《弹塑性力学》第三章 应变分析.ppt

合集下载

弹塑性力学 第3章弹性与塑性应力应变关系

弹塑性力学 第3章弹性与塑性应力应变关系

3-5 塑性应力应变关系
在塑性变形阶段,应力与应变关系是非线性的,应
变不仅和应力状态有关,而且还和变形历史有关。 如果不知道变形的历史,便不能只根据即时应力状 态唯一地确定塑性应变状态。而且如果只知道最终 的应变状态,也不能唯一地确定应力状态。
考虑应变历史,研究应力和应变增量之间的关系,
以这种关系为基础的理论称为增量理论。增量理论 是塑性力学中的基本理论。

A B
模型:
s
e E E s s e
O


线性强化弹
塑性模型:
A
B E1
s
E
O
s

e E E1 ( s ) s e

B
线性强化刚塑性
A
模型:
s
O

E s
或 其中
i s
i
3 2
0 3J 2
按照Mises条件
s
s
3
应力强度、等效应力
i
1 2
1 2 2 2 3 2 3 1 2
形变比能
1 1 2 2 2 3 2 3 1 2 Ws 12G
用主应力偏量与主应变偏量表示
e1 e2 e3 1 s1 s2 s3 2G
用主应力差与主应变差表示
1 2 2 3 3 1 1 1 2 2 3 3 1 2G
说明,在弹性阶段,应变莫尔圆与应力莫尔 圆成比例。 用3个主应力差与3个主应变差表示
屈服条件——屈服条件又称塑性条件,它
是判断材料处于弹性阶段还是处于塑性阶 段的准则。 在应力空间中,将从弹性阶段进入塑性阶 段的各个界限点(屈服应力点)连接起来 就形成一个区分弹性区和塑性区的分界面, 这个分界面即称为屈服面,而描述这个屈 服面的数学表达式称为屈服函数或称为屈 服条件。

岩土弹塑性力学教学课件(共13章)第3章_应变状态

岩土弹塑性力学教学课件(共13章)第3章_应变状态

§3.1 应变状态11
• 三个刚性转动分量及6个应变分量合在一起,才全 面反映了物体变形
xyz x y z xy yz zx
B
B’’ 刚性转动
B’’’
B’
变形
A 刚性平动 A`
§3.1 应变状态12
• 工程应变: ln l0
l0
变形后长度 原始长度
不适用于大变形
• 自然应变/对数应变:
在塑性变形较大时,用-曲线不能真正代表加载和变形的状态。
x y z
• ——弹性体一点的体积改变量
• 引入体积应变有助于简化公式。
• 大于零表示体积膨胀,小于零体积压缩。
• 注意:土力学中塑性体应变符号约定相反。
§3.2 主应变与应变主方向8
应变Lode参数: 为表征偏量应变张量的形式,引入应变Lode参数:
22 3 1 3
1
(1.66)
如果两种应变状态με 相等,表明它们所对应的应变莫尔圆 相似,也即偏应变张量的形式相同。
Vz y
;
zx
Vz x
Vx z
;
§3.3 应变率张量 2
小变形情况下,应变速率分量与应变分量间存在如下关系:
x
Vx x
du x dt
d dt
u x
x
u x
y
Vy y
dv y dt
d v
dt
y
y
v y
z
Vz z
z
dw dt
d w dt z
z
w z
线应变速率
j
Vj,i )
(1.56)
§3.3 主应变与应变主方向 4
由于时间度量的绝对值对塑性规律没有影响,因

弹塑性力学弹性与塑性应力应变关系详解课件

弹塑性力学弹性与塑性应力应变关系详解课件

有限差分法
有限差分法(Finite Difference Method,简称FDM)是一种基于差分原 理的数值模拟方法。
它通过将连续的时间和空间离散化为有限个差分节点,并利用差分近似代 替微分方程中的导数项,从而将微分方程转化为差分方程进行求解。
有限差分法适用于求解偏微分方程,尤其在求解波动问题和热传导问题方 面具
幂函数型弹塑性本构模型
该模型将应力应变关系表示为幂函数形式,适用于描述岩石等材料 的弹塑性行为。
双曲线型弹塑性本构模型
该模型将应力应变关系表示为双曲线形式,适用于描述某些复合材 料的弹塑性行为。
弹塑性本构模型的选用原则
根据材料的性质选择合适的弹塑性本 构模型,以确保能够准确描述材料的 力学行为。
在选择本构模型时,需要考虑模型的 复杂性和计算效率,以便在实际工程 中得到广泛应用。
弹塑性力学弹性与塑性应 力应变关系详解课件
目录
• 弹塑性力学基础 • 弹性应力应变关系 • 塑性应力应变关系 • 弹塑性本构模型 • 弹塑性力学的数值模拟方法
01
弹塑性力学基础
弹塑性力学定义
01
02
03
弹塑性力学
是一门研究材料在弹性与 塑性范围内应力应变关系 的学科。
弹性
材料在受到外力作用后能 够恢复到原始状态的性质 。
当外力卸载后,物体发生弹性恢复,但需要一定的时间才能完成。这种 现象称为弹性后效。弹性后效的大小与材料的性质、温度和加载速率等 因素有关。
03
塑性应力应变关系
塑性应力应变关系定义
塑性应力应变关系
01
描述材料在塑性变形阶段应力与应变之间的关系。
特点
02
当材料受到超过屈服点的外力时,会发生塑性变形,此时应力

工程弹塑性力学-第三章_应力-应变关系

工程弹塑性力学-第三章_应力-应变关系

11 C1 C2 11 C2 22 C1 C2 22 C2 33 C1 C2 33 C2 23 2C3 23 31 2C3 31 12 2C312
JUST
C33 C44 C55
弹性矩阵
C11 C 22 D
则广义胡克定律又可写为:
C33 C44 C55
D
由于弹性举证为对称矩阵, 即使各向异性材料其常数 也为21个。
JUST
3.2 广义胡克定律 Jiangsu University of Science and Technology 江苏科技大学
C11 C11 C33 C1 C12 C23 C31 C2 C C C C 55 66 3 44
应力与应变关系
C1 C2 C 1 D
C2 C2 C1
0 0 0 C3
0 0 0 0 0 0 0 C3 0 C3 0
dA dK ij dV ij V dt dt
绝热过程
du dA dK dQ ij ij dV , 0 V dt dt dt dt
对于单位体积的内能: 存在势函数:
dui* ij ij dt
dW ij d ij
dW
W d ij ij
得: ij 由
ij 1i j , ij 0i j
1 ij 11 22 33 ij E 1
1 1 11 22 33 11 11 11 22 33 E 1 E 1 22 22 11 33 12 1 12 , 13 1 13 , 23 1 23 E 2G 2G 2G 1 33 33 11 22 E

弹塑性理论--应变 ppt课件

弹塑性理论--应变  ppt课件

一、P点的正应变
x

(u

u dx) x dx
u

u x
在这里由于小变形,由y
方向位移v所引起的PA的伸缩
是高一阶的微量,略去不计。
o
u P
v
y
P
B v v dy
y
u u dx x
A
A
x
v v dx x
B
u u dy y
ppt课件
图3-1
3
同理可求得:
Sy

o(Sx2 , S y 2 )

(x

x)

( x0

x0 )

u x
Sx

u y
Sy
(y

y)

( y0

y0
)

v x
Sx

v y
Sy
Sx Sx Sx (x x) (x0 x0 )
S y

S y
Sx
(y ppt课件
16
这样,对于纯变形来说 Si ui, j S j Si i, j S j
现在说明应变张量 i, j 的物理意义。
如S平行X轴,则 S x S, S y 0
S x S y

u x
Sx

u y
Sy


v x
Sx

v y
Sy

11
wwyx ))
w

z

0

1 (u v) 2 y x
1 2
(
u z

弹塑性力学应变分析

弹塑性力学应变分析

弹塑性力学应变分析弹塑性力学是固体力学的一个重要分支,研究了材料在外力作用下的弹性和塑性变形行为。

应变分析是弹塑性力学研究中的一个重要方法,用来描述材料的应变分布和变形机制。

本文将从简介弹塑性力学的基本概念开始,然后介绍应变分析的基本原理和方法,最后结合实例进行具体分析。

弹塑性力学是固体力学中研究物体在外力作用下产生变形和失去变形能力的行为的学科,弹塑性力学将材料的变形分为弹性和塑性两个阶段进行研究。

所谓弹性变形是指当外力作用撤除后,物体完全恢复到原来的形状和体积;而塑性变形则是在外力作用下,物体永久性的改变了形状和体积。

弹性力学研究了材料的弹性性质,主要通过描述应力-应变关系来分析材料的弹性行为;而塑性力学则以塑性应变的定义和计算为基础,研究材料的塑性行为。

应变分析是一种通过测量物体表面上的变形情况来分析物体内部应变分布和变形机制的方法。

应变分析的基本原理是根据平面几何关系,通过测量物体表面上的位移或形变情况,计算出表面上各点的法向和剪切应变分量,然后根据连续性假设推导出物体内部的应变分布。

应变分析主要通过两种方法进行,一种是光学方法,即应变光学方法;另一种是电子方法,即电子应变分析方法。

应变光学方法是应变分析中最常用的方法之一,主要利用光的干涉和衍射原理来测量物体表面上的位移和形变情况。

最常用的光学方法是全场应变测量方法,主要包括光栅投影法、相位差法和光弹性法。

在这些方法中,光栅投影法是最简单和最常用的方法,它通过在物体表面上投影一组光栅,然后根据物体表面上的光强分布来计算出位移和形变信息。

相位差法和光弹性法则是基于光的相位差和光的偏振状态来计算应变信息的。

电子应变分析方法主要利用电子束的散射和衍射原理来测量物体表面上的位移和形变信息。

最常用的电子应变分析方法是SEM-EBSD方法和EBSD方法。

SEM-EBSD方法是通过扫描电子显微镜和电子背散射衍射技术来测量物体表面上的位移和形变信息。

EBSD方法则是通过扫描电子显微镜和电子回散射衍射技术来测量物体表面上的位移和形变信息。

弹塑性力学-第3章 应变状态

弹塑性力学-第3章 应变状态

第三章 应变状态理论在外力、温度变化或其他因素作用下,物体内部各质点将产生位置的变化,即发生位移。

如果物体内各点发生位移后仍保持各质点间初始状态的相对位置,则物体实际上只发生了刚体平移和转动,这种位移称为刚体位移。

如果物体各质点发生位移后改变了各点间初始状态的相对位置,则物体同时也产生了形状的变化,其中包括体积改变和形状畸变,物体的这种变化称为物体的变形运动或简称为变形,它包括微元体的纯变形和整体运动。

应变状态理论就是研究物变形后的几何特性。

即给定物体内各点变形前后的位置,确定无限接近的任意两点之间所连矢量因物体变形所引起剧烈变化。

这是一个单纯的几何问题,并不涉及物体变形的原因,也就是说并不涉及物体抵抗变形的物理规律。

本章主要从物体变形前后的几何变化论述物体内一点的应变状态。

位移与线元长度、方向的变化坐标与位移设变形前物体上各点的位置在笛卡尔坐标(Descarter coordinate)系的轴(X 、、Y、Z )上的投影为(z y x ,,),又设物体上各点得到一位移,并在同一坐标轴上的投影为(u 、v 、w ),这些位移分量可看作是坐标(z y x ,,)的函数。

于是物体上任点的最终位置由下述坐标值决定。

即⎪⎭⎪⎬⎫+=+=+=),,(),,(),,(z y x w z z y x v y z y x u x ζηξ上式中函数u 、v 、w 以及它们对坐标(z y x ,,)的偏导数假设是连续的,则式确定了变量(z y x ,,)与),,(ζηξ之间的关系。

因为物体中变形前各点对应看变形后的各点,因此式是单值的,所以式可看成是坐标的一个变换。

如果在中,假设00,y y x x ==,则由式可得如下三个方程⎪⎭⎪⎬⎫+=+=+=),,(),,(),,((00000000z y x w z z y x v y z y x u x ςηξ式决定了一条曲线,曲线上各点Λ,,21**M M ,在物体变形前为平行于z 轴的直线(00,y y x x ==)上(图。

塑性力学03-塑性本构关系ppt课件

塑性力学03-塑性本构关系ppt课件
的应力和应变的改变量, 即B点的应
B
%
力和应变为
% , %
o
p e
因为卸载要服从弹性本构关系,
即 E. 这就是说,我们可以
由因为卸载引起的荷载的改变
%
量 P P% P 按弹性计算得到.
• 推广到复杂应力的卸载情况(即应力强度 i 减小)得到:
卸载定律 . 即: 卸载后的应力或应变等于卸载前的应力或应变 减去卸载时的荷载改变量 P P% P 为假想荷载按弹性计算所
是某一非零的参考应力状态,
t 是单调增加的参数.
这样定义的简单加载说明, 在加载时物体内应变和应力的主方
向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
应变增量强度
d
p i
的公式得到
d
p i
d
2 3
Sij Sij
2 3
d
i
所以 d 3dip 3d i 2 i 2H 14i
• 将上面得到的 d代入Levy-Mises流动法则就得到弹塑性硬化
材料的增量型本构方程:
dii
1 2
E
d ii
deij
1 2G
dSij
3d i 2H i
Sij
或写成:
dij
z
2
S
1 E
1 F
1
4
1
z
S
3
1 G
3 F
ln
2
z
屈服曲线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 应变分析
§3-1 位移和(工程)应变 §3-2 应变张量和转动张量 §3-3 应变张量和转动张量的坐标变换式 §3-4 主应变、主应变方向、应变张量
的三个不变量
§3-5 变形协调条件(相容条件)
2021/3/11
1
§3-1 位移和(工程)应变
在第二章我们研究了应力张量本身和 体力、面力之间的关系式,即平衡规律。 本章将讨论变形体研究的另一个基本关系: 变形与位移之间的关系。当然要以小变形 假设为基础,位移和形变相对于变形体几 何尺寸是微小的。
1
1
Uij ui, j 2 (ui, j u j,i ) 2 (ui, j u j,i )
或 Uij ui, j ij ij
2021/3/11
10
§3-2 应变张量和转动张量
其中
ij
1 2
(ui,
j
u j,i )
ij
1 2
(ui, j
u j,i )
ij = ji(对称张量), ij = -ji (反对称张量)
x2 R
dx2=1
x2 u2 ,1 u2 ,2 R’’ R’
u1,1 u1,2 u2,1 u2,2
dx2=1
相对位移
Q’
P’
Q’’
u1 ,2 x1
dx1=1 u1 ,1
Q P dx1=1
x1
u1、u2
2021/3/11
13
§3-2 应变张量和转动张量
x2
22=u2 ,2 21= (u2 ,1 +u1 ,2 )/ 2
Q''Q'
du
dr
'
dr
——相对位移矢量
x3
dr
Q
u+du
P
P
u
r
o
x2
x1
Q’’ Q’
P’
P’
dr
2021/3/11
7
§3-2 应变张量和转动张量
2.1 相对位移矢量和相对位移张量
u u e
du
ei
ii
ui x j
dx j
——( a)

r x jej
dr dx je j
dx j e j dr ——(b)
——体积应变
Ⅱ=1 2 23 31
Ⅲ 1 23
当 1 2 3 时(三个主应变不相等), 三个主方向相互垂直。
2021/3/11
20
§3-5 变形协调条件(相容条件)
在本章第二节中我们讨论了一点的应变 张量,它包含了一点的变形信息,应变张量
与位移微分关系称为几何方程(共六个)。 u 如果已知变形体的位移 状态, 则由这六
(+)/2
+
x1
12=(u1 ,2 +u2 ,1 ) /2 11=u1 ,1
x2
21=(u2 ,1 -u1 ,2 ) /2
12= (u1 ,2 -u2 ,1 ) /2
x1
11,12= 21,22 纯变形 12= -21 纯转动
2021/3/11
14
§3-2 应变张量和转动张量
2.3 转动张量的对偶矢量
而 ij 表示变形体的形变,ij 表示了刚体转动。
2021/3/11
11
§3-2 应变张量和转动张量
以在平面x1 —x2的两个垂直线段PQ、PR 的相对位移来说明并直观看一下ij,ij二阶张
量表示了形变和刚体转动。
x2
R
dx2=1
P
Q
dx1=1
x1
2021/3/11
12
§3-2 应变张量和转动张量
1 2
eijkijek
为转动张量的对偶矢量。
2021/3/11
16
§3-2 应变张量和转动张量
比较工程应变定义和应变张量,可得:
11 12 13 11 212 213
21
22
23
2
21
22
2
23
31 32 33 2 31 2 32 33
2021/3/11
17
§3-3 应变张量和转动张量的坐 标变换式
夹角的l 改变量。
(工程)正应变:11、22、33 , (工程)剪应变:12=xy、23=yz、31=zx
2021/3/11
4
§3-1 位移和(工程)应变
工程应变共有六个分量:
三个正应变,正应变以伸长为正,
三个剪应变,剪应变以使直角变小为正。
x3
dx1
dx2
x3
dx3 P
x1
2021/3/11
x2
2021/3/11
2
§3-1 位移和(工程)应变
1.1位移
x3
P
P
u
P’
or
x2
x1
变形体任意点P的位移矢量 u uiei
u 有三个分量。
2021/3/11
3
§3-1 位移和(工程)应变
1.2 (工程)应变
工程应变是通常工程中描述物体局部几何 变化,分为正应变和剪应变。
,l (角变形)=两微元线段
确定一点的主应变和应变主方向方法与 求主应力和应力主方向的方法完全一致,求 主应变的方程
3 Ⅰ 2 Ⅱ Ⅲ 0
解出1、2、3 (实根)
、Ⅱ、Ⅲ
分别为应变张量的三个不变量。
2021/3/11
19
§3-4 主应变、应变方向应变张量的三个不 变量
Ⅰ=11 22 33 1 2 3 e
22dx2
P x1
x2
23
5
§3-2 应变张量和转动张量
应变张量和转动张量是描述一点变形 和刚体转动的两个非常重要的物理量,本 节将讨论一下它们与位移之间关系,在讨 论之前,先介绍一下相对位移矢量和张量.
2021/3/11
6
§3-2 应变张量和转动张量
2.1 相对位移矢量和相对位移张量
PQ 平移 P'Q'' 伸长+转动 P'Q'
在 xk 坐标系中,已知变形体内任一点应 变张量 kl 和转动张量 kl ,则在新笛卡尔坐 标系x’i中此点应变张量’ij和 ’ij 均可以通
过二阶张量的坐标转换式求出它们。
即:
' ij
QQi'ki'kQei'
j'l kl
ek
i'j
Qki'
Q
i'kQ
j'l kl
2021/3/11
18
§3-4主应变、应变方向应变张量的三 个不变量
将(b)式代入(a)式,得
2021/3/11
8
§3-2 应变张量和转动张量
du ui, jeiej dr
根据商法则 du U dr

U ui, jeie j Uijeie j
为一个二阶张量——相对位移张量
2021/3/11
9
§3-2 应变张量和量 ui,j 包含了变形和刚体转动, 为了将两者分开,对 ui,j 进行整理,张量分成 对称和反对称张量之和。
于为一由个,纯沿其刚大x体3小轴转方动3向: 可的见转,动矢12=量-231e,3,正方好向相当e3
3
1 2
(12
21 )
1 2
(e12312
e213 21 )
类似可得,其它两2e个2 坐标平面转1e1动矢量,
2021/3/11
15
§3-2 应变张量和转动张量
综合三个坐标面的转动矢量 :
kek
相关文档
最新文档