2020年北京交大附中初三年级数学10月月考试卷

合集下载

北京交大附中2020-2021学年九年级上学期10月月考数学试卷(讲解版)

北京交大附中2020-2021学年九年级上学期10月月考数学试卷(讲解版)
得到D疏散乘客比A快;
同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,
同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,
得到A疏散乘客比E快;
同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,
同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,
而点(-1,0)关于直线x=3的对称点为(7,0),
∴二次函数 (m是常数)的图象与x轴的另一个交点为(7,0),
∴则关于x的一元二次方程 的根为 .
故答案为: .
【点睛】本题考查了二次函数的性质以及抛物线与 轴的交点:把求二次函数 (a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于 的一元二次方程.
所以B′C=5﹣B′D=1.
故答案是:1.
15.若二次函数 的最小值是 ,则它的图象与 轴的交点坐标是________.
【答案】
【分析】根据二次函数最大(小)值的求法,利用公式法直接求得c的值,即可求得图象与y轴的交点坐标.
【详解】∵二次函数y=x2+2x+c的最小值是7,
∴ = =7,
解得c=8,
二、填空题(本题共16分,每小题2分)
9.方程 的根是______.
【答案】 ,
【分析】利用因式分解法解方程,即可得到答案.
【详解】解: ,
∴ ,
∴ , ;
故答案为: , ;
【点睛】本题考查了解一元二次方程的方法,解题的关键是熟练掌握解一元二次方程的方法进行解题.
10.已知关于 的方程 有两个相等的实数根,则 的值是______.
【详解】解:A、不是中心对称图形,不符合题意;
B、是中心对称图形,符合题意;

2019-2020交大附中九上10月月考(压轴题)

2019-2020交大附中九上10月月考(压轴题)

2019-2020学年度第一学期第一次月考交大附中 九年级数学试卷10、如图,在正方形ABCD 中,AB=4,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM=3,P 为对角线BD 上一点,当对角线BD 平分∠NPM 时,PN PM -值为( )A.1B.2C.2D.322解:A解:对角线BPM ∴∠BPM '∴∠PM \-在正方形∴点M ¢∴AM ¢AM AB ¢\ABC \AM ¢\?BC M ⅱ\?OC 中点BM ⅱ\M ¢\故,本题选A16、如图,在平面直角坐标系中,平行四边形ABCD 中顶点A 坐标(0,6),顶点B 坐标(-2,0),顶点C 坐标(8,0),点E 为平行四边形ABCD 的对角线的交点,求过点E 且到点C 的距离最大的直线解析式_____.解:3734-=x y解:设直线l 的解析式为:y kx b =+ ∴y ∴k ?∴k =将∴b =24、(2)如图②,△ABC 中AB=4,AC=3,BC=6,D 是△ABC 中AC 边上的点,AD=2,过点D 画一条直线l 将△ABC 分成两部分,l 与△ABC 另一边的交点为点P ,使其所分的一个三角形与△ABC 相似,并求出DP 的长;(3)如图③所示,在等腰△ABC 中,CA=CB=10,AB=12.在△ABC 中放入正方形DEMN 和正方形EFPH ,使得DE 、EF 在边AB 上,点P 、N 分别在边CB 、CA 上,若较大正方形的边长为a ,请用含a 的代数式表示较小正方形的边长.解:(1(2)CD \①当BC 时,APD ABC ∽263PD AD PD BC AC\=,即PD \②当AB 时,CDP CAB ∽143DP CD DP AB CA \=,即 PD \=③当?CDP CBA ∽16PD AB \PD\=(3过点C 1012CA CB AB ===,6AG BG \==在t R AGC 中,由勾股定理,得:8CG =由题意得:ADN AGC ∽,BFP BGC ∽图3图2 图1F E D BAC C B B AAD DN AG CG \=,BF PF BG CG =68AD a =即,68BF b = 3344AD a BF b \==, +12AD DE EF FB ++= 3+4a a \487b \=。

北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷

北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷

北京市中国人民大学附属中学2024~2025学年上学期10月月考九年级数学试卷一、单选题1.一元二次方程2230x x --=的二次项系数、一次项系数、常数项分别是( ) A .2,1,3 B .2,1,3- C .−2,1,3 D .2,1-,3- 2.巴黎奥运会后,受到奥运健儿的感召,全民健身再次成为了一种时尚,球场上出现了更多年轻人的身影.下面四幅球类的平面图案中,是中心对称图形的是( ) A . B . C . D . 3.抛物线2(4)5y x =--的开口方向和顶点坐标分别是( )A .开口向下,(4,5)-B .开口向上,(4,5)-C .开口向下,(4,5)--D .开口向上,(4,5)--4.如图,将ABC V 绕点A 逆时针旋转100°,得到ADE V .若点D 在线段BC 的延长线上,则B ∠的度数为( )A .30°B .40°C .50°D .60°5.用配方法解方程2420x x -+=,配方正确的是( )A . ()222x +=B .(()222x -=C .()222x -=-D .()226x -= 6.已知二次函数2y ax bx c =++的图象如图所示,则下列选项中错误的是( )A .0a <B .0c >C .0b >D .20a b +>7.如图,在正三角形网格中,以某点为中心,将MNP △旋转,得到111M N P △,则旋转中心是( )A .点AB .点BC .点CD .点D8.已知点()()()1212,2024,,2024P x Q x x x ≠在二次函数21y ax bx =++的图象上,则当12x x x =+时,y 的值为( )A .1B .2025C .1-D .2024二、填空题9.方程25x x =的解是.10.点()1,2P -关于原点的对称点的坐标为.11.如果关于x 的方程2310kx x +-=有两个不相等的实数根,那么k 的取值范围是 . 12.将抛物线223y x =-向右平移2个单位,向下平移1个单位后,所得抛物线的顶点坐标为.13.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(1,0)-,将线段AB 绕点(2,2)逆时针旋转α角()0180α︒<<︒,若点A 的对应点A '的坐标为(2,0),则α为,点B 的对应点B '的坐标为.14.如图,抛物线y =ax 2+bx +c 的对称轴为x =1,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为O e 的直径,弦CD AB ⊥于点1E AE =,寸,10CD =寸,求直径AB 的长.小宇对这个问题进行了分析:(1)由直径AB CD ⊥于E ,可得5CE DE ==,其依据是.(2)连接OC ,则有OC OA =,在COE V中利用勾股定理列方程可求得OC 的长,从而得到直径AB 长为寸.16.如图,菱形ABCD 的边长为6,将一个直角的顶点置于菱形ABCD 的对称中心O 处,此时这个直角的两边分别交边,BC CD 于M ,N ,若ON CD ⊥,且2ON =,则MN 的长为.三、解答题17.解方程:233x x x -=+.18.如图,ABC V 是等边三角形,点D 在边AC 上,以CD 为边作等边CDE V .连接BD ,AE .求证:BD AE =.19.已知1x =是关于x 的方程2230x mx m -+=的根,求代数式2(2)(3)(1)m m m -+-+的值. 20.已知二次函数2y x bx c =++的图象过点(0,3),(1,0)A B .(1)求这个二次函数的解析式;(2)画出这个函数的图象;(3)写出当13x -<<时,函数值y 的取值范围.21.判断下列说法是否正确,如正确,请说明理由;如错误,请举出反例.(注:本题无论正误都需要画图并说明)(1)圆的任意一条弦的两个端点把圆分成优弧和劣弧;(2)平分弦的直径垂直于弦,并且平分弦所对的两条弧.22.已知关于x 的一元二次方程22230x mx m --=.(1)求证:该方程总有两个实数根;(2)若方程恰有一个实根大于1-,求m 的取值范围.23.如图,Rt ABC V 中,90C ∠=︒,6AC =,8BC =.动点P ,Q 分别从A ,C 两点同时出发,点P 沿边AC 向C 以每秒3个单位长度的速度运动,点Q 沿边BC 向B 以每秒4个单位长度的速度运动,当P ,Q 到达终点C ,B 时,运动停止.设运动时间为t (单位:秒).(1)①当运动停止时,t 的值为______.②设P ,C 之间的距离为y ,则y 与t 满足______(选填“正比例函数关系”,“一次函数关系”,“二次函数关系”)(2)设PCQ △的面积为S ,①求S 的表达式(用含有t 的代数式表示),并写出t 的取值范围;②S 是否可以为7?若可以,请求出此时t 的值,若不能,请通过计算说明理由. 24.如图,MPN α∠=,点A ,B 在射线PN 上,以AB 为直径作半圆,圆心为O ,半圆交射线PM 于点C ,D .(1)如图1,当30α=︒时,若,AB 10CD 6==,求AP 的长;(2)如图2,若PC OB =,且AB ,求α的值.25.如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.当拱门上的点到O 点的水平距离为x (单位:m )时,它距地面的竖直高度为y (单位:m ).(1)经过对拱门进行测量,发现x 与y 的几组数据如下:根据上述数据,直接写出该拱门的高度(即最高点到地面的距离)和跨度(即拱门底部两个端点间的距离),并求y 与x 满足的函数关系式.(2)在一段时间后,公园重新维修拱门.在同样的坐标系下,新拱门上的点距地面的竖直高度y (单位:m )与它到O 点的水平距离x (单位:m )近似满足函数关系()20.187.30y x h =--+,若记原拱门的跨度为1d ,新拱门的跨度为2d ,则1d ______2d (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点()11x y ,,()21a y +,在抛物线22y x ax c =-+上.(1)抛物线的对称轴为______(用含a 的式子表示),当01a <<时,2y 与c 的大小关系为2y ______c (填“>”“<”或“=”);(2)若110x -<<,且对于每个1x ,都有12y y >成立.①求a 的取值范围;②若抛物线还过点()33a y ,,求证:如果1230y y y <,那么()2130y y y ->.27.如图,在ABC V 中,90,45,ACB BAC D ∠=︒∠<︒为边AC 上一点(不与点A ,C 重合),点D 关于直线AB 的对称点为E ,连接BD ,将线段BD 绕点B 旋转,使点D 的对应点F 恰好在线段AE 的延长线上.(1)求证:12ABC DBF ∠=∠; (2)连接DF ,过点C 作AB 的垂线,分别交,AB DF 于点G ,H .①依题意补全图形;②用等式表示DH 与HF 的数量关系,并证明.28.在平面直角坐标系xOy 中,已知点(,)P a b ,对于点M 给出如下定义:将点M 向右(0a ≥)或向左(0)a <平移a 个单位长度,得到点M ',点M '关于点P 的对称点为N ,称点N 为点M 关于点P 的“联络点”.(1)若点(2,0)M -,点(1,1)P ,则点M 关于点P 的“联络点”的坐标为______;(2)如图,若点M 与点P 关于原点O 对称,点M 关于点P 的“联络点”为点N ,①求作:点M '和点N (尺规作图,保留作图痕迹);②连接MN ,在MN 上取点T ,使PT x ∥轴,连接OT ,求证:14OT M N '=;(3)已知点C 是直线2y x =+上的动点,点D 是直线y x =-上的定点,点C 关于点D 的“联络点”为点E ,若线段CE 长的取值范围是CE ≥D 的横坐标D x 的取值范围.。

2019年北京交大附中初三数学10月考试卷

2019年北京交大附中初三数学10月考试卷

北京交大附中2019—2020年度第一学期10月月考练习初三数学试卷班级姓名学号一、选择题(每题2 分,共16 分)第1-8 题均有四个选项,符合题意的选项只有一个.1.以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.抛物线y =x2 + 2x -3的对称轴是直线()A. x =-2B. x =2C. x =-1D. x =13.抛物线y = 2x2向左平移1 个单位,再向下平移3 个单位,则平移后的抛物线的解析式为()A.y = 2(x+1)2+3 B. y = 2(x+1)2 -3C.y = 2(x-1)2 -3 D. y = 2(x-1)2 +34.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)5. 风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n°后能与原来的图案重合,那么n 的值可能是()A.45 B.60 C.90 D.1206.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD = 59︒,则∠C 等于()A. 29︒B. 31︒C. 59︒D. 62︒7. 已知一次函数y1 =kx +m(k ≠ 0) 和二次函数y2=ax2+bx +c(a ≠ 0) 部分自变量和对应的函数值如表:当y2>y1 时,自变量x 的取值范围是()A.-1<x<2 B.4<x<5 C.x<-1 或x>5 D.x<-1 或x>48. 小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是()A B C D二、填空题(每题2 分,共16 分)9.请写出一个开口向下,且与y 轴的交点坐标为(0,2)的抛物线的表达式:.10. 在平面直角坐标系xOy 中,函数y =x2 的图象经过点M (x1, y1) ,N (x2, y2) 两点,若- 4 <x1<-2,0 <x2 < 2 ,则y1y2.(用“<”,“=”或“>”号连接)11. 如图,在矩形ABCD 中,AB=5,AD=3.矩形ABCD 绕着点A 逆时针旋转一定角度得到矩形AB'C' D' .若点B 的对应点B' 落在边CD 上,则B'C 的长为.12. 二次函数y =x2 - 6x +m(m 是常数)的图象与x 轴的一个交点为(-1,0) ,则关于x 的一元二次方程x2 - 6x +m = 0 的根是.13.如图,⊙O 的直径AB⊥弦CD,垂足为点E,连接AC,若CD=23,∠A=30º,则BD 的长为.14.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C(0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标是:.15.若二次函数y =x2 + 2x +c 的最小值是7,则它的图象与y 轴的交点坐标是.16.如图,在Rt∆ABC 中,∠ACB = 90o ,将∆ABC 绕顶点C 逆时针旋转得到∆A'B'C,M 是BC 的中点,N 是A 'B ' 的中点,连接MN,若BC=2,∠A BC=60°,则线段MN 的最大值为.三、解答题(第17-22 题每题5 分,第23-26 题每题6 分,第27-28 题每题7 分,共68 分)解答应写出文字说明、演算步骤或证明过程.17. 已知二次函数的图象经过点(0,1) ,且顶点坐标为(2,5) ,求此二次函数的解析式.18. 已知如图,四边形ABCD 和四边形CEFG 都是正方形,且AB>CE.连接BG、DE.求证:BG=DE.yCO19.如图,四边形 ABCD 内接于⊙O ,∠ABC =130°,求∠OAC 的度数.20.如图,在平面直角坐标系 xOy 中,点 A (3,3),B (4,0),C (0, -1 ).ABx(1)以点 C 为旋转中心,把△ABC 逆时针旋转 90°,画出旋转后的△ A ' B 'C ;(2)在(1)的条件下,① 点A 经过的路径 AA ' 的长度为 (结果保留 π);② 点 B ' 的坐标为.21.如图,D 是等边三角形 ABC 内一点,将线段 AD 绕点 A 顺时针旋转 60︒得到线段 AE ,连结 CD,BE. (1)求证:∠AEB =∠ADC ; (2)连结 DE ,若∠ADC =115°,求∠BED 的度数.22. 已知一个二次函数图象上部分点的横坐标 x 与纵坐标 y 的对应值如下表所示:(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当 -4 < x < 2 时,直接写出 y 的取值范围.23.已知二次函数y =kx2 -(k +1)x +1 (k ≠ 0) .(1)求证:无论k 取任何实数时,该函数图象与x 轴总有交点;(2)如果该函数的图象与x 轴交点的横坐标均为整数,且k 为整数,求k 值.24.图中所示的抛物线形拱桥,当拱顶离水面4m 时,水面宽8m. 水面上升3 米,水面宽度减少多少?25.如图,直线AM 和AN 相交于点A,∠MAN=30°,在射线AN 上取一点B,使AB=6cm,过点B 作BC⊥AM 于点C,D 是线段AB 上的一个动点(不与点B 重合),过点D 作CD 的垂线交射线CA 于点E.(1)确定点B 的位置,在线段AB 上任取一点D,根据题意,补全图形;(2)设AD=x cm,CE=y cm,探究函数y 随自变量x 的变化而变化的规律.①通过取点、画图、测量,得到了x 与y 的几组对应值,如下表:(要求:补全表格,相关数值保留一位小数)②建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;③结合画出的函数图象,解决问题:当AD 为Rt△CDE 斜边CE 上的中线时,AD 的长度约为cm(结果保留一位小数).26. 在平面直角坐标系xoy 中,抛物线y =mx2 - 2mx +m -1(m > 0) 与x 轴的交点为A, B .(1)求抛物线的顶点坐标;(2)若AB =2,①求抛物线的解析式;②已知点E(12,4) ,F(4,4) ,将抛物线在0 ≤x ≤ 3 的部分向上平移n 个单位得到图象G ,若图象G 与线段EF 恰有1 个公共点,结合函数的图象,直接写出n 的取值范围.27.在等腰△ABC 中,AB=AC,将线段BA 绕点B 顺时针旋转到BD,使BD⊥AC 于H,连结AD 并延长交BC 的延长线于点P.(1)依题意补全图形;(2)若∠BAC=2α,求∠BDA 的大小(用含α的式子表示);(3)小明作了点D 关于直线BC 的对称点点E,从而用等式表示线段DP 与BC 之间的数量关系.请你用小明的思路补全图形并证明线段DP 与BC 之间的数量关系.28. 在平面直角坐标系xOy 中,对于点P(a,b) 和点Q(a, b') ,给出如下定义:若b'=,1,1b ab a≥⎧⎨-<⎩,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是2,3),点(-2, 5)的限变点的坐标是(-2, -5).(1)①点)的限变点的坐标是;②在点A(-1,-2),B(-1,2)中有一个点是函数y = 2x 图象上某一个点的限变点,这个点是;(2)若点P 在函数y =-x +3(-2≤x≤k,k >-2)的图象上,其限变点Q 的纵坐标b'的取值范围是-5≤b'≤2 ,求k 的取值范围;(3)若点P 在关于x 的二次函数y =x2 - 2tx +t2 +t 的图象上,其限变点Q 的纵坐标b'的取值范围是b'≥m或b'<n ,其中m >n .令s =m -n ,求s 关于t 的函数解析式及s 的取值范围。

北京市2020版九年级上学期数学10月月考试卷A卷

北京市2020版九年级上学期数学10月月考试卷A卷

北京市2020版九年级上学期数学10月月考试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)下列函数是二次函数的是()A . y=2x+1B . y=﹣2x+1C . y=x2+2D . y=x﹣22. (2分)已知二次函数,当自变量x取m对应的函数值大于0,设自变量分别取m-3,m +3 时对应的函数值为y1 , y2 ,则()A . y1>0,y2>0B . y1>0,y2<0C . y1<0,y2>0D . y1<0,y2<03. (2分)能用直接开平方法求解的方程是()A . x2+3x+1=0B . x2-2x+3=0C . x2+x-1=0D . x2-4=04. (2分)已知函数y=3-(x-m)(x-n),并且a,b是方程3-(x-m)(x-n)=0的两个根,则实数m,n,a,b的大小关系可能是()A . m<n<b<aB . m<a<n<bC . a<m<b<nD . a<m<n<b5. (2分)二元二次方程组的解的个数是()A . 1B . 2C . 3D . 46. (2分)抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A . 先向左平移2个单位,再向上平移3个单位B . 先向左平移2个单位,再向下平移3个单位C . 先向右平移2个单位,再向下平移3个单位D . 先向右平移2个单位,再向上平移3个单位7. (2分)下列实际问题中,可以看作二次函数模型的有()①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b与这个人的年龄a之间的关系为b=0.8(220-a);②圆锥的高为h,它的体积V与底面半径r之间的关系为V=πr2h(h为定值);③物体自由下落时,下落高度h与下落时间t之间的关系为h= gt2(g为定值);④导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流I之间的关系为Q=RI2(R为定值).A . 1个B . 2个C . 3个D . 4个8. (2分) (2019九下·锡山月考) 二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0;⑦方程ax2+bx+c =﹣4有实数解,正确的有()A . 3个B . 4个C . 5个D . 6个9. (2分) (2019九上·番禺期末) 某公司2018年10月份的生产成本是400万元,由于改进技术,生产成本逐月下降,12月份的生产成本是361万元。

北京市中国人民大学附属中学2020-2021学年九年级上学期10月月考数学试卷(含详解)

北京市中国人民大学附属中学2020-2021学年九年级上学期10月月考数学试卷(含详解)
4.如图, 为 的切线,切点为 , 交 于点 为 上一点,若 则 的度数为()
A. B.
C. D.
【答案】B
【分析】根据切线的性质定理得∠OAB=90°,进而可求得∠AOB=50°,再根据圆周角定理即可求得∠ACD的度数.
【详解】解:∵ 为 的切线,切点为 ,
∴∠OAB=90°,
∵∠ABO=40°,
①求Q点 纵坐标(用含a的式子表示);
②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.
23.如图, 是等腰直角三角形, 是直角三角形, ,点 为边 中点将 绕点 顺时针旋转,旋转角记为 ,点 为边 的中点.
如图,求初始状态时 的大小;
如图,在旋转过程中,若点 构成平行四边形,请直接写出此时 的值;
【详解】A.点 在函数 的图象上,故存在“同号点”;
B.点 在函数 的图象上,故存在“同号点”;
C.对于函数 ,∵xy=-2<0,∴x,y异号,故不存在“同号点”;
D.点 在函数 的图象上,故存在“同号点”;
故选C.
【点睛】本题考查了新定义问题,以及函数图像上点的坐标特征,正确理解“同号点”的定义是解答本题的关键.
∴∠AOB=90°﹣∠ABO=90°﹣40°=50°,
∴∠ACD= ∠AOB=25°,
故选:B.
【点睛】本题考查了切线的性质定理、直角三角形的两锐角互余、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.
5.已知点 在反比例函数的 的图像上,当 时, 的取值范围是()
A. B. 或
C. D. 或
B选项中的三边长分别为: ,3, ,
三边不成比例,
∴这两个三角形不相似,B不符合题意;
C选项中的三边长分别为: ,1,2 ,

北京XX中学九年级10月月考数学试题(含答案)

北京XX中学九年级10月月考数学试题(含答案)

2022-2023第一学期十月月考初三数学第I 卷(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所列出的四个选项中,只有一项是最符合题目要求的)1.下列图形是中心对称图形的是( ).A .B .C .D .【答案】A【解析】绕一点旋转180︒后与自身能重合的图形是中心对称图形.2.将抛物线25y x =先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是( ). A .25(2)3y x =++ B .25(2)3y x =-+C .25(2)3y x =--D .25(2)3y x =+-【答案】A【解析】平移:左+右——(用于x ),上+下——(用于y ).3.如图,点A ,B ,C 在⊙O 上,CO 的延长线交AB 于点D ,50A ∠=︒,30B ∠=︒,则ADC ∠的度数为( ).ODCBAA .70︒B .90︒C .110︒D .120︒【答案】C【解析】∵50A ∠=︒, ∴100BOC ∠=︒,∵BOC DBO BDO ∠=∠+∠,30DBO ∠=︒, ∴10030BDO ︒=︒+∠, ∴70BDO ∠=︒,∴180********ADC BDO ∠=-∠=︒-︒=︒.4.代数式245x x -+的最小值是( ). A .1- B .1C .2D .5【答案】A【解析】2(2)11y x =-+≥.5.已知圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为( ). A .90︒ B .120︒C .150︒D .180︒【答案】B【解析】设母线为R ,底面半径为r ,圆锥侧面展开图圆心角为n ,则360r n R =︒,所以13360n=︒,120n =︒.6.如图,ABC △是等边三角形,D 是BC 的中点,以D 为旋转中心,把ABC △顺时针旋转60︒后,所成的图形是( ).AA .B .C .D .【答案】D 【解析】C'B'A'DCBA7.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x =【答案】D【解析】∵2y x bx =+结称轴过点(2,0),∴22b-=4b =-,∴24y x x =-,∴25x bx +=即为2450x x --=,(5)(1)0x x -+=,15x =,21x =-.8.已知⊙O 的半径为1,点P 到圆心O 的距离为d ,若抛物线22y x x d =-+与x 轴有两个不同的交点,则点P ( ). A .在⊙O 的内部 B .在⊙O 的外部C .在⊙O 上D .无法确定【答案】A【解析】∵22y x x d =-+与x 轴有两个不同交点, ∴0∆>, ∴440d ∆=->,1d <,∵1R =,∴点P 在⊙O 内部.9.小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB 是骨柄长OA 的34,折扇张开的角度为120︒.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为243cm ,宽为21cm .小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴的损耗,此时扇面的宽度AB 为( ).图2图1骨柄长的34长:243cm宽:21cmO BAA .21cmB .20cmC .19cmD .18cm【答案】B 【解析】120°123123243cmA'ABO∵120A OB '∠=︒,243AA '= ∴24AO =,324184AB =⨯=.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题: 尺规作图:过圆外一点作圆的切线. 已知:P 为⊙O 外一点. 求作:经过点P 的⊙O 的切线.PO小敏的作法如下: 如图,(1)连接OP ,作线段OP 的垂直平分线MN 交OP 于点C . (2)以点C 为圆心,CO 的长为半径作圆,交⊙O 于A ,B 两点. (3)作直线PA ,PB .PNMOCBA老师认为小敏的作法正确.请回答:连接OA ,OB 后,可证90OAP OBP ∠=∠=︒,其依据是____________________;由此可证明直线PA ,PB 都是⊙O 的切线,其依据是________________________________________.【答案】见解析.【解析】①直径所对的圆周角是直角.②经过半径的外端并用垂直于半径的直线是圆的切线.10.【答案】D【解析】∵22282(2)8y x x m x m =-+=-+-, ∴对称轴2x =,将67x <<关于对称轴2x =对称,得32x -<<-,则此时图象位于x 轴上方, ∵21x -<<-时图象位于x 轴下方, ∴可知,图象过(2,0)-, ∴0816m =++24m =-.二、填空题 11.【答案】>【解析】3x =-时,21(3)5391524y x =---=+=,2x =时,222524106y =-⨯=-=-,∴12y y >.12.【答案】1k <且0k ≠【解析】∵221y kx x =-+图象与x 轴有两个不同交点, ∴0∆>且0k ≠, ∵2(2)4k ∆=--44k =-,∴440k ->, ∴1k <, ∴1k <且0k ≠.13.【答案】16π 【解析】OCBA如图:130∠=︒,6AB =, ∴Rt ABO △中,2BO =, S S S =+全面积侧面积底面积2ππAB BO BO =⋅+⋅ 2π62π2=⨯⨯+⨯12π4π=+ 16π=.14.【答案】2-1【解析】∵20ax bx c --=, 可化为2ax bx c =+,即方程的解为函数2y ax =,y bx c =+, 图象交点的横坐标,又∵交点为(2,4)A -,(1,1)B , ∴x 为2-,1.15.【答案】1 10 13【解析】OCDBA如图:1AB =,10CD =,由垂径定理可知:152CA CD ==,设半径为r ,在Rt ACO △中,222AO CA CO +=, ∴222(1)5r r -+=13r =.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28分7分,第9题8分)解答应写出文字说明、演算步骤或证明过程. 17.解一元二次方程:2420x x -+=【答案】122x =+222x = 【解析】2420x x -+= 2442x x -+= 2(2)2x -=22x -=±122x =+222x =18.已知2310x x +-=,求224(2)(1)3(1)x x x x ++---的值.【答案】6.【解析】原式222482133x x x x x =++-+-+ 2264x x =++ 22(3)4x x =++,当2310x x +-=,即231x x +=时, 原式2146=⨯+=.19.如图,ABC △内接于⊙O ,120BAC ∠=︒,AB AC =,BD 为⊙O 的直径,10AD =,求弦AC 的长.ODCB103【解析】BCDO∵⊙O 中BD 是直径, ∴90DAB ∠=︒,∵ABC △中,120BAC ∠=︒,AB AC =, ∴30C ∠=︒, ∴30D ∠=︒,在Rt ABD △中,10AD =,30D ∠=︒,90DAB ∠=︒,∴103AB =, ∴103AC =20.如图,在ABC △中,75ABC ∠=︒,在同一平面内,将ABC △绕点B 旋转到DBE △的位置,使得DA BC ∥,求EBC ∠的度数.ABCDE【答案】30︒.【解析】∵AD BC ∥,75ABC ∠=︒, ∴75DAB ABC ∠=∠=︒, ∵BA BD =,∴75BDA BAD ∠=∠=︒, ∴118075230∠=︒-︒⨯=︒, ∴由旋转性质可知,2130∠=∠=︒.21ABCDE21.已知:如图,在平面直角坐标系中,ABC △三个顶点的坐标分别为(0,0)A ,(1,0)B ,(2,2)C .以A 为旋转中心,把ABC △逆时针旋转90︒,得到AB C ''△.(1)画出AB C ''△.(2)点B '的坐标为______________________________. (3)求点C 旋转到C '所经过的路线长.221321y xCBA【答案】(1)见解析;(2)(0,1);(32π. 【解析】(3)如图,C 走过的路线为弧CC ', ∵(2,2)C , ∴22AC = ∵90CAC '∠=︒, ∴902π22360CC ︒'=⋅⋅︒2π=.122B 'C 'A BCxy 12322.已知:关于x 的一元二次方程220x x m --=有实数根. (1)求m 的取值范围.(2)若a ,b 是此方程的两个根,且满足22131(2451)22a a b b ⎛⎫-+--= ⎪⎝⎭,求m 的值.【答案】(1)1m -≥;(2)1m =. 【解析】(1)∵ 220x x m --=有实根, ∴0∆≥, ∵44m ∆=+, ∴440m +≥, ∴1m -≥.(2)22131(241)22a a b b ⎛⎫-+--= ⎪⎝⎭,2213(22)222a a b b ⎛⎫-+--= ⎪⎝⎭,∵a 、b 为方程220x x m --=的两根, ∴220a a m --=,220b b m --=, ∴22a a m -=,22b b m -=,∴13(1)22m m ⎛⎫+-= ⎪⎝⎭,2132122m m m +--=235022m m +-=22350m m +-= (25)(1)0m m +-=152m =-(舍)1m =,∴1m =.23.已知:二次函数2(0)y ax bx c a =++≠中的x 和y 满足下表:x⋅⋅⋅ 0 1 2 3 45 ⋅⋅⋅ y⋅⋅⋅30 1-m8⋅⋅⋅(1)可求得m 的值为__________. (2)求出这个二次函数的解析式.(3)当03x <<时,则y 的取值范围为______________________________.【答案】(1)3;(2)2(2)1y x =--;(3)13y -<<. 【解析】(1)由表可知0x =,4x =,关于对称轴对称, ∴3m =.(2)设顶点式2(2)1y a x =--, ∵过(1,0), ∴20(12)1a =--1a =,∴2(2)1y x =--.(3)∵抛物线开口向上,对称轴2x =, ∴03x <<时,当0x =时,y 有最大值3,2x =时,y 有最小值1-,∴13y -<<.24.某商店从厂家以每件18元的价格购进一批商品,该商店可自行定价,但物价部门限定每件商品加价不能超过进货价的25%.据市场调查,该商品的售价与销售量的关系是:若每件售价x 元,则可卖出(32010)x -件.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?【答案】22100【解析】设每件商品的售价定为x 元, (18)(32010)400x x -⋅-=,128x =,222x =,18(125%)22.5x +=,∵1822.5x <≤, ∴22x =,320103*********x -=-⨯=(件),答:售价定为22时,卖出100件.25.已知:如图,ABC △内接于⊙O ,OH AC ⊥于H ,30B ∠=︒,过A 点的直线与OC 的延长线交于点D ,30CAD ∠=︒,103AD = (1)求证:AD 是⊙O 的切线.(2)若E 为⊙O 上一动点,连接AE 交直线OD 于点P ,问:是否存在点P ,使得PA PH +的值最小,若存在求PA PH +的最小值,若不存在,说明理由.H ODCBA【答案】(1)见解析;(2)见解析. 【解析】(1)连结AO , ∵30B ∠=︒,∴260AOC β∠=∠=︒, 又∵AO CO =,∴AOC △为等边三角形, ∴60OAC ∠=︒, 又∵30CAD ∠=︒, ∴90OAD ∠=︒, ∴OA AD ⊥, 又∵OA 为半径, ∴AD 为⊙O 切线.PA BCDOH(2)将点A 关于直线OD 对称到点A ', 由垂径定理可知A '在⊙O 上, ∴PA PA '=,∴min min ()()PA PH PA PH '+=+, ∵60AOC ∠=︒, ∴60A OC '∠=︒, ∴120AOA '∠=︒,又∵1302AOH AOC ∠=∠=︒,∴1203090A OH '∠=︒-︒=︒,∵Rt AOD △中90OAD ∠=︒,60AOD ∠=︒,103AD = ∴10AO =, ∴10A O '=,在Rt AOH △中,53OH =∴在Rt OHA '△中,222OA OH A H ''+=, ∴22210(53)A H '+=, ∴7A H '=∴PA PH +最小值为5726.有这样一个问题:探究函数262x y x -=-的图象与性质.小慧根据学习函数的经验,对函数262x y x -=-的图象与性质进行了探究.下面是小慧的探究过程,请补充完成: (1)函数262x y x -=-的自变量x 的取值范围是__________.(2)列出y 与x 的几组对应值.请直接写出m 的值,m =__________.x⋅⋅⋅ 3- 2- 0 1 1.5 2.5 m4 6 7 ⋅⋅⋅ y⋅⋅⋅2.4 2.5 34 62-0 1 1.5 1.6⋅⋅⋅(3)请在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象. (4)结合函数的图象,写出该函数的两条性质.①__________________________________________________. ②__________________________________________________.1234y x123456784321O87654321【答案】(1)2x ≠;(2)3m =;(3)图象不过第三象限,与直线2x =没有交点;(4)见解析.【解析】(1)分母不为0,则20x -≠,2x ≠. (2)令0y =,则2602x x -=-, ∴3x =.(3)从交点个数,增减性,过象限等角度来写.27.在平面直角坐标系xOy 中,抛物线21212y ax x a =+-+与y 轴交于C 点,与x 轴交于A ,B 两点(点A 在点B 左侧),且点A 的横坐标为1-. (1)求a 的值.(2)设抛物线的顶点P 关于原点的对称点为P ',求点P '的坐标.(3)将抛物线在A ,B 两点之间的部分(包括A ,B 两点),先向下平移3个单位,再向左平移(0)m m >个单位,平移后的图象记为图象G ,若图象G 与直线PP '无交点,求m 的取值范围.2222Oyx【答案】(1)2a =-;(2)(1,4)--;(3)见解析. 【解析】(1)∵图象过(1,0)A -,∴210(1)2(1)12a a =-+⨯--+10212a a =--+2a =-.(2)223y x x =-++ 2(1)4x =--+,顶点(1,4)P +,P 与P '关于原点对称,∴(1,4)P '--.(3)令0y =,则2023x x =-++, (3)(1)0x x -+=,13x =,21x =-,∴(1,0)A -,(3,0)B ,将图象向下平移3个单位后,(1,3)A '--,(3,3)B '-, ∵(1,4)P ,(1,4)P '--,∴直线PP '解析为4y x =,令3y =-,则34x =-,∴3,34H ⎛⎫-- ⎪⎝⎭,由图可知,333344B H ⎛⎫'=--= ⎪⎝⎭,∴334m >时,图象G 与直线PP '无交点.P 'B 'A 'H y PxBA 331128.(1)如图1,在四边形ABCD 中,AB BC =,80ABC ∠=︒,180A C ∠+∠=︒,点M 是AD 边上一点,把射线BM 绕点B 顺时针旋转40︒,与CD 边交于点N ,请你补全图形,求MN ,AM ,CN 的数量关系.(2)如图2,在菱形ABCD 中,点M 是AD 边上任意一点,把射线BM 绕点B 顺时针旋12ABC ∠,与CD 边交于点N ,连结MN ,请你补全图形并画出辅助线,直接写出AM ,CN ,MN 的数量关系是__________.(3)如图3,正方形ABCD 的边长是1,点M ,N 分别在AD ,CD 上,若DMN △的周长为2,则MBN △的面积最小值为____________________.图3图2图1A B CDMBCDAMDCBA解:(1)____________________. (2)____________________. (3)____________________.【答案】(1)MN AM NC =+;(2)MN AM NC =+;(321. 【解析】(1)连DC 延长线上截取CM AM '=, 连结BM ',∵1180A ∠+∠=︒,12180∠+∠=︒, ∴2A ∠=∠,在ABM △和CBM '△中, 2AB CB A AM CM ⎧=⎪⎪∠=∠⎨⎪'=⎪⎩, ∴ABM △≌CBM '△, ∴BM BM '=,34∠=∠, ∵80ABC ∠=︒,540∠=︒, ∴3640∠+∠=︒, ∴4640∠+∠=︒, ∴MBN M BN '∠=∠, 连结MN ,在MBN △和M BN '△中,5BM BM NBM BN BN ⎧'=⎪⎪'∠=∠⎨⎪=⎪⎩, ∴MBN △≌M BN '△, ∴MN NM '=,∵NM NC CM NC AM ''=+=+, ∴MN AM NC =+.N 'M '654321ABC DM(2)证明同(1). (3)z y x NM LDC B A延长DC 至L ,使CL AM =, 连结BL ,∵90A BCL ∠=∠=︒,AB BC =, ∴ABM △≌CBL △(SAS ), ∴BM BL =,∵2MD DN MN ++=,2AM MD DN NC +++=,∴MN AM NC =+, 又∵AM CL =, ∴CL CN NL MN +==, ∴BMN △≌BLN △(SSS ), 设DN x =,DM y =,MN z =, 则222x y z +=, ∵2x y z ++=, ∴2x y z =--, ∴222(2)y z y z --+=,整理得:22(24)(44)0y z y z +-+-=, ∴2(24)42(44)0z z ∆=--⨯⨯-≥, 即(222)(222)0z z +-++≥, 又∵0z >, ∵BMN BNL S S =△△12NL BC =⋅⋅ 112z =⨯⨯ 1(222)2⨯≥, ∴BMN S △ 21-29.在平面直角坐标系xOy 中,点A 在直线l 上,以A 为圆心,OA 为半径的圆与y 轴的另一个交点为E .给出如下定义:若线段OE ,⊙A 和直线l 上分别存在点B ,点C 和点D ,使得四边形ABCD 是矩形(点A ,B ,C ,D 顺时针排列),则称矩形ABCD 为直线l 的“理想矩形”.例如,下图中的矩形ABCD 为直线l 的“理想矩形”.备用图7651234567O1234876543211432xy lOy xE DCBA(1)若点(1,2)A -,四边形ABCD 为直线1x =-的“理想矩形”,则点D 的坐标为____________________.(2)若点(3,4)A ,求直线1(0)y kx k =+≠的“理想矩形”的面积.(3)若点(1,3)A -,直线l 的“理想矩形”面积的最大值为__________,此时点D 的坐标为________________________________________. 解:(1)____________________. (2)____________________.(3)______________________________,______________________________. 【答案】(1)(1,0)D -;(2)343)5(1,1)D --(3,2)-.【解析】(1)四边形ABCD 中,A ,B ,C ,D 是顺时针排列, 且分别落在线段OE ,⊙A 和直线l 上, ∴(1,0)D -.yx1OA(2)连结AO ,过点A 作AF y ⊥轴于点F , ∵(3,4)A 在1y kx =+上, ∴直线:1l y x =+, 设l 与y 轴交于点(0,1)H , ∵(0,4)F , ∴3HF =,在y 轴上截取3FB =,连结BA , 可知32AB AH ==过点B 作BC AB ⊥交⊙A 于点C ,过点C 作CD l ⊥于点D , 使得A ,B ,C ,D 顺时针排列, 连结AC ,∵22345AC AO ==+,32AB =∴Rt ABC △中,222BC AC BA =- 225(32)=-7=,∴7BC =,∴327314S AB BC =⋅==H F AB C D xyOl(3)设“理想矩形”的一组邻边分别为x ,y , 则222221310x y AO +==+=,∵222()21020x y x y xy xy -=+-=-≥, ∴5xy ≤, 5S xy =≤,∴当且仅当x y =时,xy 有最大值5,此时理想矩形为正方形.O NMD C B Ayx①当点D 在第四象限明,过点A 作AM y ⊥轴于点M ,交过点D 平行于y 轴的直线于点N , 易证BMA △≌AND △, ∴(2,34)D H -+,即(3,2)-. ②当点D 在第三象限时,过点A 作x 轴的平分线,交y 轴于点N ,交过点D 平行于y 轴的直线于点M ,易证Rt ANB △≌Rt DMA △, 则有1DM AN ==,2AM BN ==, ∴(12,31)D --+即(1,2)--,综上:最大值为5,(3,2)D -或(1,2)--.xyA B C D MNO。

九年级上学期数学10月月考试卷新版

九年级上学期数学10月月考试卷新版

九年级上学期数学10月月考试卷新版一、单选题 (共10题;共20分)1. (2分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A . 俯视图不变,左视图不变B . 主视图改变,左视图改变C . 俯视图不变,主视图不变D . 主视图改变,俯视图改变2. (2分)下列四个命题中,真命题的是()A . 相等的圆心角所对的弧相等B . 同旁内角互补C . 平行四边形是轴对称图形D . 全等三角形对应边上的高相等3. (2分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()B . 60°C . 55°D . 50°4. (2分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年收入400美元,预计2019年年收入将达到1200美元,设2017年到2019年该地区居民年人均收入平均增长率为x,可列方程为()A . 400(1+2x)=12000B . 400(1+x)2=12000C . 400(1+x2)=1200D . 400+2x=120005. (2分)已知a为整数,且,则a等于()A . 1B . 2C . 3D . 46. (2分)把一个小球以20米/秒的速度竖起向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t-5t ,当小球达到最高点时,小球的运动时间为()A . 1秒B . 2秒C . 4秒7. (2分)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()A .B .C .D .8. (2分)已知抛物线:y=ax2+bx+c(a<0)经过A(2,4)、B(﹣1,1)两点,顶点坐标为(h,k),则下列正确结论的序号是()①b>1;②c>2;③h>;④k≤1.A . ①②③④B . ①②③C . ①②④D . ②③④9. (2分)关于方程(a+1)x=1,下列结论正确的是()A . 方程无解B . x=C . a≠-1时方程解为任意实数D . 以上结论都不对10. (2分)如图,在△ABC中,∠A=36°,AB=AC,BD、CE分别为△ABC的角平分线,BD、CE相交于O,则图中等腰三角形有()A . 5个B . 6个C . 7个D . 12个二、填空题 (共7题;共8分)11. (2分)如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为弧AB的中点,D是OA的中点,则图中阴影部分的面积为________cm2.12. (1分)方程3x(x-1)=2(x-1)的根是________13. (1分)将抛物线y=(x+2)2-3的图像向上平移5个单位,得到函数解析式为________ .14. (1分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是________.15. (1分)如图,设矩形ABCD的边BC=x,DC=y,连接BD且CE⊥BD,CE=2,BD=4,则(x+y)2﹣3xy+2的值为________ .16. (1分)如图,等边三角形OAB的一边OA在x轴上,双曲线y= 在第一象限内的图象经过OB边的中点C,则点B的坐标是________.17. (1分)三元一次方程组的解是________三、解答题 (共8题;共75分)18. (10分)化简(1+ )÷ .19. (10分)如图,A是半径为6cm的⊙O上的定点,动点P从A出发,以πcm/s的速度沿圆周按顺时针方向运动,当点P回到A时立即停止运动.设点P运动时间为t(s)(1)当t=6s时,∠POA的度数是________;(2)当t为多少时,∠POA=120°;(3)如果点B是OA延长线上的一点,且AB=AO,问t为多少时,△POB为直角三角形?请说明理由.20. (8分)甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环)中位数(环)众数(环)方差甲a77 1.2乙7b8c (1)写出表格中a,b,c的值;赛,你认为应选哪名队员?(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?21. (10分)根据所学知识填空:(1)(﹣2)+________=﹣4.(2)(﹣2)﹣________=4.22. (7分)已知二次函数y=﹣x2+2x+3图象的对称轴为直线.(1)请求出该函数图象的对称轴;(2)在坐标系内作出该函数的图象;(3)有一条直线过点P(1,5),若该直线与二次函数y=﹣x2+2x+3只有一个交点,请求出所有满足条件的直线的关系式.23. (10分)某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x30323436y40363228(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?24. (10分)已知,如图所示,在矩形ABCD中,点E在BC边上,∠AEF=90°(1)如图①,已知点F在CD边上,AD=AE=5,AB=4,求DF的长;(2)如图②,已知AE=EF,G为AF的中点,试探究线段AB,BE,BG的数量关系;(3)如图③,点E在矩形ABCD的BC边的延长线上,AE与BG相交于O点,其他条件与(2)保持不变,AD=5,AB=4,CE=1,求△AOG的面积.25. (10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共75分)18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档