2012年新课标人教版七年级数学上册教案全册

合集下载

2012年新课标人教版七年级数学上册教案全册

2012年新课标人教版七年级数学上册教案全册

2012年新课标人教版七年级数学上册教案全册(2012)课题: 1.1 正数和负数(1)授课时间:____________教学目标1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量教学过程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%…问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.这个问题能激发学生探究的欲望,学生自己看书学习是培养学2生自主学习的重要途径,都应予以重视。

新人教版七年级数学上册全册教案[正式用)

新人教版七年级数学上册全册教案[正式用)
(4)数据分析:理解方差的意义,掌握其计算方法,并应用于实际问题。
举例:解释方差在描述数据分散程度中的作用,帮助学生理解其在实际应用中的意义。
(5)乘法公式与因式分解:理解因式分解的意义,掌握因式分解的方法,尤其是十字相乘法的应用。
举例:通过具体例题,让学生理解因式分解是将一个多项式分解成几个整式的乘积,并掌握十字相乘法的具体步骤。
-平行四边形与梯形
4.数据分析
-平均数、中位数、众数
-方差与标准差
-频率分布表与直方图
5.乘法公式与因式分解
-完全平方公式与平方差公式
-提公因式法与十字相乘法
-应用问题
二、核心素养目标
1.培养学生的逻辑思维能力,使其能够理解有理数的概念,掌握有理数的运算规则,并能运用逻辑推理解决相关问题。
2.培养学生的方程与不等式解决问题的能力,使其能够分析问题,建立数学模型,解决现实生活中的问题。
(2)方程与不等式的解法:理解不等式组的解集概念,解决实际问题中的不等式组问题。
举例:解释不等式组解集的图形表示,帮助学生理解其在实际问题中的应用。
(3)几何图形的性质与分类:理解角的分类,尤其是锐角、直角、钝角的定义,以及它们在图形中的应用。
举例:通过实际操作,让学生理解不同角度的角在实际图形中的表现。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

2012-2013学年人教版初一上册数学教案

2012-2013学年人教版初一上册数学教案

教学目标:1、能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质;会用字母表示直线、射线、线段,会根据语言描述画出图形。

2、能在现实情境中,进行抽象的数学思考,提高抽象概括能力,经历画图的数学活动过程,提高学生的动手操作与实践能力。

3、体验通过实验获得数学猜想,得到直线性质的过程。

重点:理解并掌握直线性质,•会用字母表示图形和根据语言描述画出图形。

难点:根据语言描述画出图形.教学过程一、引入新课1、出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程。

2、提出问题:为什么这样拉出线是直的?其关键是什么?二、讲授新课学生活动:学生经过小组交流后,总结出结论:两点确定一条直线。

其关键在于先固定墨盒中墨线上两个点。

教师活动:参与学生活动,并请学生思考:这个现象符合数学上的什么原理?1、探究直线性质。

学生活动:完成课本P128探究课题,学生动手按要求画图,•并进行小组交流,总结出课题结论。

教师活动:巡视小组活动情况,并给出课题:板书直线、射线、线段,直线的性质。

2、寻找生活中直线性质应用的例子。

想一想:日常生活中有哪些现象是应用的直线的性质?学生回答(只要答案合理,教师都给以肯定的评价)。

3、直线、射线、线段的表示方法。

学生活动:阅读课本P129有关内容。

教师活动:讲解直线、射线、线段的表示方法.三、巩固练习1、提出问题:下图中,有几条直线?几条射线?几条线段?•说出它们的名称。

DAC B注:此题在学生完成后,教师再行讲评,并对学生的完成情况作出适当、肯定的评价。

2、根据语句画出图形。

例:读下列语句,并按照语句画出图形:(1)直线L经过A、B两点,点B在点A的左边。

(2)直线AB、CD都经过点O,点E不在直线AB上,但在直线CD上。

注:此例让学生独立完成后在小组中交流和自我评价,然后教师进行讲评。

3、完成课本P129练习。

注:此练习请四个同学进行板书,教师巡视学生完成的情况给予评价,•并请学生作出自我评价。

新课标人教版七年级数学上册教案全册(K12教育文档)

新课标人教版七年级数学上册教案全册(K12教育文档)

新课标人教版七年级数学上册教案全册(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新课标人教版七年级数学上册教案全册(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新课标人教版七年级数学上册教案全册(word版可编辑修改)的全部内容。

课题: 1.1 正数和负数(1)授课时间:____________1。

1 正数和负数(2) 授课时间:____________课题:1.2。

1 有理数授课时间:___________1。

2。

2 数轴授课时间:____________课题: 1。

2.3 相反数授课时间:____________课题: 1.2。

4 绝对值授课时间:___________1。

3 有理数的加减法授课时间:____________1。

3.1有理数的加法(1)【教学目标】1.理解有理数加法的实际意义;2。

会作简单的加法计算;3.感受到原来用减法算的问题现在也可以用加法算。

【对话探索设计】〖探索1〗(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥, 两天一共运进多少吨?(4)把第(3)题的算式列为300+(—200),有道理吗?(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?〖探索2〗如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?假设原点为运动起点,用下面的数轴检验你的答案.在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净.......胜球数...。

人教版七年级数学上册教学设计(全册教案)

人教版七年级数学上册教学设计(全册教案)

人教版七年级数学上册(全册)教案七年级数学上册教学计划一、基本情况分析1、学生情况分析:这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。

在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。

对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。

学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。

2、教材分析:1、第1章有理数:本章主要学习有理数的基本性质及运算。

本章重点内容是有理数的概念,性质和运算。

本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。

2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。

本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。

本章难点在于理解合并同类项和去括号的法则。

3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。

本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。

本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。

4、第4章几何图形初步:本章主要学习线段和角有关的性质。

本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。

本章的难点在于线段和角的有关计算。

二、教学目标和要求(一)知识与技能1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。

体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

2012-2013学年人教版初一上册数学教案整套

2012-2013学年人教版初一上册数学教案整套

按住Ctrl键单击鼠标打开教学视频动画全册播放2012-2013学年人教版初一上册数学教案第一章有理数1.1正数和负数教学目标:1、了解正数与负数是从实际需要中产生的。

2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。

3、会用正、负数表示实际问题中具有相反意义的量。

重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。

教学过程:一、创设情境,引入新课问题1:为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它们叫做什么数?学生:自然数问题2:为了表示“没有”,我们又引入了一个什么数?学生:0(0也是自然数)问题3:当测量和计算的结果不是整数时,又引进了什么数?学生:分数(小数)问题4:某市某一天的最高温度是零上5℃,最低温度是零下5℃,要表示这两个温度,都记作5℃,我们就不能把它们区别清楚,那么应该要怎么表示呢?要清楚的表示这两个量,我们以前的数就不够用了。

为了表示这些量,我们需要引入一种新数,这就是本节课要学习的内容——正数和负数。

二、合作交流,探索新知1、相反意义的量问题:在日常生活中,常会遇到这样一些量:①气温有零上7℃和零下7℃;②汽车向东行驶2.5千米和向西行驶1.5千米;③收入200元和支出100元;④高于海平面8844m和低于海平面150m。

学生讨论:上面例子出现的各对量,虽然内容不同,但有一个共同点,这个共同点是什么?教师归纳:都是具有相反意义的量。

零上和零下、向东和向西、收入和支出、高于和低于都是具有相反意义的量。

而“相反意义的量”应该包括两方面:一是意义相反;二是在具有相反意义的基础上要有量值。

2、正数和负数教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。

结论:零下5℃用-5℃来表示,零上5℃用5℃来表示。

为了用数表示具有相反意义的量,我们把其中一种意义的量。

如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。

数学人教七年级上册(2012年新编)1-2-2 数轴(教学设计)

数学人教七年级上册(2012年新编)1-2-2 数轴(教学设计)

1.2.2 数轴教学设计一、内容和内容解析1.内容本章是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.2有理数第2课时,内容包括数轴的概念,用数轴上的点表示有理数.2.内容解析数轴是初中数学的核心概念,它是数形结合思想的产物,学习数轴是把数和形统一起来的第一次尝试. 数轴建立了直线上的点与实数的对应,是一维的坐标系. 数轴使数的概念和运算可以与位置、方向、距离等统一起来,使数的语言得到了几何解释,数有了直观意义. 这不仅有助于对数的概念的理解,而且还可以从中得到启发而提出新的问题或结论(例如,相反数、绝对值、大小比较等).用数轴上的点表示实数,就是要使任意一个实数能用唯一确定的点表示,同时,任意一个点只能表示一个实数(这样要求的意义需要学生逐渐体会),在这样的要求下,明确规定原点、方向和单位长度“三要素”是必须而且自然的. 这时,我们有:原点↔0(原点是区分方向的“基准”,0是区分正负的基准. )单位长度↔1(单位长度是度量线段长度的单位,1是实数单位,“单位”实际上给出了一个统一的标准. )方向↔符号(空间中,A,B两点“位置差别”的定量化定义,必须且只需“方向”和“长度”. 数轴上,方向只有“左”“右”两种,可以理解为“相反方向”. 在数轴上,正与负具有“相反方向”,正数与负数的实际意义就是描述现实中的“相反意义的量”,确定一个实数,需要“符号”和“绝对值”两个要素,它们正好对应了定量化定义A,B两点“位置差别”的“方向”和“长度”.)基于以上分析,确定本节课的教学重点为:会画数轴,能将有理数用数轴上的点表示出来.二、目标和目标解析1.目标(1)了解数轴的概念,会用数轴上的点表示有理数.(2)体会数轴三要素和有理数集(实数集)中0,1和数的符号之间的对应关系,从而体会数形结合思想.2.目标解析达成目标(1)的标志是:学生知道数轴是一条规定了原点、方向和单位长度的直线;给定一个有理数,学生能在数轴上找到表示它的点;能画出数轴,并用数轴上的点表示有理数.目标(2)是“内容所蕴含的思想方法”,学生需要体会的是在“用点表示数”时,数轴“三要素”保证了点与数的“一一对应”——给一个数,就有唯一确定的点与之对应;反之,给一个点,就有唯一的数与之对应. 但本节课只要能体会有理数与数轴上点的对应性,不要刻意强调“给一个点,不一定有一个有理数与之对应”.三、教学问题诊断分析学生第一次遇到用形表示数的问题,困难在于其中蕴含的思想. 可以借鉴引入负数时的经验,也要借鉴学生的生活经验. 但在基本思想上,还是要借助于具体情境,教师先讲解,学生获得体验后进行模仿式举例.本节课中,“三要素”及其对于确定“数轴上的点”的意义(根据“三要素”,可以在数轴上找到唯一确定的点,否则“存在性”“唯一性”就做不到),有理数集(实数集)中0,1以及数的符号等与数轴上的相关要素的对应性,都需要教师引导.由于七年级学生的理解能力和思维训练有待提高,因此他们需要依赖直观、具体的实物来理解数轴这一抽象的数学工具.教学中为使课堂扎实、有效,调动学生的积极作用,整节课以观察、思考、探讨贯穿于教学各环节中,师生互动、情感交流渗透于始终.基于以上分析,确定本节课的教学难点为:数轴“三要素”与有理数集(实数集)中0,1以及数的符号的对应性.四、教学过程设计(一)出示问题,情景引入问题1:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆. 试画图表示这一情景.师生活动:学生小组讨论解决问题的方法,学生代表画图表示.追问1:马路可以用什么几何图形代表?(直线)追问2:你认为站牌起到了什么作用?(基准点)追问3:你是怎么确定问题中各物体的位置的?(方向,与站牌的距离)学生也可能只用与站牌的距离来表示,有不同表示最好,可以与下面的方法做比较,看哪个更方便.【设计意图】“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象.问题2:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义. 我们知道,正数和负数可以表示两种具有相反意义的量,那么如何用数表示这些树、电线杆与汽车站牌的相对位置呢?师生活动:学生画图表示后提问:追问4:0代表什么?(基准点)追问5:数的符号的实际意义是什么?(方向)追问6:如图1,在一条直线上,A,B的距离等于B,C的距离,点B用3表示,点C用7.5表示,行吗?为什么?(不行,单位不一致,与实际情境不符.)图1追问7:上述方法表示了这些树、电线杆与汽车站牌的相对位置关系. 例如,-4.8表示位于汽车站牌西侧4.8m处的电线杆,你能再举个例子吗?【设计意图】继续以“三要素”为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础.问题3:我们对温度计非常熟悉,你能描述一下温度计的结构吗?比较上面的问题,你认为它用了什么数学知识?追问8:①零上5℃怎样表示?②零下10℃怎样表示?③0℃怎样表示?师生活动:教师可以先解释0℃的含义(冰水混合物的温度规定为0℃——温度的基准点).【设计意图】借用生活中的常用工具,说明正数、负数的作用,引导学生用“三要素”表达,为定义数轴概念提供又一个直观基础.问题4:你能说说上述两个实例的共同点吗?【设计意图】进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点”的思想方法,为定义数轴概念提供进一步的直观基础.(二)探究新知师生活动:明确数轴的概念,并请学生带着下列问题阅读教科书P8:(1)画数轴的步骤是什么?(2)根据上述实例的经验,“原点”起什么作用?(“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点.)(3)你是怎么理解“选取适当的长度为单位长度”的?(与问题的需要相关,表示较大的数,单位长度取小一些)(4)数轴上,在原点的右边,离原点越远的点所表示的数;在原点的左边,离原点越远的点所表示的数 . (越大;越小)师生活动:教师出示课件中的思考问题,引导学生思索,进而给出数轴的定义.同时引导学生探究共同得出数轴的三要素:定义:一般地说,在数学中人们用画图的方式把数“直观化”,通常用一条直线上的点表示数,这条直线叫做数轴.数轴要满足以下要求:(三要素)1. 原点O——在直线上任意一点表示数“0”;2. 正方向——通常取向右为正方向,画上箭头;3. 单位长度——选取适当的长度作为单位长度,单位长度要统一.教师强调:这样我们就能够把学过的有理数意义表示在数轴上了.针对训练:判断下列直线都是数轴吗?说说你的理由.(1)×;(2)√;(3)×;(4)×;(5)×;(6)√.问题5:数轴可以表示整数,那么数轴怎么来表示分数和小数?问题6:观察数轴上的有理数排列的大小,你能得出哪些结论?(位于数轴左(下)边的数总比右(上)边的数小)追问:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度. (右;a;左;a.)【设计意图】明细概念,并让学生在教师设计的引导问题中,加深对数轴概念中“三要素”的理解.(三)典例分析例1:说出下图中数轴上的A、B、C、D、E各点表示什么数?解:点A表示–3;点B表示+2;点C表示+4;点D表示0.5;点E表示-2.5.例2:画出数轴,并用数轴上的点表示下列各数:32 ,-5,0,5,-4,32解:如下图:【设计意图】通过两道例题的训练,使学生体会数轴上的点与有理数的对应的关系,并会规范地画出数轴.(四)当堂巩固1. 数轴上表示数-3的点在原点的 边,离原点 个单位长度;表示数2.5的点在原点的 边,离原点 个单位长度.2. 到原点距离为3个单位长度的数是 .3. 在数轴上点A 表示数-4,若把点A 向左移动1个单位长度,则移动后的点表示数是 ;若把点A 向右移动3.5个单位长度,则移动后的点表示数是 .4. 在数轴上点A 表示数1,点B 与点A 相距3个单位,点B 表示数是 .参考答案:1.左;3;右;2.5;2. -3、+3;3. -5;-0.5;4.+4、-2.【设计意图】巩固所学知识,加深对数轴概念以及用数轴上的点表示有理数的理解. (五)感受中考1.(2021•凉山州中考)下列数轴表示正确的是( )A .B .C .D . 【解析】解:A 选项,应该正数在右边,负数在左边,故该选项错误;B 选项,负数的大小顺序不对,故该选项错误;C 选项,没有原点,故该选项错误;D 选项,有原点,正方向,单位长度,故该选项正确;故选:D .2.(2021•怀化中考)数轴上表示数5的点和原点的距离是( )A.15B.5C.5-D.15-【解析】解:数轴上表示数5的点和原点的距离是5;故选:B.3.(2020•长春中考)如图,数轴上被墨水遮盖的数可能为()A.1-B. 1.5-C.3-D. 4.2-【解析】解:由数轴上墨迹的位置可知,该数大于-4,且小于-2,因此备选项中,只有选项C符合题意,故选:C.【设计意图】通过对最近几年各地中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(六)课堂小结1. 数轴的概念:一般地,在数学中人们用画图把数“直观化”.用一条直线上的点表示数,这条直线叫做数轴;2. 数轴的三要素:原点、正方向、单位长度;3. 数与形的关系:对应的关系;4. 数学思想:数形结合的思想.5. 你能举出引进数轴概念的一个好处吗?【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心——数轴的“三要素”,感受通过数轴把数与形结合起来的好处.(七)布置作业P14:习题1.2:第2、3题;P15:习题1.2:第11(1)(2)题.五、教学反思数轴这一节是初中数学中非常重要的内容,从知识上讲它是数学学习和研究的重要工具,同时也是学习直角坐标系的基础,从思想方法上讲,数轴是数形转化、结合的重要媒介,是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法.本节课在学生学习了有理数概念的基础上,借助标有刻度的温度计表示温度高低这一事例,创设情境,进行教学,意在激发学习数学的兴趣,体会到数学和生活息息相关,通过讨论与探索,培养学生多方面的能力,掌握数学中的一些思想方法.情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现出了从感性认识,到理性认识,到抽象概括的认识规律.教学过程突出了情境到抽象到概括的主线,教学方法体现了特殊到一般,让学生充分体验数形结合的数学思想方法.注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活动,并引导学生在课堂上感悟知识的生成、发展与变化,培养学生自主探索的学习方法.。

人教七年级数学上册教案全册

人教七年级数学上册教案全册

人教七年级数学上册教案全册教案:《人教七年级数学上册教案全册》第一章有理数教学目标:1.理解有理数的概念,能够区分有理数和无理数。

2.掌握有理数的加减乘除运算规则。

3.能够解决有理数的加减乘除的问题。

4.能够应用有理数解决实际问题。

教学过程:一、导入与引入新课1.温故知新:通过提问引导学生回顾整数的概念和上册学习的内容,例如“请问0是整数吗?”,“请举例说明有理数和无理数的区别”等问题。

2.引入新课:通过幻灯片或黑板书写,简单介绍有理数的定义和相关符号。

二、学习新课1.理解有理数的概念:教师通过示意图或实际数例,引导学生理解有理数的概念。

例如,通过将整数表示在数轴上,让学生掌握正数、负数及其性质。

2.区分有理数和无理数:教师通过讲解有理数和无理数的定义和特点,让学生能够区分有理数和无理数。

3.有理数的加减乘除运算规则:教师通过例题和练习操练,让学生掌握有理数的加减乘除运算规则。

例如,正数相加、正数相乘、负数相加等。

三、巩固训练教师给学生出一些计算题目,让学生上台演示解题过程,以检查学生对所学知识的掌握情况。

四、拓展与应用1.真实景物:教师通过实际生活场景,引导学生应用有理数解决实际问题。

例如,购物问题、温度问题等。

2.综合练习:教师给学生发放练习册,让学生在课后完成相关练习题目。

五、总结与反思教师总结本节课的要点,并与学生进行回顾和讨论。

六、课后作业布置课后作业,要求学生完成练习册上的相关题目。

教学反思:本节课通过引导学生回顾整数的概念和区分有理数和无理数,循序渐进地加深学生对有理数概念的理解和运算规则的掌握。

通过真实景物和综合练习的应用,增加学生对有理数的兴趣和实际运用能力。

同时,通过让学生参与讲解和上台演示解题过程,提高学生的主动性和合作能力。

在总结和反思环节,教师及时纠正学生在学习过程中的错误理解和操作方法,为下一节课的学习打下基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学(2012人教版)第一章有理数课题: 1.1 正数和负数(1)1.1 正数和负数(2)课题:1.2.1 有理数1.2.2 数轴课题: 1.2.3 相反数课题: 1.2.4 绝对值1.3 有理数的加减法1.3.1有理数的加法(1)【教学目标】1.理解有理数加法的实际意义;2.会作简单的加法计算;3.感受到原来用减法算的问题现在也可以用加法算.【对话探索设计】〖探索1〗(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥, 两天一共运进多少吨?(4)把第(3)题的算式列为300+(-200),有道理吗?(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?〖探索2〗如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?假设原点为运动起点,用下面的数轴检验你的答案.在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数...........若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?〖小游戏〗(请一位同学到黑板前)前进5步,又前进-3步, 那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?〖练习〗1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?〖补充作业〗1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):(1)温度由下降;(2)仓库原有化肥200t,又运进-120t;(3)标准重量是,超过标准重量;(4)第一天盈利-300元, 第二天盈利100元.2.借助数轴用加法计算:(1)前进,又前进, 那么两次运动后总的结果是什么?(2)上午8时的气温是,下午5时的气温比上午8时下降, 下午5时的气温是多少?3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?1.3.1 有理数的加法(2)【教学目标】1.进一步理解有理数加法的实际意义;2.经历探索有理数加法法则的过程,理解有理数加法法则;3.感受数学模型的思想;4.养成认真计算的习惯.【对话探索设计】〖探索1〗1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动,再向左运动, 那么两次运动后总的结果是什么?假设原点为运动起点,用数轴检验你的答案.〖法则理解〗有理数加法法则第1条是:同号两数相加,取,并把绝对值.这条法则包括两种情况:(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;(2)两个负数相加,取号,并把相加.例如(-3)+(-5) = -(3+5) = -8.答案"-8"之所以取"-"号,是因为,"8"是由的绝对值和的绝对值相而得.〖练习〗1.上午6时的气温是,下午5时的气温比上午6时下降, 下午5时的气温是多少?2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?3.第一天向北走,第二天又向北走,两天一共向北走多少km?4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:(1)-10+(-30)=(2)(-100)+(-200) =(3)(-188)+(-309)=〖探索2〗1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?3.正数和负数相加,结果是正数还是负数?〖法则理解〗有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取的符号,并用减去.例如(+6)+(-2) = +(6-2) = +4.答案"+4"之所以取"+"号,是因为两个加数(+6与-2)中的绝对值较大;答案"+4"的绝对值4是由加数中较大的绝对值减去较小的绝对值得到.又例,计算(-8)+(+3)时,先取号,这是因为两个加数中, 的绝对值较大.然后再用较大的绝对值减去较小的绝对值,得,于是最后得到答案是.计算的过程可以写成(-8)+(+3) = -(8-3) = -5.〖议一议〗有人说,正数和负数相加时,实质就是把加法运算转化为”小学”的减法运算.他说的对不对?〖练习〗1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?2.如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:-3.5,+1.2,-2.7.这3包洗衣粉的重量一共超过标准重量多少?4.仿照(-8)+(+3) =-(8-3) = -5的格式解题:(1)(-3)+(+8)=(2)-5+(+4)=(3)(-100)+(+30)=(4)(-100)+(+109)=〖法则理解〗有理数加法法则第2条的后半部分是:互为相反数的两个数相加得.例如(+3)+(-3) = ,(-108)+(+108) = .〖例题学习〗P21.例1,例2P22.练习2(按例1格式算.)〖作业〗P29.习题1, P32.习题8,9,10【备选素材】用一个□表示+1,用一个■表示-1.显然□+■=0,(1)■■+□□□=(■+□)+(■+□)+ □= .这表明-2+3=+(3-2)=1.想一想:答案为什么是正的?为什么转化为减法运算?(2)计算■■■■■+□□□□□= .(3)计算■■■■■+□□=(■■+□□)+ ■■■= .这说明-5+(+2)=-( - )= .(4)计算■■■+□□□□□=?1.3.1 有理数的加法(3)【教学目标】1.理解有理数加法的运算律;2.能用运算律简化有理数加法的运算.【对话探索设计】〖复习导入〗1.小学时已学过的加法运算律有哪几条?2.猜一猜:在有理数的加法中,这两条运算律仍然适用吗?3.(1)计算30+(-20)= = ,-20+30= = ;(2)[8+(-5)]+(-4)= = , 8+[(-5)+(-4)]= = .你猜对了吗?〖试一试〗你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?〖例题学习〗P22.例3〖例题探索〗P23.例4.你认为例4的两种解法哪一种比较好?〖练习〗P23.练习1〖作业〗P23.练习2,P30.习题2【备用素材】1.(1) 两个数都是负数,它们的和一定是负数吗?为什么?(2) 两个数的和是负数,这两个数一定都是负数吗?为什么?2.(1)在一场足球比赛中,红队以4:1胜黄队,这说明红队进球,失球,净胜球;而黄队则进球,失球,净胜球.(2)某赛季,申花足球队第一场比赛赢了2个球(5比3);第二场比赛输了3个球(1比4),两场比赛该队净胜几个球?3.某地,去年9月1日的平均气温是28℃,第二天平均气温比第一天上升了2℃,第三天平均气温比第二天上升了-5℃(下暴雨!),问第三天平均气温是多少,请画出(温度计)示意图.4.各举两个反例说明以下的说法是错误的:(1)两个有理数相加,和一定大于每一个加数.(2)两个数的和是0,这两个数都是0.*(3)若a>0,b<0,且|a|<|b|,则a+b=-(|a|-|b|).5.(1)小学所遇到的加法运算,两个加数的和会小于任何一个加数吗?(2)a+b会小于a吗?为什么?6.若用Δ表示+10,用▲表示-10,用◇表示+1,用◆表示-1.则ΔΔ◇◇◇表示;▲▲▲▲▲◆◆◆◆表示.ΔΔ◇◇◇+▲▲▲▲▲◆◆◆◆=(ΔΔ+▲▲)+( ◇◇◇+◆◆◆)+ = .结果表示的数是.7.有一批食品罐头,标准质量为每听454克.现抽取10听样品进行检测,结果如下表(单位:克):若把超过标准质量的克数y用正数表示,不足的用负数表示,依照上表的数据列出这10听罐头与标准质量的差值表(单位:克):分别用上面两个表格的数据求出10听罐头的总质量,比较这两种方法.8.小钱上周五以收盘价买进股票1000股,每股20元.下表为本周每日股票的涨跌情况(按收盘价即(2)本周内,股票最高价出现在星期几?是多少元?(3)已知小钱买进股票时付了4‰的手续费,卖出时又付成交额4‰的手续费和3‰的交易税,如果小钱在本周末以收盘价卖出全部股票,他的收益如何?9.小京同学在计算16+(-24)+22+(-17)+(-56)+56时, 利用加法交换律、结合律先把正负数分别相加,得16+22+56+[(-24)+(-17)+(-56)].你认为这样算能使运算简便吗?你认为还有其它方法吗?10.用简便方法计算:(1)1033.78+(-26)+(-39)+(-38);(2)12.7+(-24.6)+(-29.1)+6.8;(3)1.3+0.5+(-0.5)+0.3+(-0.7)+3.2+(-0.3)+0.7;(4)(-109)+(-267)+(+108)+268;1.4 有理数的乘除法1.4.1 有理数的乘法(1)【教学目标】1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;2.能运用法则进行有理数乘法运算;3.能用乘法解决简单的实际问题.【对话探索设计】〖探索1〗(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?(2) 商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少?〖探索2〗(1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少?(2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少?(3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化?〖探索3〗(1)2×3= ;(2)-2×3= ;(3)2×(-3)= ;(4)(-2)×(-3)= ;(5)3×0= ;(6)-3×0= .〖法则归纳〗两数相乘,同号得 ,异号得 ,并把相乘.任何数同0相乘,都得 .〖旧课复习〗1.满足什么条件的两个数互为倒数?0.2的倒数是多少?7.29的倒数呢? 的倒数呢?2.满足什么条件的两个数互为相反数? 0.2的相反数是多少? 呢?〖探索4〗在有理数范围内,我们仍然规定:乘积是1的两个数互为倒数.-0.2的倒数是多少?-7.29的倒数呢? -的倒数是;0的倒数.3. 的两个数互为相反数. 的两个数互为倒数.若a+b=0,则a、b互为数,若ab=1,则 a、b互为数.4.计算:(1)(-6)×4= = ;(2) -= = .5.在数-5,1,-3,5,-2中任取3个相乘,哪3个数相乘的积最大? 哪3个数相乘的积最小?1.4.1 有理数的乘法(2)【教学目标】1.巩固有理数乘法法则;2.探索多个有理数相乘时,积的符号的确定方法.【对话探索设计】〖探索1〗1.下列各式的积为什么是负的?(1)-2×3×4×5×6;(2)2×(-3)×4×(-5)×6×7×8×9×(-10).2.下列各式的积为什么是正的?(1)(-2)×(-3)×4×5×6×7;(2)-2×3×4×5×(-6)×7×8×(-9)×(-10).〖观察1〗P38. 观察〖思考归纳〗几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?(见P38.思考)与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值〖例题学习〗P39.例3〖观察2〗P39. 观察〖练习〗P39.练习〖作业〗P46.7.(1),(2)(3),8,9,10,11.〖补充练习〗1.(1)若a = 3,a与2a哪个大?若a= 0 呢? 又若a=-3呢?(2)a与2a哪个大?(3)判断:9a一定大于2a;(4)判断:9a一定不小于2a.(5)判断:9a有可能小于2a.2."几个数相乘,积的符号由负因数的个数决定" 这句话错在哪里?3.若a>b,则ac>bc吗?为什么?请举例说明.4.若mn=0,那么一定有( )(A)m=n=0.(B)m=0,n≠0.(C)m≠0,n=0.(D)m、n中至少有一个为0.5.利用乘法法则完成下表,你能发现什么规律?6.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为-a,你认为哪家商店该彩电的降价的百分率大?为什么?(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么?1.4.1 有理数的乘法(3)【教学目标】1.熟练有理数乘法法则;2.探索运用乘法运算律简化运算.【对话探索设计】〖探索1〗你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?〖阅读理解〗乘法交换律和结合律(见P40)〖探索2〗下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?(1)25×2004×4; (2) -.〖探索3〗运用运算律真的能节省时间吗?分两个大组,比一比:计算×(-198)×().〖练习1〗运用乘法交换律和结合律简化运算:(1)1999×125×8; (2) -1097××().〖探索4〗1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?2.如右图,你会用两种方法求长方形ABCD的面积吗?〖例题学习〗P41.例5〖作业〗P41.练习〖补充作业〗1.计算(注意运用分配律简化运算):(1)-6×(100-); (2)×(-12).(2)2×(-3)×4×(-5)×(-6)×7×8×9×(-10);(3) 2×(-3)×4×(-5)×(-6)×0×7×8×9×(-10);4.下列各式的积(幂)是正的还是负的?为什么?(1)(-3)×(-3)×(-3)×(-3)×(-3).5.运用乘法交换律和结合律简化运算:(1)-98××(-0.6); (2)-1999××(-)××()【补充练习】1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的高空的气温是多少?2.运用分配律化简下列的式子:(1)例3x+9x+x (2)13x-20x+5x;=(3+9+1)x=13x;(3)12π-18π-9π; (4)-z-7z-8z.第二章一元一次方程一、背景与意义分析本课安排在第1章“有理数”之后,属于《全日制义务教育数学课程标准(实验稿)中的“数与代数”领域。

相关文档
最新文档