代矩阵的小于1; sor法收敛的必要条件是 ;(4) 用迭代法求解线性方程组,若q = ? (b), q, q接近时收敛较快, q接近时收敛较慢; (5)?11?a???,bj?;bs?; ??bj????bs???12?2.用jacobi迭代法和gauss-seidel迭代法求解方程组?210??x1??3???????(1) ?121??x2????5?;(2)?012??x??4????3???1??x1??1???81??????1?51???x2???16? ?1????1?4????x3??7?各分量第三位稳定即可停止.3.用sor法解方程组,取??0.9,与取??1 (即gauss-seidel法)作比较.?321??x1???5????????573???x2???13?. ?2?57??x??3??? ?3???性?521????12?(1)?132?; (2)??32??;???112???00???21??212??0??1?21??(3)?121?;(4)?; ?01?21??212??????001?2????5???1(5)??1???1?5.方程组?1?1?1?1??1122?10?1?1??11?1; (6)2?. ?2?15?1??111??????1?110??a11a12??x1??b1????a???x?????b??a?2122??2??2?,a11?0,a22?0证明用jacobi迭代法收敛的充要条件是:r?6.设a12a21?1. a11a22?1aa???a??a1a?,a为实数;?aa1???(1)若a正定,a的取值范围;(2)若jacobi迭代法收敛,a的取值范围.习题41. 填空题:(1) 幂法主要用于求一般矩阵的jacobi旋转法用于求对称矩阵的特征值;(2) 古典的jacobi法是选择的一对元素将其消为零;(3) qr方法用于求特征值的和求出对应的. 2.用幂法求矩阵. ?621???4140?????⑴?231?,⑵??5130???102??111?????按模最大的特征值和对应的特征向量,精确到小数三位. ??11111???9?2? 3.已知: a??11?1?213???。
李庆扬-数值分析第五版第5章和第7章习题答案解析

WORD格式.分享第5章复习与思考题1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?k答:使用高斯消去法时,在消元过程中可能出现a的情况,这时消去法无法进行;即kkk时主元素0和舍入增长a,但相对很小时,用其做除数,会导致其它元素数量级的严重kk计误差的扩散,最后也使得计算不准确。
因此高斯消去法需要选主元,以保证计算的进行和算的准确性。
当主对角元素明显占优(远大于同行或同列的元素)时,可以不用选择主元。
计算时一般选择列主元消去法。
2、高斯消去法与LU分解有什么关系?用它们解线性方程组Ax=b有何不同?A要满足什么条件?答:高斯消去法实质上产生了一个将A分解为两个三角形矩阵相乘的因式分解,其中一个为上三角矩阵U,一个为下三角矩阵L。
用LU分解解线性方程组可以简化计算,减少计算量,提高计算精度。
A需要满足的条件是,顺序主子式(1,2,⋯,n-1)不为零。
3、楚列斯基分解与LU分解相比,有什么优点?楚列斯基分解是LU分解的一种,当限定下三角矩阵L的对角元素为正时,楚列斯基分解具有唯一解。
4、哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?具有对称正定系数矩阵的线性方程可以使用平方根法求解。
,切对角元素恒为正数,因此,是一个稳定的平方根法在分解过程中元素的数量级不会增长算法。
5、什么样的线性方程组可用追赶法求解并能保证计算稳定?对角占优的三对角方程组6、何谓向量范数?给出三种常用的向量范数。
向量范数定义见p53,符合3个运算法则。
正定性齐次性三角不等式x为向量,则三种常用的向量范数为:(第3章p53,第5章p165)设n||x|||x|1ii11n22||x||(x)2ii1||x||max|x i|1in7、何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A=(a ij)的三种范数||A||1,||A||2,精品.资料WORD格式.分享||A||∞,||A||1与||A||2哪个更容易计算?为什么?向量范数定义见p162,需要满足四个条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B中 2=3=0, 但 它 们 可 以 分 解
1
1 1 1
为
B
=
2
1
0
0
-1
3 L 32 1
L 32 -2
其
中
L
3
为
2
任
意
常
数
,
且
V
奇
异
,
故分解唯一。
1 2 6
C
=
2
5
1
5
6 1 5 4 6
C中 1=1, 2=10, 30, 故 可 分 解 为 且 分 解 唯 一
1 0 01 2 6 C=2 1 00 1 3
6 3 10 0 1
12、 设 A=0 0..6 1 0 0..3 5, 计 算 A的 行 范 数 列 , 2-范 数 列 及 F-范 数 列
n
n
解 : A
= m ax
1 i n
i=1
v=时,A-1=
-98 99
-19090,A =199,A-1 =199
故 C o n d (A ) = A -1 A = 1 9 9 2 = 3 9 6 0 1
解:v=2时,则AT
A=
19801 19602
19602 19405
-19801-19405-196022 =0
解得1=1.9504002104,2=1.9701997104
故Cond(A)2 =
A-1
2
A= 2
max (ATA) min (ATA)
=39205.9745
a ij = 1 .1 ,
A
= m ax
1 1i n
i=1
a ij = 0 .8
A = 2
max
AT A =
0.6853407 =0.8278531
(其中AT
A=
0.6 0.5
0.1 0.6
0.3
0.1
0.5
0.3
=
0.37 0.33
所以max AT A =0.6853407)
11、下述矩阵能否分解为LU,其中L为单位下三角矩阵,U为 上三角矩阵?若能分解,分解是否唯一?
1 2 3
A
=
2
4
1
4 5 7
A中2 =0,故不能分解,但
det A =-10 0故若将A中的
第一行与第三行交换,则可 以分解
1 1 1
B
=
2
2
1
3 3 1
3
故A-1
2+1
=
,
从而cond(A)=A-1
A=64+2+3
23 2 Nhomakorabea3
显 然 当 =2 3时 , 即 =2 3时 cond(A ) 有 最 小 值 ,
且 m incond(A )=7
18、 设 A=19090 9998, 计 算 A的 条 件 数 CondAv,v=2,.
1
n
A =( F
ai2j) 2=
0.71=0.8426150.
ij=1
0.33
0.34
17、矩形第一行乘以一数成为A=21 1,证明当=23时,
cond(A)有最小值。
证明:设0则 A=32,,223
,又因为A-1=1-11
- 2