正比例函数图像和性质
第16讲 正比例函数的图像及性质(解析版)

第16讲 正比例函数的图像及性质【学习目标】正比例函数的图像及性质是八年级数学上学期第三章第二节内容,主要对正比例函数的图像及性质进行讲解,重点是对正比例函数的性质的理解,难点是正比例函数表达式的归纳总结.通过这节课的学习为我们后期学习正比例函数的应用提供依据.【基础知识】一、正比例函数的图像1.一般地,正比例函数y kx =(k 是常数, 0k ≠)的图象是经过,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =;2.图像画法:列表、描点、连线. 二、正比例函数的性质:(1) 当0k >时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值 也随着逐渐增大.(2) 当0k <时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值则随着逐渐减小.【考点剖析】考点一:正比例函数的图像例1.已知正比例函数2y x =.列表:取自变量x 的一些值,根据正比例函数的解析式,填写下表.x…… 1.5- -1 0.5- 0 0.5 1 1.5 2 …… 2y x =……-4-3 -2-1 01 234……描点:分别以所取x 的值和相应函数值作为点的横坐标和纵坐标,描出相应点. 连线:用光滑的曲线(包括直线)把描出的点按照横坐标由小到大的顺序连接. 【难度】★【解析】考查正比例函数图像的画法.例2.在同一直角坐标平面内画出下列函数图像.(1)4y x =;(2)14y x =;(3)32y x =-;(4)32y x =.【难度】★【解析】考查正比例函数图像的画法.例3.函数15y x =-的图像是经过点________、________的________.【难度】★【答案】,,一条直线.【解析】考查正比例函数图像的特点.例4.(1)正比例函数y kx =的图像是____________,它一定经过点_______和_______.(2)函数y kx =的图像经过点1(5)2A -,,写出函数解析式,并说明函数图像经过哪几个象限? 【难度】★★【答案】(1)一条直线,,; (2)x y 10-=,经过二、四象限.【解析】考查正比例函数解析式的解法和图像性质.例5.已知2y -与x 成正比例,且x =2时,y =4; (1)求y 与x 之间的函数关系式;(2)若点(m ,2m +7),在这个函数的图象上,求m 的值.【难度】★★【答案】(1)2+=x y ;(2)-5.【解析】(1)设kx y =-2,将x =2时,y =4代入其中可得:1=k ,则2+=x y ;(2)点(m ,2m +7)在这个函数的图象上,则272+=+m m ,解得:5-=m .【总结】本题一方面考查利用待定系数法求函数解析式,另一方面考查根据函数解析式求函数值或者是自变量的值.例6.已知正比例函数图像上的一点到x 轴距离与到y 轴距离之比为1:2,则此正比例函数的解析式是________________. 【难度】★★【答案】x y 21=或x y 21-=. 【解析】由题意可知,该点的横坐标的绝对值是纵坐标绝对值的两倍,然后再求解析式. 【总结】注意距离需要分正负.例7.如果正比例函数的图像经过点(24)-,,说明是否在这个图像上,并作出该正比例函数的图像.【难度】★★【答案】x y 2-=,不在这个图像上,图像略.【解析】设正比例函数解析式为,将点(24)-,代入,可得:2k =-,所以该正 比例函数的解析式为x y 2-=.当4x =-时,,所以点不在该函数的图像上.【总结】考查正比例函数解析式的求法、图像的画法.例8.已知函数2(2)21y t x t =-+-,当t 为何值时该函数图像经过原点?此时函数解析式是什么?【难度】★★ 【答案】21=t ;x y 47-=.【解析】函数2(2)21y t x t =-+-经过原点,则012=-t ,解得:21=t .代入表达式中可得,函数解析式为:x y 47-=.【总结】本题主要考查正比例函数的概念.例9.一个正比例函数的图像经过点A ,B ,求a 的值.【难度】★★【答案】41-=a .【解析】设正比例函数的解析式为, ∵图像经过点A , ∴3=-k ,则3-=k . ∵图像经过点B ,∴a a 31=--,则41-=a .【总结】本题一方面考查利用待定系数法求正比例函数的解析式,另一方面考查利用解析式求图像上点的坐标.考点二:正比例函数的性质:例1.直线经过一、三象限,则m ________.【难度】★【答案】2<m .【解析】考查的图像经过一、三象限.例2.已知正比例函数的图像经过第二、四象限,求k 的取值范围.【难度】★ 【答案】25>k . 【解析】由题意,可得:520k -<,解得:25>k . 【总结】考查的图像经过二、四象限.例3.若正比例函数(3)y m x =-,y 的值随x 的增大而减小,则m _______.【难度】★ 【答案】3<m .【解析】由题意,可得:30m -<,解得:3m <. 【总结】考查的图像性质y 的值随x 的增大而减小.例4.(3)y x π=-图像经过_______象限,y 的值随x 的值增大而_______.【难度】★【答案】一、三;增大.【解析】由题意,可得:30π->,所以图像过一、三象限. 【总结】考查的图像y 的值随x 的增大而增大.例5.当a =_______时,2(3)(9)y a x a =-+-是正比例函数,图像经过第______象限.【难度】★ 【答案】;二、四.【解析】因为正比例函数,所以,解得:3a =-,所以图像过二、四象限. 【总结】考查的图像y 的值随x 的增大而减小.例6.已知点(11,x y ),(22,x y )在正比例函数()2y k x =-的图像上,当12x x >时,12y y <,那么k 的取值范围是多少? 【难度】★★ 【答案】2<k .【解析】当12x x >时,12y y <,可以理解成y 的值随x 的增大而减小. 【总结】本题主要考查正比例函数图像的性质.例7.已知正比例函数25(3)mm y m x +-=+,那么它的图像经过____________象限.【难度】★★ 【答案】一、三.【解析】∵152=-+m m ,∴3-=m 或2=m ,又∵03≠+m ,∴2=m .∴图像过一、三 象限. 【总结】本题主要考查正比例函数的概念及图像的性质.例8.正比例函数2mmy mx +=的图像经过第一、三象限,求m 的值.【难度】★★ 【答案】.【解析】由题意,可得:12=+m m ,则251±-=m . ∵正比例函数2m my mx +=的图像经过第一、三象限,∴0>m ,∴215-=m . 【总结】本题主要考查正比例函数的概念及图像的性质.例9.已知0mn <,那么函数my x n =经过______象限,y 的值随x 的值增大而______.【难度】★★【答案】二、四;减小.【解析】∵0mn <,∴,所以图像过二、四象限,并且y 的值随x 的值增大而减小. 【总结】考查的图像y 的值随x 的增大而减小.例10.函数()2(2)2k y k x -=-是正比例函数,且y 的值随着x 的减小而增大,求k 的值.【难度】★★ 【答案】1.【解析】由题意,可得:()122=-k ,则3=k 或1=k .∵y 的值随着x 的减小而增大,∴02<-k ,∴1=k .【总结】本题主要考查正比例函数的概念及图像的性质.例11.如果正比例函数y kx =的自变量增加5,函数值减少2,那么当3x =时,y =_______.【难度】★★【答案】56-.【解析】∵正比例函数y kx =的自变量增加5,函数值减少2,∴52-=k∴正比例函数解析式为x y 52-=.∴当3x =时,26355y =-⨯=-.【总结】本题主要考查正比例函数的概念及图像的性质.例12.(1)已知y ax =是经过第二、四象限的直线,且3a +在实数范围内有意义, 求a 的取值范围;(2)已知函数的值随自变量x 的值增大而增大,且函数的值随自变量x 的增大而减小,求m 的取值范围. 【难度】★★【答案】(1)03<≤-a ;(2)3121-<<-m . 【解析】(1)由题意,可得:,所以;(2)由题意,可得:,解得:,所以1123m -<<-.【总结】考查正比例函数图像的性质.例13.正比例函数()41y m x =-的图像经过点11(,)A x y 和22(,)B x y ,且该图像经过第 二、四象限.(1)求m 的取值范围;(2)当12x x >时,比较1y 与2y 的大小,并说明理由.【难度】★★ 【答案】(1)41<m ;(2)1y 2y <,正比例函数y 的值随着x 的增大而减小. 【解析】考查正比例函数图像的变化情况.【过关检测】一、填空题1.(2020·上海市静安区实验中学八年级课时练习)已知正比例函数的图像过点(3,2),(a ,6),则a 的值=_________. 【答案】9【分析】先根据点(3,2)坐标求出正比例函数解析式,再把点(a ,6)代入解析式,即可求解. 【详解】解:设正比例函数解析式为y=kx (k≠0), ∵正比例函数的图像过点(3,2), ∴3k=2, ∴k=23, ∴正比例函数解析式是23y x =,再把x=a ,y=6代入23y x =得, 263a =, 解得a =9. 故答案为:9【点睛】本题考查了待定系数法求正比例函数和已知正比例函数求字母的值,根据待定系数法求出正比例函数解析式是解题关键.2.(2019·上海凉城第二中学八年级月考)若正比例函数()231my m x-=-的图像经过一、三象限,则函数解析式是_______________. 【答案】y x =.【分析】根据正比例函数的定义和图像所经过的象限即可求出m ,从而求出函数解析式. 【详解】解:∵正比例函数()231m y m x -=-的图像经过一、三象限,∴解得:2m =∴函数解析式是y x =. 故答案为:y x =.【点睛】此题考查的是求正比例函数的解析式,掌握正比例函数的定义和图像所经过的象限与比例系数的关系是解决此题的关键.3.(2020·上海市位育实验学校八年级月考)已知直线y kx =(k≠0),当直线与x 轴正半轴夹角为30º时,直线解析式是____________ 【答案】y=x.【分析】依题意作图,根据含30°的直角三角形的特点设AO=2a ,得到故求出A 点坐标,再代入解析式即可求解.【详解】如图,AB ⊥x 轴,设OA=2a,∵∠AOB=30°,∴=∴A ,a )代入y kx =,即∴直线解析式是y=x 故填:y=x.【点睛】此题主要考查正比例函数的解析式,解题的关键是熟知含30°的直角三角形的性质. 4.(2019·上海市西南模范中学)正比例函数3y x =-的图像经过_____象限. 【答案】二、四.【分析】由题目可知,该正比例函数过原点,且系数为负数,故函数图象过二、四象限. 【详解】由题意,y=-3x , 可知函数过二、四象限. 故答案为:二、四.【点睛】此题主要考查了正比例函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.5.(2017·上海市青浦区金泽中学八年级期末)如果正比例函数的图象经过点(2,12),则正比例函数解析式是_____. 【答案】y =14x 【分析】设正比例函数解析式为y =kx (k ≠0),把经过的点的坐标代入解析式求出k 值,即可得解. 【详解】设正比例函数的解析式是y =kx (k ≠0),把(2,12)代入就得到:2k =12, 解得:k =14,因而这个函数的解析式为:y =14x .故答案为:y =14x.【点睛】本题考查待定系数法求正比例函数解析式.6.(2020·上海八年级期中)已知正比例函数y kx =的图像经过点()4,3A -,则函数图像经过______象限. 【答案】第二、第四【分析】将点()4,3A -代入正比例函数解析式中,即可求出k 的值,再根据k 的符号即可得出结论. 【详解】解:将点()4,3A -代入y kx =中,得解得:34k =-∴正比例函数34y x =- ∵34-<0 ∴函数图像经过第二、第四象限 故答案为:第二、第四.【点睛】本题考查的是正比例函数的性质,熟知利用待定系数法求正比例函数解析式是解答此题的关键. 7.(2020·上海八年级期中)已知正比例函数()21y a x =-,如果y 的值随着x 的值增大而减小,则a 的取值范围是______. 【答案】12a <【分析】根据正比例函数的性质可知关于a 的不等式,解出即可.【详解】解:∵正比例函数()21y a x =-,y 的值随着x 的值增大而减小, ∴21a -<0 解得:12a <故答案为:12a <. 【点睛】此题考查的是正比例函数图象的性质,掌握正比例函数图象的性质:它是经过原点的一条直线.当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小,是解题关键.8.(2020·上海市静安区实验中学八年级课时练习)正比例函数()21y k x =+的图像经过第二、四象限,则k ______. 【答案】12k <-【分析】根据正比例函数经过象限,得到关于k 的不等式,解不等式即可求解. 【详解】解:∵正比例函数()21y k x =+的图像经过第二、四象限, ∴210k +<, 解得12k <-.故答案为:12k <-【点睛】本题考查了正比例函数的图象与性质,在正比例函数中当k>0时,图象经过第一、三象限,当k<0时,图象经过第二、四象限.9.(2020·上海市静安区实验中学八年级课时练习)函数y =的图像过点(b ,则b=________. 【答案】-1【分析】把点(b b .【详解】解:∵函数y =的图像过点(b ∴, ∴b=-1. 故答案为:-1【点睛】本题考查了已知正比例函数解析式求点的坐标的参数,把点的坐标代入函数解析式是解题关键. 10.(2018·上海八年级期末)如果正比例函数y kx =的图像经过点(2-,6),那么y 随x 的增大而______. 【答案】减小【分析】求出k 的值,根据k 的符号确定正比例函数的增减性. 【详解】解:∵正比例函数y kx =的图像经过点(2-,6), ∴-2k =6, ∴k =-3,∴y 随x 的增大而减小. 故答案为:减小【点睛】本题考查了求正比例函数和正比例函数的性质,求出正比例系数k 的值是解题关键. 二、解答题11.(2020·上海市静安区实验中学八年级课时练习)已知y 与x 成正比例,且当x=12时, 求(1)y 关于x 的函数解析式? (2)当y=-2时,x 的值?【答案】(1)y =;(2)2x =.【分析】(1)首先设反比例函数解析式为y =k x(k≠0),再把x=12时,y=k 的值,进(2)把y=-2代入函数解析式即可.【详解】(1)设,把x=12,12k ,∴k =故y 关于x 的函数解析式是y =.(2)把y=-2代入解析式y =中,得-2=,解得2x =-. 【点睛】此题主要考查了待定系数法求正比例函数解析式,关键是掌握正比例函数解析式的形式. 12.(2020·上海市静安区实验中学八年级课时练习)正比例函数的图像经过点P (-3,2)和Q (-m ,m-1 ),求m 的值.【答案】3【分析】图象经过点,即点的坐标符合图象解析式,据此解题,先用待定系数法设正比例函数解析式,再代入点坐标求m 的值即可.【详解】设正比例函数解析式为(0)y kx k =≠,因为正比例函数的图像过点P (-3,2),将点P 坐标代入得,23y x =- 再代入点Q 坐标,即把x=-m ,y=m-1代入23y x =-左右两边, 解得m=3.【点睛】本题考查正比例函数图象性质、待定系数法等知识,是典型考点,难度较易,掌握相关知识是解题关键.13.(2020·上海市格致初级中学八年级期中)已知点(2,﹣4)在正比例函数y =kx 的图象上. (1)求k 的值;(2)若点(﹣1,m )也在此函数y =kx 的图象上,试求m 的值.【答案】(1)-2;(2)2【分析】(1)结合点(2,-4)在正比例函数y =kx 的图象上,根据正比例函数的性质,列方程并求解,即(2)根据(1)的结论,得到正比例函数的解析式;结合题意,通过计算即可得到答案.【详解】(1)∵点(2,-4)在正比例函数y=kx的图象上∴-4=2k解得:k=-2;(2)结合(1)的结论得:正比例函数的解析式为y=-2x∵点(-1,m)在函数y=-2x的图象上∴当x=-1时,m=-2×(-1)=2.【点睛】本题考查了正比例函数的知识;解题的关键是熟练掌握正比例函数、坐标的性质,从而完成求解.14.(2018·上海)已知y与x﹣1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当x=﹣1时,求y的值;(3)当﹣3<y<5时,求x的取值范围.【答案】(1)y=2x﹣2;(2)﹣4;(3)x的取值范围是﹣12<x<72.【分析】(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;(2)利用(1)中关系式求出自变量为-1时对应的函数值即可;(3)先求出函数值是-3和5时的自变量x的值,x的取值范围也就求出了.【详解】(1)设y=k(x﹣1),把x=3,y=4代入得(3﹣1)k=4,解得k=2,所以y=2(x﹣1),即y=2x﹣2;(2)当x=﹣1时,y=2×(﹣1)﹣2=﹣4;(3)当y=﹣3时,x﹣2=﹣3,解得:x=﹣12,当y=5时,2x﹣2=5,解得:x=72,∴x的取值范围是﹣12<x<72.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.15.(2020·上海市静安区实验中学八年级课时练习)正比例函数23my mx -=的图象经过第一、三象限,求m 的值.【答案】2【分析】根据正比例函数的定义和图象经过象限得到关于m 的方程和m 的取值范围,即可求解.【详解】解:∵函数函数23my mx -=为正比例函数, ∴231m -=,∴2m =±,又∵正比例函数的图像经过第一、三象限,∴m >0,∴2m =【点睛】本题考查了正比例函数的定义和性质,注意正比例函数是一次函数,自变量次数为1,熟知正比例函数图象与性质是解题关键.。
正比例函数图像及性质

y 3x
3
yx
2 1
y
1 3
x
y 4
3
2
1
-4 -3 -2 -1
O1 2 3 4
-1
x
-2
-3
-4
-4 -3 -2 -1 O 1
-1
-2
-3
-4
234
xy
1 3
x
y x
y 3x
正比例函数y kx(k 0)的性质:
(1) 当k>0时,直线 y=kx的图像经过一、三象限,从 左向右呈上升趋势,自变量x逐渐增大时,y的值也随着 逐渐增大。
2、正比例函数y=kx的图象的画法;
3、正比例函数的性质:
1)图象都经过原点; 2)当k>0时,它的图象从左向右上升,经过第一、二象限,y随x 的增大而增大;
当k<0时,它的图象从左向右下降,经过第二、四象限,y随x 的增大而减少。
4、正比例函数y=kx在实际应用中、自变量、函数值受实际 条件的制约。
x
01
x
1
2
如何画正比例函数的图像?
因为正比例函数的图像是一条直线,而 两点确定一条直线
画正比例函数的图像时,只需描两 个点,然后过这两个点画一条直线
结论
正比例函数图象经过点(0,0)和点(1,k)
y y= kx (k>0)
y
y= kx
k
(k<0)
01
x
01
x
k
在同一坐标系内画下列正比例函数的图像:
y 3x y x y 1 x y
y 3x
3
3
yx
当k>0
时,它的图
函数的正比例知识点总结

函数的正比例知识点总结1. 定义和特点正比例函数是描述两个变量之间成正比关系的函数。
在正比例函数y=kx中,k被称为比例系数,表示y和x之间的比例关系。
当x增加时,y也随之增加;x减少时,y也随之减少。
因此,正比例函数的图象通常是一条通过原点的直线。
正比例函数的特点如下:- 通过原点:正比例函数的图像都通过原点(0,0),因为当x=0时,y=0,即k*0=0。
- 一般形式:正比例函数的一般形式为y=kx,其中k为常数。
- 方向一致:当x增加时,y也增加;x减少时,y也减少。
2. 图像和性质正比例函数的图像通常是一条通过原点的直线。
例如,y=2x和y=0.5x分别表示比例系数为2和0.5的正比例函数,它们的图像分别是一条斜率为2和斜率为0.5的直线。
正比例函数具有以下性质:- 斜率固定:正比例函数的图像的斜率即为比例系数k,表示y和x之间的比例关系。
- 通过原点:正比例函数的图像都通过原点(0,0)。
- 正相关性:x和y之间是正相关的,即当x增加时,y也增加;x减少时,y也减少。
3. 实际应用正比例函数在日常生活和科学领域中有着广泛的应用,如物理学、经济学、工程学等。
以下是一些实际应用的例子:- 距离和时间:当一个物体以匀速直线运动时,它的位移和时间成正比。
位移和时间之间的关系可以用正比例函数来描述,即位移=速度*时间。
- 价格和数量:在经济学中,价格和数量之间通常有着正比例的关系。
当商品的价格上涨时,消费者购买的数量通常会减少;反之亦然。
- 温度和压强:在物理学中,温度和气体的压强之间也通常成正比。
当温度上升时,气体的压强也会相应上升。
4. 解题方法解决正比例函数问题的关键是确定比例系数k。
一旦得到比例系数k,就可以轻松地求出任意x对应的y值,或者求出任意y对应的x值。
另外,当已知正比例函数经过一点时,可以使用此点的坐标和函数的一般形式来求出比例系数k。
5. 难点及解决方法在学习正比例函数时,学生可能会遇到以下难点:- 理解比例系数k的意义:学生可能对比例系数k的含义不够理解,认为它只是一个数字,缺少具体含义。
人教版八年级数学上册正比例函数的图像和性质

4、正比例函数y=kx在实际应用中、自变量、函数值受实际 条件的制约。
练习题
1,下列函数中,正比例函数是( )
A. y=-8x
B. y=-8x+1
C. y=8x² +1
D. y=-8/x
2, 已知正比例函数y=kx(k≠0)的图象经过第二,
四象限,那么( )
A,k>0
B,k<0
C k>2
D,k<-2
3, 函数y=(m-3)x³¯™是正比例函数,m为何值?
4.直线y=kx经过点(1,-4),那么k=___ 这条直线在第___象限内,直线上的点的纵坐标随 横坐标的增大而___。已知点A(a,1),B(-2,b)在这条
2
y
·
o1
y= 12x
小结:两图像都是经过原点的直线函数y=2x的图 像从左向右上升,经过第一,三象限;函数y=-2x 的图像从左向右下降,经过第二,四象限。
正比例函数性质:
对于正比例函数y=kx 1、图象都经过原点; 2、当k>0时,它的图象经过第一、三象限, y 随 x 的增大而增大; 3、当k<0时,它的图象经过第二、四象限, y 随 x 的增大而减少;
2.4
2.自变量x的取值范围0≤x≤35
1.8
3.蜡烛点燃35分钟后可燃烧完。
1.2
0.6
0 12
x
3 45 6
本章总结
1、正比例函数y=kx的图象是经过(0,0)(1,k)的一条直线, 我们把正比例函数y=kx的图象叫做直线y=kx;
2、正比例函数y=kx的图象的画法;
3、正比例函数的性质:
《正比例函数的图象和性质》教案

《正比例函数的图象和性质》教案第一章:正比例函数的定义1.1 引入正比例函数的概念通过实际例子(如长度和宽度、速度和时间等)引导学生理解正比例关系。
解释正比例函数的定义:形如y = kx (k 是常数)的函数称为正比例函数,其中x 是自变量,y 是因变量。
1.2 解析正比例函数的性质引导学生分析正比例函数的图像特征,如通过观察图像理解正比例函数的单调性、过原点等性质。
引导学生理解正比例函数的斜率k 的意义,如k 的正负决定了函数图象在坐标平面内的位置,k 的绝对值决定了函数图像的倾斜程度。
第二章:正比例函数的图像2.1 绘制正比例函数的图像引导学生通过观察函数式y = kx 理解函数图像的形状,如直线、通过原点等。
利用计算器或绘图软件,让学生实际绘制正比例函数的图像,观察不同k 值对图像的影响。
2.2 分析正比例函数图像的性质引导学生理解正比例函数图像的几个关键点,如原点、正半轴、负半轴等。
第三章:正比例函数的性质3.1 理解正比例函数的斜率解释斜率的概念,即函数图像在任意两点间的斜率等于这两点的纵坐标之差与横坐标之差的比值。
引导学生理解正比例函数的斜率恒为常数k,与x 的取值无关。
3.2 探讨正比例函数的单调性引导学生通过观察图像或分析函数式,理解正比例函数的单调性,即在定义域内,随着x 的增大,y 也随之增大或减小。
第四章:正比例函数的应用4.1 实际问题引入通过实际问题引入正比例函数的应用,如人口增长、商品价格等。
引导学生将实际问题转化为正比例函数问题,即找到自变量和因变量之间的正比例关系。
4.2 解题方法指导引导学生运用正比例函数的性质和解题方法解决实际问题,如通过给定的两个点的坐标求斜率、通过已知斜率求点的坐标等。
第五章:巩固与拓展5.1 练习题提供一些有关正比例函数的练习题,让学生巩固所学知识,如图像绘制、性质分析、实际应用等。
5.2 拓展讨论引导学生思考正比例函数在实际生活中的应用,如如何利用正比例函数模型预测未来的趋势。
正比例函数、一次函数的图像与性质

正比例函数与一次函数的图象与性质1,正比例函数2,一次函数y=kx+b的性质(对比正比例函数的性质和图像的性质)3,函数是通过的观念研究已学过或未学过的知识。
4,变量的定义是:常量的定义是:5,函数的定义:则函数的本质是:6,在函数的定义中,自变量x在“在某一范围内”取值,这就是自变量的取值范围,它有两层含义,分别是:(1)(2)7,函数解析式是式子,写函数解析式必写8,函数的表示方法有种,它们分别是:;在运用时不是单独运用某一种,而综合运用它们。
9,由函数解析式画函数图像,一般步骤是10,一次函数的定义是正比例函数的定义是11,一次函数y=kx+b的平移:1)在y轴如何平移2)在x轴如何平移12,正比例函数是一次函数的特例,特殊在什么地方13,一次函数y=kx+b的趋势是由什么决定的如何决定的14,函数y1=k1x+b1与y2=k2x+b2: 1)平行的条件2)相交的条件3)重合的条件15,作图与作题正比例函数的图像是由决定的而一次函数的图像是由决定的16,一次函数是函数中最简单、最基本的一种函数。
函数与方程不同,方程是从静态的角度看待问题,是求方程所代表的未知数,如x+y=1,就方程而言一个二元一次方程没有意义,要想有意义就要是方程组,才能有一对实数解,这个解用平面直角坐标系来解释就是一个点;而函数是运用运动的观念来研究问题的,是从动态的角度看待问题的,也就是说自变量在某一变化过程中有一定的取值范围,从函数图像上看其就是点的集合,运用方程思想或方法只能求出一点,因此要想确定函数解析式或画出函数图像就要知道函数解析式中自变量的系数与常数即可,这就是待定系数法的由来。
17,待定系数法的定义是:待定系数法是解出函数解析式的方法,是运用方程思想解出函数解析式中未知的系数与常数,其步骤有:(1)根据图像或条件设定函数解析式;(2)运用方程思想方法解出未知的系数与常数。
那么一次函数系数的确定需要的条件是:正比例函数系数的确定需要的条件是:18,一次函数与二元一次方程组二元一次方程组有解是二元一次方程组无解是阅读——函数与方程的联系与区别:区别:(1)方程有若干个未知数,而函数则有若干个变量;(2)方程用等式表示若干个未知数的关系,而函数既可以用等式表示变量之间的关系,又可以用列表或图象来表示两个变量之间的关系。
正比例函数知识讲解

正比例函数知识讲解
正比例函数的特点是,自变量x和因变量y成正比关系,当x的值增加时,y的值也随之增加。
斜率k表示了y每增加一个单位,x增加的单位数。
如果k是正数,则y随着x的增加而增加,如果k是负数,则y随着x的增加而减少。
1.定义:
2.斜率和截距:
在正比例函数 y = kx 中,斜率 k 表示了直线的倾斜程度。
斜率大于 0 时,曲线向上倾斜;斜率小于 0 时,曲线向下倾斜。
截距 b 表示函数图像与 y 轴的交点位置。
3.表示形式:
4.性质:
- 常数比例:对于一个给定的正比例函数 y = kx,k 是一个恒定的比例常数,即函数图像上任意两个点的斜率都相同。
-零值:正比例函数不包括(0,0)这个点,因为零值不属于定义域。
-相关变量:正比例函数中的两个变量是相关的,即当x值发生变化时,y值也会发生相应变化。
-数量比较:可以通过比较不同x值时y的大小来比较两个相关量的大小关系。
5.应用举例:
-资金计算:金融领域中的利息计算和复利计算都可以通过正比例函数进行建模。
-物理学:速度和时间、距离和时间之间的关系可以通过正比例函数进行描述。
-经济学:供求关系中的供应量和价格之间的关系可以用正比例函数表示。
-比例问题:在解决比例问题时,常常需要使用正比例函数来建立比例关系。
总结:
正比例函数是一种重要的数学函数,它的性质和应用非常广泛。
正比例函数能够帮助我们建立和描述各种实际生活中的关系,并进行数量上的比较和计算。
对于理解和应用正比例函数,我们需要掌握其基本定义、性质和应用场景,以及如何确定斜率和截距。
正比例函数图像课件ppt

正比例函数的应用场景
总结词
正比例函数在现实生活中有许多应用场景,如速度-时间关系 、加速度-时间关系等。
详细描写
在物理学中,速度和时间是成正比的,可以用正比例函数表 示。同样地,加速度和时间的关系也可以用正比例函数表示 。此外,在经济学、统计学等领域中也有许多应用场景,如 收入与工作时间的关系等。
k值变化时
当k的值产生变化时,图像的斜率也 会相应变化,但始终保持垂直于x轴 。
03 正比例函数图像的性质
函数的单调性
单调递增
当比例系数大于0时,随着x的增大 ,y的值也增大。
单调递减
当比例系数小于0时,随着x的增大,y 的值减小。
函数的对称性
关于原点对称
正比例函数的图像总是经过原点,并且关于原点对称。
正比例函数的基本性质
总结词
正比例函数具有一些基本性质,包括斜率固定、过原点、y 随 x 增大而增大或 减小等。
详细描写
正比例函数的斜率为 k,即当 x 增加时,y 会以 k 的比例增加或减少。如果 k>0,则函数图像为增函数;如果 k<0,则函数图像为减函数。由于图像过原 点,因此当 x=0 时,y=0。
解决代数问题
正比例函数是线性函数的一种特殊情势,通过正比例函数图像可以直观地表示函数的增减性、交点等性质,有助 于解决代数方程、不等式等问题。
在物理中的应用
描写光强与距离的关系
在光学中,光强与光源的距离成正比。通过正比例函数图像,可以表示光强与距离之间的关系,进而 分析光学现象。
描写声音强度与距离的关系
续的学习打下坚实的基础。
提高练习题
总结词:深化理解
详细描写:提高练习题是在学生掌握正比例函数的基本概念后,进一步深化对正 比例函数的理解。这些练习题将涉及更复杂的函数情势、参数变化对函数图像的 影响等内容,有助于培养学生的思维能力和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正比例函数
教学目标
1.认识正比例函数的意义,掌握正比例函数解析式特点.
2.理解正比例函数图象性质及特点并能利用所学知识解决相关实际问题.
教学重点
1.理解正比例函数意义及解析式特点.
2.掌握正比例函数图象的性质特点.
3.能根据要求完成转化,解决问题.
教学难点
正比例函数图象性质特点的掌握.
教学过程
Ⅰ.提出问题,创设情境
一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.
1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?
2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?
3.这只燕鸥飞行1个半月的行程大约是多少千米?
我们来共同分析:
一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:
25600÷(30×4+7)≈200(km)
若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:
y=200x(0≤x≤127)
这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即
y=200×45=9000(km)
以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.
类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.
Ⅱ.导入新课
首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?
1.圆的周长L随半径r的大小变化而变化.
2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化. 3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.
4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.
答应:1.根据圆的周长公式可得:L=2 r.
2.依据密度公式p=m
V
可得:m=7.8V.
3.据题意可知: h=0.5n. 4.据题意可知:T=-2t.
我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x 的形式一样.
一般地,•形如y=•kx•(k•是常数,•k•≠0•)的函数,•叫做正比例函数(proportional func-tion),其中k叫做比例系数.
我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?
[活动一]
画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.
1.y=2x 2.y=-2x
结论:
1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:
x -3 -2 -1 0 1 2 3
y -6 -4 -2 0 2 4 6
画出图象如图(1).
2.y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:
x -3 -2 -1 0 1 2 3
y 6 4 2 0 -2 -4 -6
画出图象如图(2).
3.两个图象的共同点:都是经过原点的直线.
不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;•经过第二、四象限.
尝试练习:
在同一坐标系中,画出下列函数的图象,并对它们进行比较.
1.y=1
2
x 2.y=-
1
2
x
x -6 -4 -2 0 2 4 6 y=
1
2
x
-3 -2 -1 0 1 2 3 Y=-
1
2
x
3 2 1 0 -1 -2 -3
比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y=1
2
x•的图象从左
向右上升,经过三、一象限,即随x增大y也增大;函数y=-1
2
x•的图象从左向右下降,经
过二、四象限,即随x增大y反而减小.
让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.•当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•图象经过二、四象限,从左向右下降,即随x增大y反而减小.
正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,•我们可以称它为直线y=kx.
[活动二]
经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,•怎样画最简单?为什么?
让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.
结论:
经过原点与点(1,k)的直线是函数y=kx的图象.
画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.
Ⅲ.随堂练习
用你认为最简单的方法画出下列函数图象:
1.y=3
2
x 2.y=-3x
Ⅳ.课时小结
本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.
Ⅴ.课后作业
习题1、2、6题.
Ⅵ.活动与探究
某函数具有下面的性质:
1.它的图象是经过原点的一条直线.
2.y随x增大反而减小.
请你举出一个满足上述条件的函数,写出解析式,画出图象.
解:函数解析式:y=-0.
x 0 2
y 0 -1。