催化燃烧的性质
贵金属催化剂催化燃烧挥发性有机物(VOCs):活性组分、载体性质等的影响

贵金属催化剂催化燃烧挥发性有机物(VOCs):活性组分、载体性质等的影响讨论背景:挥发性有机物(volatile organic compounds,VOCs)是指常温下沸点为50~260 ℃的一系列有机化合物,是重要的大气污染物。
VOCs不仅参加光化学烟雾的形成,还可导致呼吸道和皮肤刺激,甚至诱使机体产生癌变,对环境和人体健康构成了很大威逼。
因此,VOCs处理技术日益受到重视。
已开展应用的VOCs处理技术包括汲取法、吸附法、冷凝法、膜分别法、生化法、低温等离子体法、光催化氧化法、直接燃烧法和催化燃烧法等。
其中,催化燃烧法可以处理中、低浓度的VOCs,在相对较低的温度下实现催化氧化,降低了能耗,削减了二次污染物的排放,目前已成为消退VOCs最重要的技术之一。
催化剂的设计合成是催化燃烧技术的关键。
贵金属因优异的低温催化活性和稳定性而受到讨论者的广泛关注。
贵金属价格昂贵,储量稀缺,为提高其使用效率,通常将贵金属负载到载体上,得到负载型催化剂。
本文讨论了近期贵金属催化剂对VOCs催化燃烧的文献报道,从活性组分、载体两方面对最新的成果进行综述,将为今后催化燃烧VOCs的讨论供应肯定参考。
一摘要催化燃烧技术是目前处理挥发性有机物(VOCs)最有效的技术之一。
在用于催化燃烧VOCs的催化剂中,贵金属因其优异的催化活性而受到众多关注。
从活性组分和载体两方面,对贵金属催化剂催化燃烧VOCs的最新报道进行综述。
目前,催化剂活性组分的讨论重点在于铂、钯、金等单组分贵金属的改性和双组分贵金属的设计合成;对载体的讨论主要涉及酸性、孔结构以及载体与金属的强相互作用。
将来还需进一步提名贵金属催化剂的抗中毒性能。
二活性组分贵金属催化剂通常以Pt、Pd、Au等金属作为活性组分,其中对Pt、Pd的讨论起步较早,对Au的讨论也在近几年内得到了更多关注。
表1总结了近期关于贵金属催化剂的讨论成果。
1.Pt催化剂总体上看,Pt催化剂对苯、甲苯具有较高的催化燃烧活性,在处理含氯VOCs时有更高的CO2选择性,但难以催化氧化乙酸乙酯,且易受CO中毒的影响。
稀土催化剂(Ce、La)用于丙烷催化燃烧的研究进展

第41卷第1期Vol.41㊀No.1重庆工商大学学报(自然科学版)J Chongqing Technol &Business Univ(Nat Sci Ed)2024年2月Feb.2024稀土催化剂(Ce ㊁La )用于丙烷催化燃烧的研究进展龚旭栋,王玮璐,吴㊀云,张贤明重庆工商大学废油资源化技术与装备教育部工程研究中心,重庆400067摘㊀要:目的挥发性有机物(VOCs )对人体健康和生态环境都有不良影响,已引发研究者的广泛关注㊂催化燃烧是处理VOCs 的有效技术之一,具有去除效率高㊁无二次污染等优势㊂稀土元素Ce ㊁La 及其氧化物因特殊的理化性质常作为催化助剂或载体,在催化燃烧中起着重要作用㊂因此针对稀土催化剂(主要为Ce ㊁La ),综述了其在丙烷催化燃烧中的应用及相应的催化反应机制以及未来的发展方向㊂方法通过对Ce 基和La 基催化剂在丙烷催化燃烧中的研究和应用进行综述,分析了稀土催化剂的反应机理及发展方向㊂结果首先,Ce ㊁La 及其氧化物可调节催化剂的整体结构㊁形貌和比表面积等物理性质;同时,上述物质也可与催化剂内的其他金属相互作用,从而有效调控材料中的氧空位密度,最终增强对丙烷催化燃烧的反应活性㊂其次,CeO 2作为载体能与活性金属产生有赖于CeO 2形貌和晶面的金属-CeO 2相互作用,这会对催化剂的结构和性能产生极大影响㊂此外,也讨论了通过优化合成方法和表面改性所获得的La 系钙钛矿催化剂在丙烷催化燃烧中的应用研究㊂结论目前,稀土基催化剂的催化作用机制探索尚处于初级阶段,应对其进行更深入系统的研究,以早日实现其工业化应用㊂关键词:多相催化;催化燃烧;丙烷;稀土元素中图分类号:X511,X -1㊀㊀文献标识码:A ㊀㊀doi:10.16055/j.issn.1672-058X.2024.0001.002㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-03-05㊀修回日期:2022-05-18㊀文章编号:1672-058X(2024)01-0012-09基金项目:国家自然科学基金资助项目(51678095);重庆市科委面上项目(CSTC2021JCYJ -MSXMX0628).作者简介:龚旭栋(1997 ),女,重庆市人,硕士研究生,从事环境热催化研究㊂通讯作者:王玮璐(1989 ),女,河南新乡人,助理研究员,博士,从事多相催化研究.Email:weiluwang@.引用格式:龚旭栋,王玮璐,吴云,等.稀土催化剂(Ce㊁La)用于丙烷催化燃烧的研究进展[J].重庆工商大学学报(自然科学版),2024,41(1):12 20.GONG Xudong WANG Weilu WU Yun et al.Advances in rare earth element-based catalysts Ce La for propane catalyticcombustion J .Journal of Chongqing Technology and Business University Natural Science Edition 2024 41 1 12 20.Advances in Rare Earth Element-based Catalysts Ce La for Propane Catalytic Combustion GONG Xudong WANG Weilu WU Yun ZHANG XianmingEngineering Research Center for Waste Oil Recovery Technology and Equipment Ministry of Education Chongqing Technology and Business University Chongqing 400067 ChinaAbstract Objective Volatile organic compounds VOCs have adverse effects on both human health and the ecological environment thus attracting widespread attention from researchers.Catalytic combustion is one of the effective technologies for treating VOCs with the advantages of high removal efficiency and no secondary pollution.Rare earth elements such as Ce and La and their oxides often play an important role in catalytic combustion due to their special physicochemical properties as catalytic additives or carriers.Therefore for rare earth catalysts mainly Ce and La their applications in the propane catalytic combustion and the corresponding catalytic reaction mechanisms as well as future development directions were reviewed.Methods Through a review of the research and applications of Ce-based and La-based catalysts in the propane catalytic combustion the reaction mechanisms and development directions of rare earth catalysts were analyzed.Results Firstly Ce La and their oxides modulated the physical properties of the catalyst such as the overall structure morphology and specific surface area.Meanwhile these substances also interacted with other metals within the catalyst to effectively modulate the oxygen vacancy density in the material ultimately enhancing the reactivity for the propane catalytic combustion.Secondly when CeO 2acted as a carrier it was capable of producing metal-第1期龚旭栋,等:稀土催化剂(Ce㊁La)用于丙烷催化燃烧的研究进展CeO2interactions with the active metal dependent on the CeO2morphology and crystallographic surface which can have a great impact on the structure and performance of the catalyst.Studies on the application of La-based chalcogenide catalysts obtained by optimizing synthesis methods and surface modification in the propane catalytic combustion were also discussed. Conclusion At present the exploration of the catalytic mechanism of rare earth-based catalysts is still in its initial stage and in-depth and systematic research should be conducted to realize its industrial application as early as possible. Keywords heterogeneous catalysis catalytic combustion propane rare-earth elements1㊀引㊀言挥发性有机化合物(Volatile Organic Compounds, VOCs)是引发光化学烟雾及雾霾等大气环境问题的主要前体物,对人体具有极强的致癌和致畸性,是大气治理的重点研究对象[1-4]㊂其中,丙烷因结构稳定而难以被去除,常作为VOCs中烷烃组分的代表而被研究[5-6]㊂目前,催化燃烧是较常用的处理技术,与传统的物理吸附和热焚烧技术相比具有能耗低㊁去除效率高以及无二次污染等优势[7-9]㊂在该途径中,催化剂的性能决定丙烷的去除效率和技术能耗[10],因此这也成为研究者所关注的重点㊂当前用于催化燃烧的催化剂主要为贵金属基和非贵金属基两大类㊂其中,贵金属基催化剂(Pt㊁Pd㊁Rh)虽在低温下(T100<300ħ)对丙烷的去除效果良好,但高额的成本及易中毒失活也极大限制了其工业化进程[11-13];非贵金属基催化剂,如Co㊁Mn等元素虽能在丙烷的催化燃烧中提供良好的抗毒化能力,但其活性(T100>300ħ)却远低于贵金属类材料[14-15]㊂因此,定向设计及构筑对丙烷去除率高㊁抗毒性强且绿色经济的新型催化剂将成为该领域研究工作的核心㊂众所周知,我国稀土资源丰富,年产量占世界的95%以上[16],被广泛应用于发光㊁储氢和超导等领域㊂此外,稀土元素(Rare Earth Element,REE)由于特殊的结构性质,也被开发用于多相催化领域[17-18]㊂具体来说,REE原子中存在未被电子完全占据的4f轨道,导致该轨道中的电子容易发生离域㊁迁移,因此REE可有效改善材料的整体电子结构和载流子传输情况㊂此外, REE作催化助剂时,可有效调控材料的化学组成㊁孔结构及活性位点的分散状态等,显著提高催化剂的活性和稳定性[19-20]㊂因此,将REE引入催化剂中可有效改善材料的物理化学性质,增强其催化燃烧活性,所以合理制备催化效率高且绿色经济的稀土基催化剂也是未来研究者们需攻克的重点和难点㊂本文综述了近几年丙烷催化燃烧的研究,发现Ce㊁La及其氧化物作为催化剂中的促进或改性组分,可有效调控材料的形貌结构㊁化学组成及活性位点的分散状态等物理化学性质;同时可与其他金属产生相互作用,调控材料中的氧空位密度,显著提高催化剂的活性和稳定性㊂除作为催化剂助剂以外,Ce的氧化物(CeO2)在丙烷催化燃烧中也有较多应用㊂CeO2载体可与活性金属产生较强的电子效应,有效分散和稳定活性金属,提高催化活性㊂同时,在研究中发现催化丙烷燃烧的结果会受到CeO2不同形貌和晶面的影响㊂此外,La系钙钛矿具有良好的热稳定性和氧化还原性,但其较高的成相温度所致的低比表面积和相应的低活性限制了其应用㊂通过改进La系钙钛矿的合成方法,可以使其具有较高比表面积及催化活性㊂最后,以Ce 基催化剂,La基催化剂在催化燃烧中的研究现状及作用机理为理论基础,提出了稀土催化剂存在的问题和未来发展方向㊂2㊀Ce基催化剂2.1㊀Ce及其氧化物作助催化剂Ce属于镧系元素,由于具有未被电子完全占据的4f轨道而具有独特的催化性能㊂将Ce及其氧化物作为结构助剂引入催化剂可有效调节材料的形貌和分散性㊂例如,胡等[21]在MnO x中引入Ce元素,催化剂整体形貌会从大小不均一的团聚体逐渐转变为尺寸均一且分散良好的球形颗粒,同时其比表面积也会从8m2㊃g-1显著提高至102m2㊃g-1㊂同样地,Wang等[22]将CeO2引入MnO x/Nb2O5-x中,发现CeO2的存在可有效降低催化剂的尺寸,提升MnO x的分散性㊂与此同时,研究者们还发现Ce元素可与活性金属产生良好的相互作用,调节催化剂表面的氧空位密度㊂因此将Ce及其氧化物引入催化剂中能显著提高单元素氧化物(Co3O4[23])㊁混合或复合氧化物(CoCeO x[24]㊁Fe2O3-CuO[25]等)材料中氧活性物种丰度,最终提升催化活性㊂与单一的CeO2㊁Co3O4催化剂相比,Zhu等[23]发现Co3O4-CeO2二元氧化物对丙烷的完全催化氧化表现出更高的活性㊂这是因为Co3O4和CeO2之间的相互作用导致Co3+被部分还原成Co2+或金属Co,而这些被还原的Co或Co2+会与周围的CeO2氧物种结合,发生如下反应:Co3O4ңCo2+/Co3++[O]ңCo0+[O]; Co0(Co2+)+CeO2ңCo2+/Co3+(Co3+)+CeO2-x+[O],从而在Co3O4-CeO2界面附近产生大量氧空位㊂氧气在这些氧空位上被吸附形成活性氧物种,从而提高催化剂在丙烷催化燃烧中的活性㊂然而Ce及其氧化物31重庆工商大学学报(自然科学版)第41卷的添加量存在最优配比,添加过多会覆盖部分活性位点,添加过少则不能达到最佳协同效应[25]㊂这在Li 等[24]采用双模板结合溶胶-凝胶法制备的一系列不同Co /Ce 摩尔比(1ʒ4㊁1ʒ1㊁4ʒ1)的微介孔CoCeO x 催化剂用于丙烷催化燃烧的研究中得到印证㊂研究表明,催化剂中Co /Ce 摩尔比为1(Co 1Ce 1)时,具有较好的裂解丙烷C -H 键生成CO 2的能力(图1),在238ħ时转化率达到90%㊂在该比例下材料中催化剂存在Co x Ce 1-x O 2-σ固溶体及大量氧空位,使得Co 1Ce 1还原性大幅提高,表面活性氧物种数量也显著增加㊂但Co /Ce 的摩尔比过大及过小均会导致上述活性位点和比表面积的减少,导致催化剂活性降低㊂S t a g e 4S t a g e 1S t a g e 2S t a g e 3C o C e O xP r o p a n eO x y g e n v a c a n c y S u r f a c e a c t i v e o x y g e n O x y g e nC e 3+C o 3+C e 3+C e 3+C o 2+C e 4+C e 4+C o 2+C e 3+C e 3+C o 3+C e3+图1㊀CoCeO x 催化剂表面反应机理[24]Fig.1㊀The surface reaction mechanism of CoCeO x catalyst[24]此外,Ce 还可与活性金属产生相互作用,有效改善催化剂的稳定性和活性[26]㊂Tang 等[27]采用低温水热工艺使NiO 纳米片阵列均匀生长在堇青石蜂窝状孔道的表面,形成整体式催化剂㊂对于纯NiO 纳米片催化剂,其T90为481ħ,并且在1h 运行后丙烷的转化率由79.9%下降到58.4%,在48小时后下降到21.5%,稳定性较差㊂将Ce 引入到NiO 后,催化剂的低温还原性和活性在Ce 和Ni 的相互作用下得到显著改善,其T90降低至440ħ,且丙烷转化率在48h 后仅降低了1.1%㊂因此Ce 掺杂不仅能有效改善催化剂活性,还能显著提高催化剂的稳定性(图2)㊂100806040200200250300350400450500丙烷转化率/%温度/℃N i O0.2C e 5N i O(a )NiO 和0.2Ce -NiO 纳米阵列丙烷催化燃烧活性测试10080604020001020304050丙烷转化率/%时间/h92.0%79.9%90.9%58.4%N i O0.2C e 5N i O(b )在425ħ时NiO 和0.2Ce -NiO 催化剂稳定性测试图2㊀原始NiO 和0.2Ce -NiO 纳米阵列催化剂性能评价,丙烷浓度=3000ppm ,SV =24,000h -1[27]Fig.2㊀Performance evaluation of pristine NiO and 0.2Ce -NiOnanoarray monolithic catalysts ,C 3H 8concentration =3000ppm ,and SV =24000h -1[27]在其他VOCs 催化燃烧中,Ce 也显示出良好的促进作用㊂Piumetti 等[28]采用溶液燃烧合成技术(Solution Combustion Synthesis,SCS)合成了一系列不同Ce /Cu 摩尔比的铈铜氧化物催化剂,将其用于催化乙烯总氧化反应㊂发现CuO x 与CeO 2相互作用的小团簇很容易被还原,促进了Cu +物种和结构缺陷(氧空位)的形成,导致更高的催化氧化活性㊂Mo 等[29]发现Ce 能与MnAl 复合氧化物中的Mn 通过Ce 4+-Mn 3+↔Ce 3+-Mn 4+反应产生协同作用,提高晶格氧的迁移率和有效性,在210ħ时苯的转化率可达到90%㊂简而言之,Ce 及其氧化物作为结构助剂可有效调节催化剂的整体结构和形貌㊁增加其比表面积并改善活性金属的分散性,从而提升材料的催化性能㊂同时,Ce 元素由于具有电子未完全占据的4f 轨道,可与其他金属发生相互作用,有效调控材料中的氧空位密度,提高催化剂表面的活性氧物种,进而增强丙烷催化燃烧反应活性㊂此外,Ce 及其氧化物也可优化催化剂的低温可还原性和稳定性㊂然而,许多研究表明在不同Ce 添加量的情况下,催化剂活性会有所差异,因此,稀土催化剂中Ce 及其氧化物的添加比例值得进一步研究㊂2.2㊀CeO 2作载体Ce 元素具有特殊的电子结构和结构弛豫,能够加强活性金属(Ru㊁Pd㊁Ni)与其氧化物CeO 2表面间的电子电荷转移,从而更好地稳定活性金属位点,提升催化剂的活性和稳定性[30-32]㊂41第1期龚旭栋,等:稀土催化剂(Ce㊁La)用于丙烷催化燃烧的研究进展由于常见的Al2O3及SiO2等载体材料的化学惰性较强,与活性金属相互作用较差,因此以这些氧化物作载体的催化剂在VOCs氧化中的催化活性仍存在较大提升空间㊂一般来说,金属与载体的相互作用是影响催化剂性能的重要因素之一,它通常决定了活性金属的氧化状态和氧化还原反应的路径[33-35]㊂CeO2中存在Ce4+/Ce3+氧化还原循环对(图3),可与活性金属进行电子转移并产生良好的相互作用,这能极大改善催化剂的结构和催化性能㊂同时,在氧化过程中,CeO2还能为氧化还原反应提供丰富的活性氧物种,提升丙烷催化燃烧的去除效率㊂C e O2u n i t c e l l P o i n t d e f e c t s i t e sO2-C e4+C e3+/D o3+VOC e3+/D o3+i n c u b i c(Oh)s i t eVOi n t e t r a h e d r a l(Td)s i t e(a)CeO2晶胞㊀㊀(b)CeO2晶胞中Ce3+/Do3+位点(c)CeO2晶胞中的氧空位Vo图3㊀氧化铈及其与其他金属元素形成的氧化物固溶体的晶体结构和缺陷示意图[32]㊂(Do3+代表外来离子;(a)和(b)右侧的4个半透明氧原子属于下一个单胞) Fig.3㊀Schematic diagram of the crystal structure and defects of cerium oxide and its oxide solid solutions formed with other metallic elements[32](Do3+represents foreign ions;the4semi-transparent oxygen atoms on the right in(a)and(b)belong to the next unit cell)Wu等[35]使用无氯前驱体合成的Ru/CeNs催化剂,发现由于Ru与Ce之间存在的强相互作用,使其表面形成了均匀且高密度的Ru-O-Ce界面㊂此界面是丙烷吸附和解离的首选活性位点,其存在可显著提高催化剂对丙烷的催化燃烧活性㊂Hu等[30]将1.5~ 3.2%(wt)的Ru纳米颗粒(~3nm)负载于CeO2和Al2O3基底上(Ru/CeO2㊁Ru/Al2O3)㊂在不同载体性质的影响下,丙烷催化燃烧展示出不同的反应路径(图4)㊂在Ru/Al2O3催化剂上,丙烷只能吸附在Ru 纳米颗粒上形成异丙基,再转化为丙酮基,随后分解成甲酸或乙酸,最终生成CO2和H2O㊂而对于Ru/CeO2催化剂,除上述路径外,丙烷也可以作为含有丙烯酸基团的物种在Ru-CeO2界面上吸附并被部分氧化㊂归因于CeO2载体作为氧气储层,在反应过程中为丙烷吸附提供额外的位点,即Ru-CeO2界面㊂同时,具有高储氧能力的CeO2还为催化剂提供了丰富的活性氧物种,从而氧化反应速率得到提升(T90=180ħ)㊂R u H O A l C C e(a)Ru/Al2O3催化剂上的丙烷氧化反应路径(b)Ru/CeO2催化剂上的附加反应路径图4㊀催化剂表面丙烷氧化反应路径示意图[30] Fig.4㊀Schematic diagram of propane oxidation reaction path on the surface of two catalysts[30]此外,研究者观察到强烈依赖于CeO2形貌的金属-CeO2相互作用对CeO2负载催化剂结构和催化性能的强烈影响㊂Zhang等[32]发现负载于CeO2纳米立方体(c-CeO2)㊁纳米颗粒(p-CeO2)㊁纳米棒(r-CeO2)上Ni的理化状态有明显差异㊂由于CeO2与Ni的相互作用不同,负载于r-CeO2表面的NiO呈分散状态;在p-CeO2中NiO则会聚集成团;负载于c-CeO2催化剂表面上的Ce与Ni间的相互作用最强,则形成Ni-O-Ce 结构,此结构可削弱CeO2中相邻的Ce-O键并激活其晶格氧,进而提升催化剂活性㊂这也在C3H8催化燃烧反应活性对比实验中得到证实,相比于r-CeO2催化剂,负载Ni后的催化剂活性大约提升了27%㊂由于不同的CeO2形貌其主要暴露晶面有所差异,因此也有研究表明不同晶面会对催化性能产生明显影响㊂Hu 等[31]合成了棒状(r)㊁立方体(c)以及八面体(o)的CeO2纳米晶体,其中r-CeO2暴露(110)和(100)晶面㊁c-CeO2暴露(100)晶面㊁o-CeO2暴露(111)晶面(图5)㊂进一步将Pd负载于CeO2表面时,发现在o-CeO2的(111)面上存在较强的表面Ce-O键,有利于C3H8催化燃烧活性位点PdO x纳米颗粒的存在㊂因此Pd/o-CeO2催化剂在300ħ时的TOF(3.52ˑ10-2/s)远高于Pd/c-CeO2(2.59ˑ10-3/s)和Pd/r-CeO2(6.97ˑ10-4/s)催化剂㊂此外,研究者们发现CeO2形貌差异也会影响催化剂在苯系物和有机氯化物等其他VOCs中的催化性能㊂Feng等[36]发现空心球状的CeO2暴露的(111)面最易形成氧空位,导致其表面氧活性更高,氧化还原性能更好㊂因此,在207ħ时甲苯转化率可达90%㊂Wang 等[37]采用直接煅烧Ce(NO3)3㊃6H2O的方法合成CeO2(CeO2-DC),并在其上负载Pd得到Pd/CeO2-DC 催化剂㊂CeO2-DC暴露的(200)晶面与PdO x产生的相互作用,提高了催化剂表面Ce3+和Pd2+的丰度,这极大地提升了催化剂的氧化还原性能和催化活性,因此51重庆工商大学学报(自然科学版)第41卷在260ħ时可实现苯的完全燃烧㊂Zhang 等[38]发现三维有序(3DOM)CeO 2负载的Au -Pd 合金纳米粒子催化剂可在450ħ实现三氯乙烯的完全转化㊂3DOM 结构有利于活性组分的分散,也利于增强反应物分子的吸附和传质,其较高的比表面积使反应物更容易接近表面活性位点㊂此外,3DOM 的CeO 2与Au -Pd 合金之间的强相互作用可提高表面活性氧的迁移率,从而进一步提升催化剂活性㊂abcefd100n m 5n m 5n m 5n m50n m 200n m图5㊀(a ,b )CeO 2-R ㊁(c ,d )CeO 2-C 和(e ,f )CeO 2-O 的TEM ㊁HRTEM 和SEM 图像[31]Fig.5㊀TEM ,HRTEM and SEM images of (a ,b )CeO 2-R ,(c ,d )CeO 2-C ,and (e ,f )CeO 2-O[31]CeO 2具有Ce 4+/Ce 3+氧化还原循环对,作为载体可与活性金属产生较强的电子效应,提高活性位点的分散度和催化活性㊂同时,CeO 2还能为氧化还原反应提供丰富的活性氧物种,从而提高丙烷催化燃烧的转化率㊂此外,可设计合成形貌和暴露晶面不同CeO 2,使其发挥最佳的催化性能,这展示了CeO 2在催化燃烧中具有的良好应用前景㊂3㊀La 基催化剂3.1㊀La 作助催化剂除用于丙烷催化燃烧的稀土催化剂除Ce 基催化剂外,其同系元素La 也常作为催化剂中的促进或改性组分,用于调节催化剂的形貌结构,并通过与其他金属相互作用促进反应物在催化剂表面的吸附和活化以提升催化效率㊂Xie 等[39]发现在催化剂中引入La 可以显著减小Pd 的粒径㊂与Pd /Na -ZSM -5催化剂上的Pd 纳米颗粒(4~6nm)相比,La 改性的Pd /Na -ZSM -5具有更小的Pd 粒径(1~3nm)㊂Xie 等[40]使用共沉淀法合成了La 改性的LaC -MnO x 催化剂(C 表示La /Mn摩尔比)㊂发现La 可促进C 3H 8在催化剂表面的吸附,在很大程度上加速了C 3H 8催化燃烧反应速率㊂且La 的存在可以抑制Mn 4+向Mn 3+的转化,使La -MnO x 催化剂上Mn 4+和表面氧的含量增加,促使更多高迁移率的表面氧在La -MnO x 催化剂上参与C 3H 8的深度氧化㊂在氧空位产生后,La -MnO x 催化剂中较高活性和迁移率的晶格氧在气态氧不足时补充了这些空位,而使催化剂具有较好的催化活性(图6)㊂因此,在MnO x 催化剂中加入La 可加速氧化-还原循环,增强催化剂活性㊂C 3H 8O sO sO sO s O 2C a t a l .C a t a l .c a r b o n a t e sP a r t i a l o x i d a t i o n D e e p o x i d a t i o nC a t a l .O l a t t .HC H 3C H 3C H C O 2+O 2图6㊀C 3H 8在La -MnO x 催化剂上的催化氧化反应机理[40]Fig.6㊀The mechanism of catalytic oxidation reaction of C 3H 8over La -MnO x catalyst [40]此外,La 3+与过渡金属离子的大尺寸失配可能导致强晶格应变,诱导催化剂氧空位的形成,从而增加活性氧物种的数量并改善催化性能㊂如Yao 等[41]通过水热法合成的La 掺杂Co 3O 4催化剂在C 3H 8催化燃烧表现出较高活性㊂La 的引入导致Co 3O 4产生晶格畸变而形成氧空位,促进了气相氧的吸附和活化,进而产生表面活性氧物种,使得催化活性显著提升㊂La 在氯化物和甲烷的催化燃烧中也发挥着重要作用㊂Dai 等[42]发现引入La 后的MnCe 催化剂在氯苯催化燃烧中表现出高活性㊂原因在于La 的引入增强了MnCeO x 固溶体的热稳定性,并且改善了活性Mn 物种的分散性㊂Li 等[43]合成了掺La 的花状介孔氧化铈微球,用于甲烷催化燃烧具有良好的活性㊂归因于La 3+取代Ce 4+而产生的更多氧空位和催化剂的氧迁移率的提升㊂3.2㊀La 系钙钛矿(ABO 3(A =La ))La 系钙钛矿的化学计量比为LaBO 3,其中A 是La 3+阳离子,B 一般是第三周期的过渡金属㊂La 在该化合物中起结构稳定剂的作用,同时可通过改变B 位元61第1期龚旭栋,等:稀土催化剂(Ce ㊁La )用于丙烷催化燃烧的研究进展素形成不同种类的La 系钙钛矿,其催化性能可通过掺杂㊁离子取代等方法进行调控[44-45](图7)㊂此外,La 系钙钛矿具有价格低廉㊁氧化还原性能好㊁氧迁移率高㊁热稳定性优异等特点[46-47],是一种常用的多相催化材料㊂在自然界中La 的丰度高,可利用性强,因此La 系钙钛矿在实际应用中很有前景,已被成功应用于甲苯完全氧化[48]㊁CO 氧化[49]㊁甲烷完全氧化[50]等反应㊂A s i t eB s i t e O x y g e nAA ’BOO x y g e n v a c a n c y(a )理想ABO 3钙钛矿晶胞㊀㊀㊀(b )A 位掺杂具有氧空位的㊀㊀ABO 3钙钛矿图7㊀ABO 3钙钛矿晶胞[49]Fig.7㊀ABO 3perovskite cells [49]由于钙钛矿的成相温度较高,导致其比表面积和催化活性都相对较低[51]㊂针对其催化活性问题,如何调整合成方法和表面化学组成是解决上述问题的关键㊂溶胶凝胶法的反应条件温和且易于控制,已有研究者成功将其用于钙钛矿的合成㊂如Lin 等[52]通过溶胶-凝胶法合成了LaCoO 3钙钛矿纯相,发现使用生物质络合剂(竹粉)代替传统有机络合剂可以得到平均粒径更小㊁比表面积更大的钙钛矿催化剂㊂同时,生物质中有机碳的络合能力和生物还原能力可以有效缓解Co 2+还原为Co 3+,从而提升催化剂表面的Co 2+浓度㊂Co价态的变化会导致晶格畸变并改变Co -O 共价成分,从而增加氧空位的丰度并提升氧的迁移率㊂材料中较高的比表面积和氧空位丰度也可提供更多的酸性位点,有利于催化剂对C 3H 8的吸附和C -H 键的激活,导致催化活性提升㊂除了溶胶-凝胶法,溶剂法也是钙钛矿的有效合成方法之一㊂在溶剂热合成中,溶剂作为反应介质发挥着重要作用㊂首先,它可以控制溶液中化学物质的浓度,从而影响反应动力学;其次,它还能够改变溶解物种的配位,影响成核和晶体生长步骤,诱导特定结构的形成[53]㊂因此可通过选择合适的溶剂合成具有良好性能的La 系钙钛矿,如Miniajluk 等[54]分别以1,2-乙二醇(EG)㊁1,2-丙二醇(PG)和1,4-丁二醇(BG)为溶剂成功制备了LaMnO 3钙钛矿(LM 材料)㊂结果表明,使用EG 制备的LM -EG 具有较高的表面活性氧物种数量㊁良好低温还原性以及较大的表面积和孔体积,在300ħ左右对丙烷去除率与1%Pt /Al 2O 3相当,但其本征活性却是后者的近六倍(表1)㊂表1㊀LM 材料在丙烷氧化中的催化性能[54]Table 1㊀Catalytic performances in propane oxidation ofLM materials [54]SampleT 10/ħT 50/ħT 95/ħa Ea /(kJ /mol )LM -EG 23127532588.7LM -BG 30235845089.9LM -PG38543749284.91%Pt /Al 2O 3b21726030785.9㊀a分别对应于10%㊁50%和95%转化率的温度,b 参考催化剂(铂分散度:63%;S BET =168m 2㊃g -1)㊂此外,La 系钙钛矿具有良好的氧化还原性㊁高氧迁移率以及优异的热稳定性,是作为催化剂载体的良好材料㊂Luo 等[55]通过使用高表面积(31m 2/g)的电纺LaCoO 3纳米棒负载Pt,然后分别在He㊁O 2和H 2氛围中连续热退火得到了具有高Pt 分散性的0.29%(wt)Pt /LaCoO 3纳米棒催化剂㊂Pt 与LaCoO 3载体之间的相互作用有利于Co 2+物种㊁Co 3+/Co 2+氧化还原循环对和更多氧空位的形成,可有效改善材料的氧迁移率,最终提升丙烷催化燃烧活性(图8)㊂O x y g e n v a c a n c yP tC o 3+C o 2+O 2O 2O 2O 2O 2O 2O 2O 2C 3H 8C 3H 8C 3H 8C 3H 8C 3H 8C 3H 8L a C o O 3P t /L a C o O 3 H e +O 2+H 2C O 2+H 2O 图8㊀LaCoO 3和Pt /LaCoO 3-He +O 2+H 2催化剂上丙烷催化氧化机理[55]Fig.8㊀The mechanism of catalytic oxidation of propaneover LaCoO 3and Pt /LaCoO 3-He +O 2+H 2catalysts [55]在脂肪烃及苯系物的催化燃烧中,La 系钙钛矿也有较多应用㊂Wang 等[56]通过乙酸(HAc)选择性蚀刻LaCoO 3-La 2O 3复合材料上的La 2O 3颗粒,获得了多孔LaCoO 3钙钛矿催化剂㊂经HAc 刻蚀的LaCoO 3产生了表面La 缺陷和丰富的氧空位,而且催化剂的孔隙率和氧化还原性能均得到改善㊂因此,多孔LaCoO 3可以有效地接触和激活反应物,在220ħ实现乙酸乙酯的完全催化燃烧㊂Yarbay 等[57]采用柠檬酸盐技术制备了LaMnO 3钙钛矿型催化剂,发现LaMnO 3中存在单斜相LaMn 2O 5,两者产生协同作用,可促进活性晶格氧的形成和还原性的提升,导致甲苯催化燃烧反应活性的提高㊂Luo 等[58]采用SBA -15辅助静电纺丝合成了高表面积菱面体LaCoO 3钙钛矿催化剂,并将其用于苯的催71重庆工商大学学报(自然科学版)第41卷化燃烧㊂静电纺丝技术有利于LaCoO3表面Co元素的暴露,导致氧空位和Co2+活性位点数量增加,从而提升催化剂的氧迁移率和活性,因此在330ħ时苯的转化率可达90%㊂总之,La系钙钛矿的催化性能受到制备方法的影响较大,如高温制备的钙钛矿结构催化剂具有较低的表面积和反应活性,而其他合成方法如溶胶凝胶法和溶剂热合成法制备的材料则能够有效改善催化剂的比表面积和粒径等,使其催化燃烧活性更佳㊂因此,通过调整材料合成方法和合成条件以获得性能优良的钙钛矿催化剂将是研究者们未来亟需探索的方向㊂4 结束语本研究简要综述了近年来应用于丙烷催化燃烧的稀土催化剂,主要为Ce和La元素参与形成的稀土类催化材料㊂Ce及其氧化物作为助剂能够调节催化剂的结构和形貌等物理性质,并通过与活性金属进行电子传递(Ce4++M n+ңCe3++M(n-1)+)而产生强烈的相互作用形成氧空位,进而增强丙烷催化燃烧反应活性㊂此外,CeO2载体能够与活性金属产生良好的相互作用,从而改善催化剂的结构和催化性能㊂同时,研究发现催化燃烧受到CeO2不同形貌和晶面的影响㊂因此,可基于对形貌和晶面调整,使得CeO2能在丙烷催化燃烧中发挥最佳效果㊂La及其氧化物作为催化助剂能有效调节催化剂的形貌结构,诱导其产生氧空位,从而有效改善材料的催化活性㊂而以La为A位制备的钙钛矿氧化物可通过表面改性和优化合成方法来改变其比表面积和粒径等以提升催化性能㊂但稀土元素在丙烷催化燃烧的应用仍存在诸多不足:(1)稀土催化剂作为助催化剂和载体都有较优异的丙烷催化燃烧性能㊂但稀土元素与其他元素间的相互作用及其对催化剂整体的结构和性能的影响机理较为复杂,因此深入系统地研究稀土元素与其他元素的相互作用机理是重要的研究方向㊂(2)稀土元素在催化中发挥了重要作用,能显著优化催化剂结构与性能,但其应用仅限于实验室阶段㊂因此,设计开发兼具多样性和普适性的稀土催化剂,将其推广至其他工业催化反应中是进一步的研究方向㊂虽然诸多研究表明稀土元素在丙烷催化燃烧中起到了积极的作用,但其与催化剂整体性能的构效关系尚有进一步探索的空间,如何设计合成活性优良且兼具稳定性的催化剂仍是未来研究者要面临的一大挑战㊂参考文献References1 ㊀HE C CHENG J ZHANG X et al.Recent advances in thecatalytic oxidation of volatile organic compounds A review based on pollutant sorts and sources J .Chemical Reviews 2019 119 7 4471 4568.2 ㊀LEWIS A.The changing face of urban air pollution J .Science 2018 359 6377 744 745.3 ㊀JIAN Y TIAN M HE C et al.Efficient propane low-temperature destruction by Co3O4crystal facets engineeringUnveiling the decisive role of lattice and oxygen defects and surface acid-base pairs J .Applied Catalysis BEnvironmental 2021 283 1 10.4 ㊀ZHANG S YOU J KENNES C et al.Current advances ofVOCs degradation by bioelectrochemical systems A review J .Chemical Engineering Journal 2018 334 2625 2637.5 ㊀ZHAO S HU F LI J.Hierarchical core-shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion J .ACS Catalysis 2016 6 6 3433 3441.6 ㊀LIU Y LI X LIAO W et al.Highly active Pt/BN catalystsfor propane combustion The roles of support and reactant-induced evolution of active sites J .ACS Catalysis 2019 92 1472 1481.7 ㊀ZHOU L ZHANG B LI Z et al.Amorphous-microcrystalcombined manganese oxides for efficiently catalytic combustion of VOCs J .Molecular Catalysis 2020 489 1 10.8 ㊀HU J LI W LIU R.Highly efficient copper-dopedmanganese oxide nanorod catalysts derived from CuMnO hierarchical nanowire for catalytic combustion of VOCs J .Catalysis Today 2018 314 147 153.9 ㊀ZHAO P CHEN J YU H et al.Insights into propanecombustion over MoO3promoted Pt/ZrO2catalysts The generation of Pt-MoO3interface and its promotional role on catalytic activity J .Journal of Catalysis 2020 391 80 90.10 DONG F HAN W GUO Y et al.CeCoOx-MNS catalystderived from three-dimensional mesh nanosheet Co-based metal-organic frameworks for highly efficient catalytic combustion of VOCs J .Chemical Engineering Journal 2021405 1 10.11 LI X LIU Y LIAO W et al.Synergistic roles of Pt0and Pt2+species in propane combustion over high-performance Pt/AlF3 catalysts J .Applied Surface Science 2019 475 524 531.12 DONG T LIU W MA M et al.Hierarchical zeoliteenveloping Pd-CeO2nanowires An efficient adsorption/ catalysis bifunctional catalyst for low temperature propane total degradation J .Chemical Engineering Journal 20203931 10.13 WU J CHEN B YAN J et al.Ultra-active Ru supported on81。
催化燃烧方案

催化燃烧方案燃烧是人类利用化学反应来获取能量的重要过程,但常常伴随着能量的浪费和环境污染。
为了解决这一问题,科学家们提出了催化燃烧方案,旨在利用催化剂来提高燃烧效率和降低污染排放。
催化燃烧是利用催化剂的化学性质,使燃料在较低温度下发生氧化反应的过程。
与传统燃烧相比,催化燃烧能够降低燃料的自燃温度,使燃料更容易被氧化以释放能量。
同时,催化剂能够提供反应介质的表面,加速反应速率,从而进一步提高燃烧效率。
一个典型的催化燃烧方案涉及三个主要步骤:燃料吸附、表面反应和产物解吸。
在燃料吸附阶段,燃料分子被吸附到催化剂的表面,这时催化剂表面的氧分子与燃料分子相互作用,形成活化的吸附物种。
在表面反应阶段,活化的吸附物种发生反应,燃料分子被氧分子氧化,产生CO2、H2O等产物。
在产物解吸阶段,产物从催化剂表面解离,释放出来。
通过这三个步骤的循环,催化剂可以不断地促进燃烧反应的进行。
催化剂在催化燃烧方案中发挥着关键作用。
催化剂可分为自由态和固定态两类。
自由态催化剂通过在燃料和氧化剂之间形成反应中间体来促进燃烧反应的进行。
固定态催化剂则是被固定在反应器内部,使燃料和氧化剂在催化剂上接触,从而实现催化燃烧。
在催化燃烧方案中,常用的催化剂材料包括金属、氧化物、非金属化合物等。
金属催化剂如铂、铑、钯等常用于催化燃烧反应,具有高的催化活性和选择性。
氧化物催化剂如二氧化钛、三氧化二铁等对气相燃料的催化燃烧效果较好。
非金属化合物如硅胶、氧化铝等在工业催化燃烧中也得到了广泛应用。
然而,催化燃烧方案仍然面临一些挑战。
首先,催化燃烧过程需要精确控制催化剂的使用量和催化反应的条件,以保证催化剂的寿命和反应效率。
其次,催化剂的制备和催化反应的机理研究是催化燃烧领域亟待解决的问题。
最后,催化燃烧技术在工业应用中仍需克服成本和操作难题,以实现大规模生产和应用。
为了克服这些挑战,科学家们正在开展一系列的研究工作。
例如,他们正在研究新型催化剂材料,如金属-有机骨架材料、纳米结构材料等,以提高催化剂的活性和稳定性。
催化燃烧设计计算总表

2300.00 5.00 4.59
766.67 5.00 1.53
61657.10 416443.82 8664.00
取最大值
取值 取值
0.15-0.25s
VOC
s燃
183 184 185
烧 加 热
产 生 热
二甲胺燃烧产生的热量 二甲基甲酰胺燃烧产生的热量
量 取产生热量最少的参与设计 Q
算 当Re/(1-ε)≤2500时 按下式计算
151
沸石床压降△P
h1m/s kg/h m³/h m³/h m³/h ℃ ℃ m/s m³/h kg/m³ kg/h
m/s m/s m³/h m³/h
m Pa m/s m m
Pa
根据催化剂取值
M1*100*4/% m*(273+T1)/(273+T2)/ρ M*(273+T1)/(273+T2)/ρ
序号
项目
名称符号 符号意义
5
VOC处理风量 Q
6
VO VOC处理标况风量 NQ
7 8
原
C 气
VOC气体的浓度
C0
始 体 每小时吸附量 C
9 参 原 VOC气体的温度 T
10 数 始 VOC气体的压力 P
11
数 VOC气体的密度 ρ0
12
据 VOC气体的黏度 μ
13
VOC气体的比热容 Cp
15
VOC废气成分1
50.00 25.00 103125.00 1.13 0.00 1.00
备注 25℃ 暂定
取值
85.00 39.75 3.48
14.38
12.00 369.63 604.90 588.24 355823.53
化学反应的放热和吸热性质的实验测定方法及应用

化学反应的放热和吸热性质的实验测定方法及应用放热和吸热是化学反应中常见的性质,通过实验测定这些性质可以深入了解反应的特性和应用。
本文将介绍化学反应的放热和吸热性质的实验测定方法以及它们在实际应用中的意义。
一、化学反应的放热性质放热是指反应过程中释放出的热量。
测定化学反应的放热性质的方法主要有两种:物理法和化学法。
物理法是通过测量反应前后溶液的温度变化来计算放热量。
具体实验步骤如下:1. 准备两个绝热杯,称量适量的反应物A和B,并将它们分别加入绝热杯内。
2. 在实验开始前,将两个绝热杯内溶液的温度记录下来。
3. 用快速搅拌的方法将反应物A和B混合在一起,开始反应。
4. 在反应进行中定时记录溶液的温度变化,直到温度趋于稳定。
5. 计算反应的放热量。
根据热力学第一定律,放热量等于温度变化与溶液的热容量之积。
通过这种物理法,可以确定反应的放热性质,进而了解反应的热动力学特点和反应速率等信息。
化学法是通过反应物与某种反应前后物质的化学反应来测定放热量。
例如,可以利用配位化学反应中配合物的形成和解离反应来测定放热量。
这种方法一般需要更复杂的实验设备和技术,适用于一些特定的反应研究。
在实际应用中,测定化学反应的放热性质对于控制反应过程具有重要意义。
比如,在化工生产中,反应的放热性质可以帮助优化反应条件、提高反应的效率和产量。
此外,放热性质的测定还可以为药物研发、能源转化和环境污染等问题的解决提供实验依据。
二、化学反应的吸热性质吸热是指反应过程中吸收的热量。
测定化学反应的吸热性质的方法主要有两种:溶液法和催化燃烧法。
溶液法是通过测量反应物与溶液反应时的温度变化来计算吸热量。
具体实验步骤如下:1. 准备两个绝热杯,称取一定质量的反应物A和B,并将它们分别加入绝热杯内。
2. 在实验开始前,将两个绝热杯内溶液的温度记录下来。
3. 用快速搅拌的方法将反应物A和B混合在一起,开始反应。
4. 在反应进行中定时记录溶液的温度变化,直到温度趋于稳定。
催化燃烧

催化燃烧基本原理催化燃烧是借助催化剂在低温下(200~400℃)下,实现对有机物的完全氧化,因此,能耗少,操作简便,安全,净化效率高,在有机废气特别是回收价值不大的有机废气净化方面,比如化工,喷漆、绝缘材料、漆包线、涂料生产等行业应用较广,已有不少定型设备可供选用。
一、催化原理及装置组成(1)催化剂定义催化剂是一种能提高化学反应速率,控制反应方向,在反应前后本身的化学性质不发生改变的物质。
(2)催化作用机理催化作用的机理是一个很复杂的问题,这里仅做简介。
在一个化学反应过程中,催化剂的加入并不能改变原有的化学平衡,所改变的仅是化学反应的速度,而在反应前后,催化剂本身的性质并不发生变化。
那么,催化剂是怎样加速了反应速度呢了既然反应前后催化剂不发生变化,那么催化剂到底参加了反应没有?实际上,催化剂本身参加了反应,正是由于它的参加,使反应改变了原有的途径,使反应的活化能降低,从而加速了反应速度。
例如反应A+B→C是通过中间活性结合物(AB)过渡而成的,即:A+B→[AB]→C其反应速度较慢。
当加入催化剂K后,反应从一条很容易进行的途径实现:A+B+2K→[AK]+[BK]→[CK]+K→C+2K中间不再需要[AB]向C的过渡,从而加快了反应速度,而催化剂并未改变性质。
(3)催化燃烧的工艺组成不同的排放场合和不同的废气,有不同的工艺流程。
但不论采取哪种工艺流程,都由如下工艺单元组成。
①废气预处理为了避免催化剂床层的堵塞和催化剂中毒,废气在进入床层之前必须进行预处理,以除去废气中的粉尘、液滴及催化剂的毒物。
②预热装置预热装置包括废气预热装置和催化剂燃烧器预热装置。
因为催化剂都有一个催化活性温度,对催化燃烧来说称催化剂起燃温度,必须使废气和床层的温度达到起燃温度才能进行催化燃烧,因此,必须设置预热装置。
但对于排出的废气本身温度就较高的场合,如漆包线、绝缘材料、烤漆等烘干排气,温度可达300℃以上,则不必设置预热装置。
一氧化碳催化燃烧的反应机理研究

一氧化碳催化燃烧的反应机理研究一氧化碳作为一种高毒、强还原性的气体,其存在会对人体和环境带来严重危害。
因此,对一氧化碳的治理和利用一直是环保领域的一个热点问题。
在催化燃烧领域,一氧化碳的催化燃烧反应是一种广泛应用的技术。
本文将从反应机理的角度对一氧化碳催化燃烧进行深入研究。
一、催化燃烧的基本概念催化燃烧是指在氧气存在的条件下,通过催化剂的作用,将反应物分子进行吸附、活化,使其发生氧化反应而产生的一种燃烧方式。
与传统的非催化燃烧相比,催化燃烧具有以下优点:1、能够在更低的温度下进行反应,从而降低反应过程中的能源消耗。
2、产生的污染物浓度较低,能够有效保护环境。
3、催化剂的重复使用可以降低成本,节约资源。
二、一氧化碳催化燃烧反应机理一氧化碳催化燃烧反应的化学方程式为:CO+1/2 O2→CO2该反应可由多种催化剂促进,其中常用的有Pt、Pd、Rh、CeO2等。
1、Pt催化剂催化作用机理Pt催化剂的催化作用机理主要分为以下几个步骤:(1)CO分子吸附在Pt表面,使CO分子被活化。
(2)O2分子在Pt表面上被吸附,并与活化后的CO分子发生反应,生成CO2。
(3)生成的CO2分子与Pt表面上的氧分子反应,重新生成了表面上的活性氧分子。
该催化剂在活化CO分子的同时,也能促进氧分子的吸附与活化,从而提高反应速率,提高催化效果。
2、Pd催化剂催化作用机理Pd催化剂的催化机理与Pt催化剂类似,主要分为以下几个步骤:(1)CO分子被Pd表面上的空位吸附。
(2)O2分子被吸附在Pd表面上,并与吸附在表面上的CO分子发生反应,生成CO2。
(3)生成的CO2分子与Pd表面上的氧分子反应,从而再次生成表面上的活性氧分子。
需要注意的是,Pd催化剂的催化性能与其晶体结构密切相关,具体表现为晶格常数不同会影响催化剂的催化活性。
在Pd表面吸附的CO分子往往会影响催化活性,因此可以采用碱金属来调节催化剂的催化活性。
三、影响一氧化碳催化燃烧反应速率的因素除了催化剂的种类和性质对反应速率产生的影响之外,一氧化碳催化燃烧反应的速率还会受到以下因素的影响:1、反应温度一氧化碳催化燃烧反应需要一定的反应温度才能够有效进行。
催化燃烧装置设备安全操作规定

催化燃烧装置设备安全操作规定前言在现代工业生产中,催化燃烧装置设备被广泛应用于各个领域,其应用的优点在于可以高效地处理有害气体和废气,提高生产效率和节约能源。
然而,催化燃烧装置设备作为一种高温、高压、易燃易爆的设备,如果操作不当,可能会对设备、人员和环境造成严重的危害。
因此,建立设备安全操作规定是非常必要的。
适用范围本规定适用于公司内所有催化燃烧装置设备的操作和维护人员,以及参与催化燃烧装置设备操作过程的其他相关人员。
安全基本原则1.在进行催化燃烧装置设备操作或维护时,必须了解催化燃烧装置设备操作方法、性质、危害性以及防护措施等内容,严格按规定操作。
2.操作人员应具备必要的技能和知识,经过专业的培训和考核合格后方可上岗作业。
3.维护人员必须具备相应的维护知识和技能,经过专业培训和考核合格后方可上岗维护。
4.在催化燃烧装置设备的操作、检修和维护过程中,必须严格按照操作规程和标准操作程序进行,禁止随意改变装置结构或操作参数。
5.在催化燃烧装置设备的操作、检修和维护过程中,应结合实际情况进行综合分析,不得擅自采取任何不安全的操作行为,发现问题及时报告并采取有效措施予以解决。
设备安全操作规定操作前准备1.操作人员应先检查设备及周边安全环境,做好相关防护措施。
2.检查设备状态是否正常,检查相关仪表、计算机等设备是否工作正常。
3.操作人员必须佩戴符合国家或公司规定的安全防护用品,如工作服、安全鞋、防护帽、防护眼镜与手套等。
操作人员必须确保这些工具完好,并且使用正确。
4.将周围可燃物品、易燃品、爆炸品等移开,保证设备周边环境干净和安全。
5.在操作前,应检查设备零部件是否完整,在使用前清洁和检查设备,在设备启动前确认设备的运转方向和运转正常。
操作过程1.操作人员必须保持集中注意力,全神贯注,禁止将爆笑等不符合操作要求的行为带进操作现场。
2.操作人员必须熟悉设备的运行要求,根据流程控制设备运行或停止。
3.在设备运行过程中,操作人员禁止打电话、查阅资料或进行与设备无关的工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州和风环境技术有限公司 /
催化燃烧的性质是什么
催化燃烧是借助催化剂在低温下(200~400℃)下,实现对有机物的完全氧化,因此,能耗少,操作简便,安全,净化效率高,在有机废气特别是回收价值不大的有机废气净化方面,比如化工,喷漆、绝缘材料、漆包线、涂料生产等行业应用较广,已有不少定型设备可供选用。
一、催化原理及装置组成
(1)催化剂定义催化剂是一种能提高化学反应速率,控制反应方向,在反应前后本身的化学性质不发生改变的物质。
(2)催化作用机理催化作用的机理是一个很复杂的问题,这里仅做简介。
在一个化学反应过程中,催化剂的加入并不能改变原有的化学平衡,所改变的仅是化学反应的速度,而在反应前后,催化剂本身的性质并不发生变化。
那么,催化剂是怎样加速了反应速度呢了既然反应前后催化剂不发生变化,那么催化剂到底参加了反应没有?实际上,催化剂本身参加了反应,正是由于它的参加,使反应改变了原有的途径,使反应的活化能降低,从而加速了反应速度。
例如反应A+B →C是通过中间活性结合物(AB)过渡而成的,即:A+B→[AB]→C 其反应速度较慢。
当加入催化剂K后,反应从一条很容易进行的途径实现:A+B+2K →[AK]+[BK]→[CK]+K→C+2K 中间不再需要[AB]向C的过渡,从而加快了反应速度,而催化剂并未改变性质。
(3)催化燃烧的工艺组成不同的排放场合和不同的废气,有不同的工艺流程。
但不论采取哪种工艺流程,都由如下工艺单元组成。
①废气预处理为了避免催化剂床层的堵塞和催化剂中毒,废气在进入床层之前必须进行预处理,以除去废气中的粉尘、液滴及催化剂的毒物。
②预热装置预热装置包括废气预热装置和催化剂燃烧器预热装置。
因为催化剂都有一个催化活性温度,对催化燃烧来说称催化剂起燃温度,必须使废气和床层的温度达到起燃温度才能进行催化燃烧,因此,必须设置预热装置。
但对于排出的废气本身温度就较高的场合,如漆包线、绝缘材料、烤漆等烘干排气,温度
广州和风环境技术有限公司 /
可达300℃以上,则不必设置预热装置。
预热装置加热后的热气可采用换热器和床层内布管的方式。
预热器的热源可采用烟道气或电加热,目前采用电加热较多。
当催化反应开始后,可尽量以回收的反应热来预热废气。
在反应热较大的场合,还应设置废热回收装置,以节约能源。
预热废气的热源温度一般都超过催化剂的活性温度。
为保护催化剂,加热装置应与催化燃烧装置保持一定距离,这样还能使废气温度分布均匀。
从需要预热这一点出发,催化燃烧法最适用于连续排气的净化,若间歇排气,不仅每次预热需要耗能,反应热也无法回收利用,会造成很大的能源浪费,在设计和选择时应注意这一点。
③催化燃烧装置一般采用固定床催化反应器。
反应器的设计按规范进行,应便于操作,维修方便,便于装卸催化剂。
在进行催化燃烧的工艺设计时,应根据具体情况,对于处理气量较大的场合,设计成分建式流程,即预热器、反应器独立装设,其间用管道连接。
对于处理气量小的场合,可采用催化焚烧炉(见图16-13),把预热与反应组合在一起,但要注意预热段与反应段间的距离。
在有机物废气的催化燃烧中,所要处理的有机物废气在高温下与空气混合易引起爆炸,安全问题十分重要。
因而,一方面必须控制有机物与空气的混合比,使之在爆炸下限;另一方面,催化燃烧系统应设监测报警装置和有防爆措施。
二、催化燃烧用催化剂由于有机物催化燃烧的催化剂分为贵金属(以铂、钯为主)和贱金属催化剂。
贵金属为活性组分的催化剂分为全金属催化剂和以氧化铝为载体的催化剂。
全金属催化剂是以镍或镍铬合金为载体,将载体做成带、片、丸、丝等形状,采用化学镀或电镀的方法,将铂、钯等贵金属沉积其上,
广州和风环境技术有限公司 /
然后做成便于装卸的催化剂构件。
由氧化铝作载体的贵金属催化剂,一般是以陶瓷结构作为支架,在陶瓷结构上涂覆一层仅有0.13mm的α-氧化铝薄层,而活性组分铂、钯就以微晶状态沉积或分散在多孔的氧化铝薄层中。
但由于贵金属催化剂价格昂贵,资源少,多年来人们特别注重新型的、价格较为便宜的催化剂的开发研究,我国是世界上稀土资源最多的国家,我国的科技工作者研究开发了不少稀土催化剂,有些性能也较好。
三、催化剂中毒与老化在催化剂使用过程中,由于体系中存在少量杂质,可使催化剂的活性和选择性减小或者消失,这种现象叫催化剂中毒。
这些能使催化剂中毒的物质称之为催化剂毒物,这些毒物在反应过程中或强吸附在活性中心上,或与活性中心起化学作用而变为别的物质,使活性中心失活。
毒物通常是反应原料中带来的杂质,或者是催化剂本身的某些杂质,另外,反应产物或副产物本身也可能对催化剂毒化,一般所指的是硫化物如H2S、硫氧化碳、RSH等及含氧化合物如H2O、CO2、O2以及含磷、砷、卤素化合物、重金属化合物等。
毒物不单单是对催化剂来说的,而且还针对这个催化剂所催化的反应,也就是说,对某一催化剂,只有联系到它所催化的反应时,才能清楚什么物质是毒物。
即使同一种催化剂,一种物质可能毒化某一反应而不影响另一反应。
按毒物与催化剂表面作用的程度可分为暂时性中毒和永久性中毒。
暂时性中毒亦称可逆中毒,催化剂表面所吸附的毒物可用解吸的办法驱逐,使催化剂恢复活性,然而这种可再生性一般也不能使催化剂恢复到中毒前的水平。
永久性中毒称不可逆中毒,这时,毒物与催化剂活性中心生成了结合力很强的物质,不能用一般方法将它去除或根本无法去除。
催化剂的老化主要是由于热稳定性与机械稳定性决定的,例如低熔点活性组分的流失或升华,会大大降低催化剂的活性。
催化剂的工作温度对催化剂的老化影响很大,温度选择和控制不好,会使催化剂半熔或烧结,从而导致催化剂表面积的下降而降低活性。
另外,内部杂质向表面的迁移,冷热应力交替所造成的机械性粉末被气流带走。
所有这些,都会加速催化剂的老化,而其中最主要的是温度的影响,工作温度越高,老化速度越快。
因此,在催化剂的活性温度范围内选择合适的反应温度将有助于延长催化剂的寿命。
但是,过低的反应温度也是不可取的,会降低反应速率。
为了提高催化剂的热
广州和风环境技术有限公司 /
稳定性,常常选择合适的耐高温的载体来提高活性组分的分散度,可防止其颗粒变大而烧结,例如以纯铜作催化剂时,在200℃即失去活性,但如果采用共沉积法将Cu载于Cr2O3载体上,就能在较高的温度下保持其活性。
催化燃烧法是借助催化剂使有机物废气在较低的起燃温度条件下进行无焰燃烧分解为二氧化碳和水蒸汽,并放出大量热能,用化学式表示如下:
在催化燃烧中,催化剂的作用是: 提高反应速率;降低反应温度;减少反应器的体积。
目前用于催化燃烧的催化剂除铂、钯类贵金属外,非金属催化剂的研制与应用也日益广泛。
对于碳氢化合物和一氧化碳,催化剂的活性顺序为:Pd > Pt > CO3O4 > PdO > CrO3 > Mn2O3 > CuO > CeO2 > Fe2O3 > V2O5 > NiO > Mo2O3 > TiO2 在催化剂的性能指标中,空间速度Vs表示催化装置处理废气的能力,其定义式为:
催化燃烧主要流程:
有机废气的浓度必须控制在相应有机物爆炸极限的25%以下,当有机废气浓度有可能超过此值时,应安装野风阀将其冲淡到安全值。
因此在设计中应采用灵敏可靠的温度、浓度测定装置,以随时进行人工或自动调节。
为防止有机废气在催化剂床层上燃烧时的火焰蔓延,应在有机废气进入净化装置前安装阻火器。
目前较多采用干式阻火器,阻火材料通常为玻璃球、砾石、多孔金属板、金属丝网等。
(1) 催化燃烧净化装置点火前,必须用空气将风道、燃烧室等吹扫干净,以消除可能聚集在这些部位的可燃气体,防止点火时发生起火或爆炸。
(2) 设备中可能积存有油污、凝液等可燃物质,它们在设备开始运行加热时会汽化成为可燃、可爆的气体,从而有可能导致爆炸。
因此在点火前应将这些物质清除干净。
(3) 点火时应以火等气,不能以气等火。
有机物RH在催化剂作用下完成氧化,一般需经过以下步骤: 1. 反应物分子由气相扩散到催化剂表面; 2. 通过细孔由外表面向内表面扩散; 3. 克服气固界面膜的阻力被催化剂表面的活性部位吸附(至少吸附一种反应物);
4. 被活化的吸附物与另一种活化的吸附物、或物理吸附物、或直接来自气相之
广州和风环境技术有限公司 /
间的反应物进行化学反应; 5. 反应物从催化剂表面脱附 6. 脱附物通过细孔想催化剂外表扩散;7. 有外表面向气相扩散。
多数工业气相反应总速度都受催化剂内扩散或催化剂与流体之间的传热速度所控制。
如需了解更多的废气处理相关知识,可以咨询广州和风环境技术有限公司,一家以环保工程、产品制造与技术服务三大价值链为核心,以技术进步和科技创新为支撑的产业构架体系,业务范围已涉及给排水、废气、噪音治理、环境影响评价、能源报告书、节能工程等工程承包及运营管理、设备制造、安装调试、验收一条龙服务等多个领域,形成环境规划与咨询、项目咨询、设计、建设、设备制造及设施运营完整的环保产业链。
鼻尖下的健康,环境保护刻不容缓,国能创新科技一家致力于节能减排的企业,专注于有机废气处理,VOC废气处理,UV 光解设备的研发与销售,公司有一批有梦想,敢拼敢做的同事们,大家想法一致就是在从事一项造福社会的行业,做一家有社会责任感的企业,与梦想同行,感恩有你,和风帮助您。