三角函数f(ωx+φ)中ω、φ的取值范围问题

合集下载

三角函数中ω的范围问题

三角函数中ω的范围问题

点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9 10
配套精练
要使函数 f(x)的图象关于直线 x=π2对称,则 ωπ+π6=kπ+π2,k∈Z,解得 ω=k+13,k ∈Z,结合 C 可得 ω=13,43,73,130,所以存在 4 个不同的 ω,使得函数 f(x)的图象关 于直线 x=π2对称,故 D 正确.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9 10
配套精练
6.(2023·温州期初)(多选)设函数 f(x)=sinωx+π5(ω>0),则
A.若 ω=1,则 f(x)在 0,π2上单调递增 B.若 ω=2,则 f(x)在[0,π]上有 2 个极值点 C.若 ω=3,则 f(x)的图象关于点-1π5,0 中心对称 D.若 f(x+6π)=f(x),则 ω 的最大值为13
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9 10
配套精练
【解析】 函数 f(x)的对称中心可以为x0,-12,则不存在 ω,使得函数 f(x)为奇函数, 故 A 错误. 函数 f(x)的最大值为12,故 B 正确. 令-π2+2kπ≤2ωx+π6≤π2+2kπ,k∈Z,又 ω>0,解得-3πω+ωk π≤x≤6πω+ωk π,k∈ Z,取 k=0,得-3πω≤x≤6πω,即函数 f(x)在-3πω,6πω上单调递增,所以有6πω≥2π4, 解得 ω≤4,所以 ω 的取值范围为(0,4],故 C 正确.
在 0,54π8上单调,则 ω 的取值集合为
( C)

三角函数中ω取值范围的求解策略(经变完美版)

三角函数中ω取值范围的求解策略(经变完美版)

三角函数中ω取值范围的求解策略三角函数的性质一直是高考的必考内容,也是高考热点内容,本期对于周期有关的ω的取值范围的问题进行梳理和总结. 一、和平移有关的题型例1:(2009全国卷)若将y =tan(ωx +π4)(ω>0)的图像向右平移π6个单位后,与函数y =tan(ωx+π6)的图像重合,求ω的最小值。

解:依题意,y =tan [ω(x -π6)+π4]的图像与y =tan(ωx +π6)的图像重合所以π4-ωπ6=π6+k π⇒ω=-6k +12(k ∈Z),当k =0时,ω取得最小值12。

例2:(2010辽宁高考)设y =sin(ωx +π3)+2(ω>0)的图像向右平移4π3个单位后与原图像重合,求ω的最小值。

解:4π3=kT =k 2πω⇒ω=3k 2(k ∈Z),所以ω的最小值为32.二、和单调性有关的题型例3:若函数y =tanωx 在(-π,π)上是增函数,求ω的取值范围。

解:ω>0且πω≥2π⇒0<ω≤12.例4:设f(x)=2sinωx ,ω>0,若y =f(x)在上单调递增,求ω范围。

解法1:令t =ωx ,则t ∈[-π4ω,2π3ω]⊆[-π2,π2],所以⎩⎨⎧-π4ω≥2π3ω≤<ω≤34。

解法2:f(x)=2sinωx 在[-π4,2π3]上单调递增,则f′(x)=2ωcosωx≥0在[-π4,2π3]恒成立,所以cosωx≥0,所以[-π4ω,2π3ω]⊆[-π2,π2]⇒0<ω≤34。

例5:(2012重庆卷)设f(x)=3sin2ωx +1(ω>0)在[-3π2,π2]单调递增,求ω范围。

解:因为y =sin x 在每个闭区间[2kπ-π2,2kπ+π2],k ∈Z 上为增函数,所以[-3π2,π2]⊆[k πω-π4ω,k πω+π4ω]对某个k ∈Z 成立,故必有k =0所以⎩⎨⎧-3π2≥π2≤<ω≤16。

例6:(2012全国卷)设f(x)=sin(ωx +π4)(ω>0)在(π2,π)上单调递减,求ω范围。

两探一检法处理三角函数中恼人的ω范围问题

两探一检法处理三角函数中恼人的ω范围问题

内有
n
个零点

n-1T 2

b
-
a
<
n+1T 2
n
>
1
f x
= Asin ωx + φ
在区间 a,b
或 a,b
内有
n
个零点

n-1T 2
<
b
-
a
<
n+1T 2
④端点卡根法 例题中再讲解
三、如何检验
①直接代入法
②导数法
③反解法 例题中再讲解
重庆邓丁瑞数学
例 1:2012 新课标全国卷,9 已知 ω > 0, 函数 f x
④ ω 的取值范围是 152 , 2109
其中所有正确结论的编号是( )
A.①④
B.②③
C.①②③
D.①③④
y
-
π 5ω
4π 5ω
O
24π 29π
5ω 5ω

x
解:答案是 D
根据图像可知函数 f x 在 0,2π 有且仅有 3 个极大值点,所以①正确
但可能会有 3 个或 2 个极小值点,所以②错误

φ = -4.5π
φ = -2.5π
φ

π 2
+ +
mπ nπ

φ
=
±
π 2
此时 f x
= ± 2cos 15x
,
由于
15
×
4π 15
=
4π,15
×
3π 10
=
4.5π
故如果取 k = -π2 , 则 f x = -2cos 15x 在 41π5 , 31π0 上单调递增,合题意。

三角函数w的取值问题

三角函数w的取值问题

三角函数w 的取值问题1.ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,那么ω的取值范围是________. 答案:⎣⎡⎦⎤12,54答案:C4.函数f 〔x 〕=sin 〔ωx +φ〕〔ω>0,0≤φ≤π〕是R 上的偶函数,其图象关于点对称,且在区间上是单调函数,那么ω的值为〔 〕 A .B .C .D .解:由f 〔x 〕是偶函数,得f 〔﹣x 〕=f 〔x 〕,即sin 〔﹣ωx +∅〕=sin 〔ωx +∅〕, 所以﹣cosφsinωx=cosφsinωx ,对任意x 都成立,且ω>0,所以得cosφ=0. 依题设0<φ<π,所以解得φ=,由f 〔x 〕的图象关于点M 对称,得f 〔﹣x 〕=﹣f〔+x 〕,取x=0,得f 〔〕=sin 〔+〕=cos ,∴f〔〕=sin 〔+〕=cos,∴cos=0,又ω>0,得=+kπ,k=1,2,3,∴ω=〔2k +1〕,k=0,1,2,当k=0时,ω=,f 〔x 〕=sin 〔x +〕在[0,]上是减函数,满足题意; 当k=1时,ω=2,f 〔x 〕=sin 〔2x +〕在[0,]上是减函数;当k=2时,ω=,f 〔x 〕=〔x +〕在[0,]上不是单调函数;所以,综合得ω=或2.应选D .5.〔2021年全国I 高考〕函数ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π()1836,单调,那么ω的最大值为 〔A 〕11 〔B 〕9 〔C 〕7 〔D 〕5 解:∵x=﹣为f 〔x 〕的零点,x=为y=f 〔x 〕图象的对称轴, ∴,即,〔n ∈N 〕即ω=2n +1,〔n ∈N 〕 即ω为正奇数,∵f 〔x 〕在〔,〕那么﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k ∈Z ,∵|φ|≤,∴φ=﹣,此时f 〔x 〕在〔,〕不单调,不满足题意;当ω=9时,﹣+φ=kπ,k ∈Z ,∵|φ|≤,∴φ=,此时f 〔x 〕在〔,〕单调,满足题意;故ω的最大值为9,应选:B6. 函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,那么ω的最小值等于________. 答案:328. 〔第十三周周考题〕函数()2sin()3f x x πω=-〔13ω>,x R ∈〕,假设()f x 的任意一个对称中心的横坐标都不属于区间(),2ππ,那么ω的取值范围是 .答案:12,33⎛⎤ ⎥⎝⎦9.〔2021年天津高考改编〕函数2())(0)4f x x πωω=->,R x ∈.假设)(x f 在区间)2,(ππ内没有零点,那么ω的取值范围是〔 〕〔A 〕]81,0( 〔B 〕)1,85[]41,0( 〔C 〕]85,0( 〔D 〕]85,41[]81,0(答案:D。

三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)

三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)

三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.83【答案】B【解析】因为y=3sinωx+cosωx=2sinωx+π6,又ω>0,由-π2+2kπ≤ωx+π6≤π2+2kπ,k∈Z,得到-2π3+2kπω≤x≤π3+2kπω,k∈Z,所以函数y=3sinωx+cosωx的单调增区间为-2π3+2kπω,π3+2kπω(k∈Z),依题有-π4,2π3⊆-2π3+2kπω,π3+2kπω(k∈Z),则2π3≤π3ω-2π3ω≤-π4,得到0<ω≤12,故选:B.2(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,83【答案】B【解析】因为0≤x≤π,所以-2π3≤ωx-2π3≤ωπ-2π3,因为函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,结合正弦函数的图象可知2π≤ωπ-2π3<3π,解得83≤ω<113,故选:B.3(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.4【答案】C【解析】①因为f7π12=-f3π4 且7π12+3π42=2π3,所以f2π3=0.①正确.②因为f5π6-x=f(x)所以f(x)的对称轴为x=5π62=5π12,2π3-5π12=π4=T4⇒T=π.②正确.③在一个周期内f x =1只有一个实数解,函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3.当T=2π3时,f x =sin3x,f x =1在区间0,2π上实数解最多为π6,5π6,3π2共3个.③正确.④函数f x 在区间2π3,13π6上恰有5个零点,2T<13π6-2π3≤5T2⇒2⋅2πω<13π6-2π3≤52⋅2πω,解得83<ω≤103;又因为函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3,即2πω≥2π3⇒ω≤3,所以ω∈83,3.④错误故选:C4(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞ B.32,73 ∪52,+∞ C.136,3 ∪196,+∞ D.12,+∞ 【答案】A【解析】令2sin ωx -π6 -1=0得sin ωx -π6 =12,因为ω>0,所以ωx -π6>-π6,令sin z =12,解得z =π6+2k π,k ∈Z 或z =5π6+2k 1π,k 1∈Z ,从小到大将sin z =12的正根写出如下:π6,5π6,13π6,17π6,25π6,29π6⋯⋯,因为x ∈π,2π ,所以ωx -π6∈ωπ-π6,2ωπ-π6,当ωπ-π6∈0,π6 ,即ω∈16,13 时,2ωπ-π6≥5π6,解得ω≥12,此时无解,当ωπ-π6∈π6,5π6 ,即ω∈13,1 时,2ωπ-π6≥13π6,解得ω≥76,此时无解,当ωπ-π6∈5π6,13π6 ,即ω∈1,73 时,2ωπ-π6≥17π6,解得ω≥32,故ω∈32,73,当ωπ-π6∈13π6,17π6 ,即ω∈73,3 时,2ωπ-π6≥25π6,解得ω≥136,故ω∈73,3,当ω≥3时,2ωπ-π6-ωπ-π6=ωπ≥3π,此时f x 在π,2π 上至少有两个不同零点,综上,ω的取值范围是32,+∞ .故选:A02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.【解析】(1)由正弦定理可得,2sin A cos 2B +2sin B cos A cos B =sin C ,所以2sin A cos 2B +2sin B cos A cos B =sin A cos B +cos A sin B ,所以sin A cos B (2cos B -1)+cos A sin B (2cos B -1)=0,即(2cos B -1)sin (A +B )=0,由0<A +B <π,可知sin (A +B )≠0,所以2cos B -1=0,即cos B =12,由0<B <π,知B =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B ,即16=a 2+c 2-ac ,所以16=a +c 2-3ac ,即ac =13a +c 2-16 ,因为S =12ac sin B =34ac ,L =a +b +c ,所以S L =3ac 4a +c +4=3a +c 2-1612a +c +4,所以S L=312a +c -4 ,又ac ≤a +c 24(当且仅当a =c 时取等号),所以16=a +c 2-3ac ≥a +c24(当且仅当a =c =4时取等号),所以a +c ≤8(当且仅当a =c =4时取等号),所以S L=312a +c -4 ≤312×8-4 =33(当且仅当a =c =4时取等号),即S L的最大值为33.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.【解析】(1)选条件①,由3AB ⋅AC =2S ,得3bc cos A =2×12bc sin A ,整理得tan A =3,而0<A <π,所以A =π3.选条件②,由a sin B =b cos A -π6 及正弦定理,得sin A sin B =sin B cos A -π6,而sin B >0,则sin A =cos A -π6 =32cos A +12sin A ,整理得tan A =3,而0<A <π,所以A =π3.(2)由(1)知A =π3,由正弦定理得b sin B =c sin C =a sin A =6sin π3=22,因此b +c =22sin B +22sin C =22sin B +sin π3+B =2232sin B +32cos B=26sin B +π6由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,解得π6<B <π2,因此π3<B +π6<2π3,则32<sin B +π6≤1,于是32<b +c ≤26,32+6<a +b +c ≤36,所以△ABC 周长的取值范围是(32+6,36].3(2024·宁夏银川·二模)已知平面四边形ABCD 中,∠A +∠C =180°,BC =3.(1)若AB =6,AD =3,CD =4,求BD ;(2)若∠ABC =120°,△ABC 的面积为932,求四边形ABCD 周长的取值范围.【解析】(1)在△ABD 中,由余弦定理得cos ∠A =32+62-BD 22×3×6,在△BCD 中,由余弦定理得cos ∠C =32+42-BD 22×3×4,因为∠A +∠C =180°,所以cos ∠A +cos ∠C =0,即32+62-BD 22×3×6+32+42-BD 22×3×4=0,解得BD =33.(2)由已知S △ABC =12×3×AB ×32=932,得AB =6,在△ABC 中,∠ABC =120°,由余弦定理得AC 2=32+62-2×3×6×cos120°=63,则AC =37,设AD=x,CD=y,(x,>0,y>0),在△ACD中,由余弦定理得372=x2+y2-2xy⋅cos60°=x+y2-3xy,则x+y2=63+3xy≤63+3×x+y22,得x+y24≤63,所以x+y≤67,当且仅当x=y=37时取等号,又x+y>AC=37,所以四边形ABCD周长的取值范围为37+9,67+9.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)因为△ABC中,sin B=23cos2A+C2,即2sinB2cos B2=23cos2π-B2=23sin2B2,而0<B<π,∴sin B2>0,故cos B2=3sin B2,故tan B2=33,又0<B<π,∴0<B2<π2,则B2=π6,∴B=π3;(2)由(1)以及题设可得S△ABC=12ac sin B=34a;由正弦定理得a=c sin Asin C=c sin2π3-Csin C=c sin2π3cos C-cos2π3sin Csin C=32cos C+12sin Csin C=32tan C+12,因为△ABC为锐角三角形,0<A<π2,0<C<π2,则0<2π3-C<π2,∴π6<C<π2,则tan C>33,∴0<1tan C<3,则12<32tan C+12<2,即12<a<2,则38<S△ABC<32,即△ABC面积的取值范围为38,32 .03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C= 3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.【解析】(1)在△ABC中,由3b-a sin C=3a cos C及正弦定理,得3sin B-sin A sin C=3sin A cos C,则3sin A cos C+sin A sin C=3sin(A+C)=3sin A cos C+3cos A sin C,即sin A sin C=3cos A sin C,而sin C>0,于是tan A=3,又0<A<π,所以A=π3.(2)由(1)知,A=π3,由正弦定理得b=c sin Bsin C=2sin2π3-Csin C=3cos C+sin Csin C=3tan C+1,由△ABC为锐角三角形,得0<C<π20<2π3-C<π2,解得π6<C<π2,则tan C>13,∴1tan C<3,则1<b<4,所以b的取值范围是1<b<4.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.【解析】(1)因为2sin B sin C+cos2C=1+cos2A-cos2B,所以2sin B sin C+1-2sin2C=1+1-2sin2A-1+2sin2B,则sin B sin C-sin2C=-sin2A+sin2B,由正弦定理可得bc-c2=-a2+b2,即bc=b2+c2-a2,所以cos A=b2+c2-a22bc=bc2bc=12,又A∈0,π2,故A=π3,由A+B+C=π,故B+C=π-A=2π3=2A;(2)由(1)得sin A=32,cos A=12,因为sin B=sin A+C=sin A cos C+cos A sin C=32cos C+12sin C,所以由正弦定理得c-ba=sin C-sin Bsin A=23sin C-32cos C-12sin C=2312sin C-32cos C=23sin C-π3,又锐角△ABC中,有0<C<π20<π-π3-B<π2,解得π6<C<π2,所以-π6<C-π3<π6,则-12<sin C-π3<12,所以-33<23sin C-π3<33,即-33<23sin C-π3<33,故c-ba的取值范围为-33,33.3(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.【解析】(1)∵a2=-233S+ab cos C,∴a2=-33ab sin C+ab cos C,即a=-33b sin C+b cos C,由正弦定理得,sin A=-33sin B sin C+sin B cos C,∴sin B+C=-33sin B sin C+sin B cos C,∴cos B sin C=-33sin B sin C,∵sin C≠0,∴tan B=-3,由0<B<π,得B=2π3.(2)由(1)知,B=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6,在△BCD中,由正弦定理得DCsin∠DBC=BDsin C,即DC=2sinπ6sin C=1sin C,在Rt△ABD中,AD=BDsin A=2sin A,∴2 AD +1CD=22sin A+11sin C=sin A+sin C,∵∠ABC=2π3,∴A+C=π3,∴2 AD +1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sin C+π3,∵0<C<π3,∴C+π3∈π3,2π3,∴sin C+π3∈32,1,所以2AD+1CD的取值范围为32,1.4(2024·陕西安康·模拟预测)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,其中a=8,ac=1+sin2A-sin2Csin2B,且a≠c.(1)求证:B=2C;(2)已知点M在线段AC上,且∠ABM=∠CBM,求BM的取值范围.【解析】(1)因为ac=1+sin2A-sin2Csin2B,即a-cc=sin2A-sin2Csin2B,由正弦定理可得a-cc=a2-c2b2=a+ca-cb2,又a≠c,即a-c≠0,所以1c=a+cb2,整理得b2=c2+ac,由余弦定理得b2=a2+c2-2ac cos B,整理得c=a-2c cos B,由正弦定理得sin C=sin A-2sin C cos B,故sin C=sin B+C-2sin C cos B,即sin C=sin B cos C+sin C cos B-2sin C cos B,整理得sin C=sin B-C,又因为△ABC为锐角三角形,则C∈0,π2,B∈0,π2,可得B-C∈-π2,π2,所以C=B-C,即B=2C.(2)因为点M在线段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又B=2C,所以∠C=∠CBM,则∠BMC=π-C-∠CBM=π-2C,在△MCB中,由正弦定理得BCsin∠BMC=BMsin C,所以BM=BC sin Csin∠BMC=8sin Csin2C=8sin C2sin C cos C=4cos C,因为△ABC为锐角三角形,且B=2C,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4.故22<cos C<32,所以833<BM<42.因此线段BM 长度的取值范围833,42.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,6【答案】C【解析】由正弦定理得a sin A =b sin B ,即b =a sin B sin A =3sin B sin60°=23sin B ,又△ABC 为锐角三角形,C =180°-A -B =120°-B ,又0°<B ,C <90°,则0°<120°-B <90°,解得30°<B <90°,而当30°<x <90°时,y =sin x 单调递增,故sin B ∈12,1,所以b =23sin B ∈3,23 .故选:C2已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163;则正确的个数为()A.0 B.1C.2D.3【答案】C【解析】对于①,因为x =π6+π32=π4时,f x 有最小值,所以sin ωπ4+π3=-1,所以ωπ4+π3=2kπ+3π2k∈Z,得到ω=8k+143k∈Z,因为f x 在区间π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k=0,得ω=143,故①错误;对于②,根据题意,有ωπ4+φ=2k1π+π2k1∈Z5ωπ3+φ=k2πk2∈ZT2=πω≥5π6-π4=7π12,得出ω=-12(2k1-k2)+617,k1,k2∈Z0<ω≤127,即ω=-12k+617,k∈Z0<ω≤127,得到ω=617或1817,故②正确;对于③,令ωx+φ=2kπ+π6k∈Z或ωx+φ=2kπ+5π6k∈Z,则x=-φ+2kπω+π6ωk∈Z或x=-φ+2kπω+5π6ωk∈Z,故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2πω≤π2,8π3ω>π2,,解得ω∈4,16 3,故③正确,故选:C.3设函数f x =sin2ωx-cos2ωx+23sinωx cosωxω>0,当x∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,13 3B.73,133C.83,143D.83,143【答案】C【解析】由已知易知f x =3sin2ωx-cos2ωx=2sin2ωx-π6,当x∈0,π2时2ωx-π6∈-π6,πω-π6,所以要满足题意有5π2≤πω-π6<9π2⇒ω∈83,143.故选:C4将函数f x =sinωx-cosωx(ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.56【答案】C【解析】由题意可得f x =222sinωx-22cosωx=2sinωx-π4,所以将f x 的图象向左平移π4个单位长度后,得到函数h x =2sin ωx +π4 -π4=2sin ωx +ωπ4-π4的图象,再把所得图象上点的横坐标缩短为原来的一半,得到函数g x =2sin 2ωx +ωπ4-π4的图象,因为点π2,0 是g x 图象的一个对称中心,所以πω+ωπ4-π4=k π,k ∈Z ,解得ω=45k +15,k ∈Z ,又ω>0,所以ω的最小值为15.故选:C5已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A6(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+3【答案】ABD【解析】对于A ,因为AB ⋅AC =23S ,所以bc cos A =23×12bc sin A ,则tan A =33,因为A ∈0,π ,所以A =π6,故A 正确;对于B ,因为b =2=a ,则B =A =π6,C =2π3,故△ABC 只有一解,故B 正确;对于C ,若△ABC 为锐角三角形,则B ∈0,π2 ,C ∈0,π2,则0<B <π20<π-π6-B <π2,则π3<B <π2,即sin B ∈32,1,由正弦定理可知:b =a sin Bsin A=4sin B ∈23,4 ,故C 错误;对于D ,若D 为BC 边上的中点,则AD =12AB +AC,所以AD 2=14AB 2+2AB ⋅AC +AC 2=14b 2+c 2+3bc由余弦定理知a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc =4,得b 2+c 2=3bc +4,又b 2+c 2=3bc +4≥2bc ,所以bc ≤42-3=43+8,当且仅当b =c =2+6时取得等号,所以AD 2=14b 2+c 2+3bc =144+23bc ≤144+23×43+8 =7+43,即AD ≤7+43=2+3,故D 正确.故选:ABD .7已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.【答案】56,43【解析】因为f x =12+3sin ωx cos ωx -cos 2ωx =32sin2ωx -12cos2ωx =sin 2ωx -π6,因为f x 的图象在0,π 上有且仅有两条对称轴,所以3π2≤2ωπ-π6<5π2,解得56≤ω<43,所以ω的取值范围是56,43 .故答案为:56,43.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.【答案】ω=32或ω≥52【解析】设θ=ωx,x∈π3,π,则θ∈π3ω,πω,所以问题转化为y=sinθ在θ∈π3ω,πω上存在最大值和最小值,由正弦函数图象可得,π3ω≤kπ+π2kπ+π2+π≤πω,解得k+32≤ω≤3k+32,所以k≥0,k∈Z,当k=0时,32≤ω≤32,∴ω=32;当k=1时,52≤k≤92,当k=2时,72≤ω≤152,当k=3时,92≤ω≤212,当k=n,n∈N*时,n+32≤ω≤3n+32,当k=n+1时,n+52≤ω≤3n+92,而n+52-3n+32=-2n+1<0,即n+52<3n+32,所以k∈N*时,所有情况的ω范围的并集为ω≥52;综上,实数ω的取值范围是ω=32或ω≥52.故答案为:ω=32或ω≥52.9已知函数f x =sinωx+φω>0满足f x ≥fπ12,且f x 在区间-π3,π3上恰有两个最值,则实数ω的取值范围为.【答案】125,4【解析】因为f x ≥fπ12,所以fπ12 =sinπ12ω+φ=-1,所以π12ω+φ=2kπ+3π2,k∈Z,即φ=2kπ-π12ω+3π2,k∈Z,所以f x =sinωx+2kπ-π12ω+3π2 =-cosωx-π12.当-π3≤x≤π3时,-5πω12≤ωx-π12≤πω4ω>0.因为f x 在区间-π3,π3上恰有两个最值,且-5πω12>πω4 ,所以ω>0-2π<-5πω12≤-π0<πω4<π,解得125≤ω<4.故答案为:125,4.10已知函数f (x )=-sin ωx -π4 (ω>0)在区间π3,π 上单调递减,则ω的取值范围是.【答案】0,34【解析】当x ∈π3,π时, ωπ3-π4<ωx -π4<ωπ-π4,又y =-sin x 的单调递减区间为2k π-π2,2k π+π2(k ∈Z ),所以ωπ3-π4≥2k π-π2ωπ-π4≤2k π+π2(k ∈Z ),解得6k -34≤ω≤2k +34(k ∈Z ),且2k +34≥6k -34(k ∈Z ),解得k ≤38,又ω>0,所以k =0,所以ω的取值范围为0,34.故答案为:0,3411若函数f x =cos ωx -π6ω>0 在区间π3,2π3内单调递减,则ω的最大值为.【答案】74【解析】由题得:12T ≥2π3-π3⇒0<ω≤3,令t =ωx -π6⇒t ∈πω3-π6,2πω3-π6,则y =cos t 在t ∈πω3-π6,2πω3-π6单调递减,故πω3-π6≥2k π2πω3-π6≤2k π+π⇒6k +12≤ω≤3k +74,由0<ω≤3,故ω∈12,74,所以ω的最大值为74,故答案为:74.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.【答案】0,2π8【解析】依题意,函数f (x )的值域为[-4,4],g (x )的值域为[b -4,b +4],由∀x 1,x 2∈R ,f (x 1)-g (x 2) ≤8,得|(b -4)-4|≤8,且|(b +4)-(-4)|≤8,解得b =0,g (x )=4cos ωx -π3 =4sin ωx +π6 ,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,得h (x )=4sin ωx -π3ω =4sin ωx -π3,在同一坐标系内作出函数y =g (x ),y =h (x )的图象,观察图象知,|AC |=2πω,取AC 中点D ,连接BD ,由对称性知|AB |=|BC |,BD ⊥AC ,由BA ⋅BC <0,得∠ABC >π2,即∠ABD >π4,|AD |>|BD |,由h (x )=g (x ),得sin ωx -π3 =sin ωx +π6 ,则ωx -π3+ωx+π6=π+2k π,k ∈Z ,解得ωx =712π+k π,k ∈Z ,于是y =4sin 712π+k π-π3=±22,则|BD |=42,因此πω>42,解得0<ω<2π8,所以ω的取值范围是0,2π8.故答案为:0,2π813在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.【答案】18【解析】如图所示,则△ABC 的面积为12ac sin 2π3=12a ⋅2sin π3+12c ⋅2sin π3,则ac =2a +2c ,所以1a +1c =12,显然a ,c >0,故a +4c =(a +4c )1a +1c ×2=2×5+4c a +a c ≥25+24c a ⋅a c=18,当且仅当4ca =a c 1a +1c =12,即a =6c =3时取等号.所以a +4c 的最小值为18.故答案为:18.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B;(2)求sin A+sin C的取值范围.【解析】(1)∵2b sin A-3a=0,∴2sin A sin B-3sin A=0,又∵A∈0,π2,∴sin A≠0,∴sin B=32,B∈0,π2,∴B=π3.(2)由(1)可知,B=π3,且△ABC为锐角三角形,所以0<A<π20<C=2π3-A<π2,∴A∈π6,π2,则sin A+sin C=sin A+sin2π3-A=32sin A+32cos A=3sin A+π6,因为π3<A+π6<2π3,∴sin A+sin C∈32,3.15在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【解析】(1)因为2b sin A-3a=0,由正弦定理边化角得:2sin B sin A-3sin A=0,所以2sin B-3sin A=0,由于在△ABC中,sin A≠0,所以2sin B-3=0,即sin B=32,又0<B<π2,所以B=π3.(2)由(1)可知B=π3,所以A+C=2π3,所以cos A+cos C=cos A+cos2π3-A=cos A+cos2π3cos A+sin2π3sin A=cos A-12cos A+32sin A=12cos A+32sin A=sin A+π6由于在锐角△ABC中,0<2π3-A<π2 0<A<π2,所以π6<A<π2,所以π3<A+π6<2π3,所以sinπ3<sin A+π6≤sinπ2,所以32<sin A+π6≤1,所以cos A+cos C的取值范围为32,1.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.【解析】(1)∵b2+c2-b cos C+c cos B2=bc,由余弦定理可得b2+c2-b⋅a2+b2-c22ab+c⋅a2+c2-b22ac2=bc,化简整理得b2+c2-a2=bc,又b2+c2-a2=2bc cos A,∴cos A=12,又0<A<π2,所以A=π3.(2)因为三角形外接圆半径为R=3,所以b=23sin B,c=23sin C,∴bc=12sin B sin C,由(1)得B+C=2π3,所以bc=12sin B sin C=12sin B sin2π3-B=12sin B32cos B+12sin B=63sin B cos B+6sin2B=33sin2B+31-cos2B=632sin2B-12cos2B+3 =6sin2B-π6+3,因为△ABC是锐角三角形,且B+C=2π3,所以π6<B<π2,∴π6<2B-π6<5π6,∴12<sin2B-π6≤1,∴6<6sin2B-π6+3≤9,即6<bc≤9.所以bc的取值范围为6,9.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.【解析】(1)由cos2B+sin2B=1cos2B-sin2B=-12,得cos2B=14,则cos B=±12,又0<B<π,所以B=π3或2π3.当B=π3时,sin B+π6=sinπ2=1;当B=2π3时,sin B+π6=sin5π6=12.(2)若△ABC为锐角三角形,则B=π3,有0<C<π20<A=2π3-C<π2,解得π6<C<π2.由正弦定理,得asin A=csin C=bsin B=332=2,则a=2sin A,c=2sin C,所以a+2c=2sin A+4sin C=2sin2π3-C+4sin C=232cos C+12sin C+4sin C=5sin C+3cos C=27sin(C+φ),其中tanφ=35,又tanφ=35<33=tanπ6,所以0<φ<π6,则π3<C+φ<2π3,故当C+φ=π2时,sin(C+φ)取到最大值1,所以a+2c的最大值为27.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【解析】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos2θ-1=2cosθ,AB=12+32 2-2×1×32⋅cosπ-2θ=134+3cos2θ=134+32cos2θ-1=6cos2θ+1 4,在△ABD中,因为θ∈0,π2,所以由正弦定理可知:ABsin∠ADB =ADsin B⇒sin∠ADBsin B=ABAD=6cos2θ+142cosθ=14×24cos2θ+1cos2θ=14×24+1cos2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B 的取值范围为54,+∞ ..19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求c b的取值范围.【解析】(1)证明:由2sin B sin C +cos2C =1+cos2A -cos2B ,得2sin B sin C +1-2sin 2C =1+1-2sin 2A -1+2sin 2B ,即sin B sin C -sin 2C =-sin 2A +sin 2B ,由正弦定理可得bc -c 2=-a 2+b 2,即a 2=b 2+c 2-bc ,由余弦定理可得a 2=b 2+c 2-2bc cos A ,故cos A =12,又A ∈0,π2 ,故A =π3,由A +B +C =π,故B +C =π-A =2π3=2A ;(2)由正弦定理可得:c b=sin C sin B =sin π-A -B sin B =sin π3+B sin B =12sin B +32cos B sin B =12+32tan B ,又锐角△ABC 中,有0<B <π2,0<π-π3-B <π2,解得π6<B <π2,即tan B ∈33,+∞,即1tan B ∈0,3 ,故c b=12+32tan B ∈12,2 .20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.【解析】(1)∵a +b +c a +b -c =3,∴3=(a +b )2-c 2=a 2+b 2-c 2+2ab 结合余弦定理得3=2ab cos C +2ab =2ab 1+cos C ,∴ab =321+cos C ,∵S △ABC =12ab sin C =334,∴sin C 1+cos C =3,即2sin C 2cos C 2cos 2C 2=tan C 2=3,又∵C 2∈0,π2 ,∴C 2=π3,故C =2π3;(2)由(1)知:C =2π3,ab =321+cos C=3,∵AD =2DB ,∴CD =13CA +23CB ,∴CD 2=13CA +23CB 2=19b 2+49a 2+49ab cos C =19b 2+49a 2-23,又19b 2+49a 2-23≥219b 2⋅49a 2-23=2×23-23=23,当且仅当b =2a =6时,CD 长取最小值,此时CD =23=63,∴CD 长的最小值为63.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.【解析】(1)f x =12-sin 2ωx +32sin2ωx =12-1-cos2ωx 2+32sin2ωx =32sin2ωx +12cos2ωx =sin 2ωx +π6.因为T =2π2ω=4π,所以ω=14,故f x =sin 12x +π6.由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z ,解得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,当k =0时,-4π3≤x ≤2π3,又x ∈0,π ,所以f x 在0,π 上的单调递增区间为0,2π3.(2)由2a -c cos B =b ⋅cos C ,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C =sin B +C =sin A .因为sin A ≠0,所以cos B =12,又B ∈0,π ,所以B =π3,又三角形为锐角三角形,则0<A <π20<2π3-A <π2,则π6<A <π2,所以π4<A 2+π6<5π12,又f A =sin A 2+π6,sin 5π12=sin π4+π6 =sin π4cos π6+cos π4sin π6=2+64,则22<sin A 2+π6 <2+64,所以f A 的取值范围为22,2+64.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.【解析】(1)因为1-cos A 2-sin A =0,所以sin 2A 2=sin A , 因为0<A 2<π2,sin A 2>0,则sin A 2=2sin A 2cos A 2,故cos A 2=12, 所以A 2=π3,A =2π3,(2)因为BD =2DC ,则BD =2DC ,所以AD -AB =2AC -AD ,故AD =13AB +23AC , 因为△ABC 的面积为3,所以12bc sin A =3,所以bc =4|AD |2=13AB +23AC 2=19c 2+49b 2+49AB ⋅AC =19c 2+49b 2-29bc ≥49bc -29bc =89上式当且仅当c =2b ,即c =22,b =2时取得“=”号,所以AD 的最小值是223.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.【解析】(1)由题意得2sin B cos A -sin C cos A =sin A cos C ,即2sin B cos A =sin A cos C +sin C cos A =sin B ,∵sin B ≠0,∴2cos A =1,∴cos A =12,又0<A <π,∴A =π3;(2)解法一:令DC =t ,则BD =3t ,∵cos ∠ADC =-cos ∠ADB ,∴AD 2+DC 2-AC 22AD ⋅DC =-AD 2+BD 2-AB 22AD ⋅BD ,即9+t 2-b 26t =-9+9t 2-c 218t ,∴12t 2=-36+3b 2+c 2①,又∵cos ∠BAC =12=b 2+c 2-16t 22bc ,∴16t 2=b 2+c 2-bc ②,∵联立①②,得144-3bc =9b 2+c 2≥6bc (当且仅当c =3b 时取等号),即bc ≤16,∴S △ABC =12bc sin ∠BAC =34bc ≤43,∴△ABC 面积的最大值为43.解法二:依题意AD =14AB+34AC,∴AD 2=14AB+34AC 2=116AB 2+9AC 2+6AB ⋅AC,即9=116AB 2+9AC 2+6AB AC cos π3=116AB 2+9AC 2+3AB AC,∵AB 2+9AC 2≥6AB AC (当且仅当AB =3AC 时取等号),∴AB AC ≤16,∴S △ABC =12AB ACsin ∠BAC ≤34×16=43,∴△ABC 面积的最大值为43.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c 2的最小值.【解析】(1)因为m ⎳n ,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b2a2+c2=a2+c2-aca2+c2=1-aca2+c2,1-aca2+c2≥1-ac2ac=1-12=12,当且仅当a=c时等号成立,故b2a2+c2的最小值为12.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.【解析】(1)因为sin2C=sin2B+sinπ3+Bcosπ6+B=sin2B+12sinπ2+2B+sinπ6=sin2B+12cos2B+12=sin2B+121-2sin2B+14=34,因为sin C>0,所以sin C=3 2,由△ABC为钝角三角形且a<c,b<c知,C为钝角,所以cos C=-12,即tan C=-3,所以tan(A+B)=tanπ-C=-tan C=3.(2)因为S△ABC=12ab sin C=34ab=123,所以ab=48,由余弦定理,c2=a2+b2-2ab cos C=a2+b2+ab≥3ab=144,当且仅当a=b=43时,等号成立,此时c2的最小值为144,所以c的最小值为12.。

微重点03三角函数中ω,φ的范围问题((习题版))

微重点03三角函数中ω,φ的范围问题((习题版))

微重点03三角函数中ω,φ的范围问题三角函数中ω,φ的范围问题,是高考的重点和热点,主要考查由三角函数的最值(值域)、单调性、零点等求ω,φ的取值范围,难度中等偏上.知识导图考点分类讲解考点一:三角函数的最值(值域)与ω,φ的取值范围规律方法求三角函数的最值(值域)问题,主要是整体代换ωx ±φ,利用正、余弦函数的图象求解,要注意自变量的范围.【例1】(2024·安徽安庆·二模)已知函数2()2cos sin 21(0)f x x x ωωω=+->的图象关于点π,04⎛⎫⎪⎝⎭对称,且()f x 在π0,3⎛⎫⎪⎝⎭上没有最小值,则ω的值为()A.12B.32C.52D.72【变式1】(2024·河南郑州·一模)已知函数π()2sin (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在π0,2⎡⎤⎢⎥⎣⎦上的值域为[]1,2-,则ω的取值范围为()A.4,23⎡⎤⎢⎥⎣⎦B.48,33⎡⎤⎢⎥⎣⎦C.24,33⎡⎤⎢⎥⎣⎦D.28,33⎡⎤⎢⎥⎣⎦【变式2】(2024·河南·模拟预测)若存在π0,2x ⎛⎫∈ ⎪⎝⎭,使π2cos 13x ω⎛⎫+> ⎪⎝⎭,则正数ω的取值范围是()A.2,43⎛⎫ ⎪⎝⎭B.2,3⎛⎫+∞ ⎪⎝⎭C.8,43⎛⎤⎥⎝⎦D.8,3⎛⎫+∞ ⎪⎝⎭【变式3】(2023·株洲模拟)已知函数f (x )=2sin(ωx +φ>0,|φy =3相邻两个交点的距离为π,若f(x)>2对∀xφ的取值范围是()B.π6,π3D.π12,π6【变式4】(2023·贵阳模拟)将函数f(xω>0)的图象向右平移14个周期后所得的图象在5个极值点,则ω的取值范围是________________.考点二:单调性与ω,φ的取值范围规律方法若三角函数在区间[a,b]上单调递增,则区间[a,b]是该函数单调递增区间的子集,利用集合的包含关系即可求解.【例2】(2024高三·全国·专题练习)已知函数π()2sin(0)6f x xωω⎛⎫=->⎪⎝⎭在π0,3⎛⎫⎪⎝⎭上存在最值,且在2π,π3⎛⎫⎪⎝⎭上单调,则ω的取值范围是()A.20,3⎛⎫⎪⎝⎭B.1117,43⎡⎤⎢⎥⎣⎦C.51,3⎡⎤⎢⎥⎣⎦D.58,23⎡⎤⎢⎥⎣⎦【变式1】已知f(x)=sin(2x-φφ在0,π3上单调递增,且f(xφ的取值范围是()A.π6,B.π6,C.π3,D.π4,【变式2】(2022·湖南长沙·模拟预测)已知函数π()tan()(0)3f x A xωω=+>,若f x()在区间ππ2⎛⎫⎪⎝⎭,内单调递减,则ω的取值范围是()A.16⎛⎫⎪⎝⎭,B.17(,)36C.117(0,][,]636D.117(0,)(,)636【变式3】.(2023·晋中模拟)已知函数f(x)=sin2x+3cos2x的图象向左平移φ(φ>0)个单位长度后得到函数g(x),若g(x)在-π4,π6上单调,则φ的最小值为________.考点三:零点与ω,φ的取值范围规律方法已知函数的零点、极值点求ω,φ的取值范围问题,一是利用三角函数的图象求解;二是利用解析式,直接求函数的零点、极值点即可,注意函数的极值点即为三角函数的最大值、最小值点.【例3】已知函数[]2cos ,π,πy a x x ω=+∈-(其中,a ω为常数,且0ω>)有且仅有五个零点,则ω的取值范围是()A.[)2,4B.[)3,5C.[)4,6D.[)5,7【变式1】已知函数()()cos f x x ωϕ=+π0,2ωϕ⎛⎫>< ⎪⎝⎭的部分图象如图所示,1x ,2x 是()f x 的两个零点,若214x x =,则下列不为定值的量是()A.ϕB.ωC.1x ωD.1x ωϕ【变式2】已知函数π()2cos 2(0)3f x x ωω⎛⎫=+> ⎪⎝⎭在[0,π]上有且仅有2个零点,则ω的取值范围为.强化训练一、单选题1.(2024·贵州贵阳·一模)将函数()sin f x x =的图像先向右平移π3个单位长度,再把所得函数图像上的每个点的纵坐标不变,横坐标都变为原来的1(0)ωω>倍,得到函数()g x 的图像.若函数()g x 在π,02⎛⎫- ⎪⎝⎭上单调递增,则ω的取值范围是()A.10,6⎛⎤⎥⎝⎦B.10,3⎛⎤ ⎥⎝⎦C.10,2⎛⎤ ⎥⎝⎦D.(]0,12.(2024·广东湛江·一模)已知函数()()2πsin 03f x x ωω⎛⎫=+> ⎪⎝⎭在区间ππ,126⎛⎫ ⎪⎝⎭上单调递增,则ω的取值范围是()A.[]2,5B.[]1,14C.[]9,10D.[]10,113.(2023·江西上饶·模拟预测)若函数πcos (0)3y x ωω⎛⎫=+> ⎪⎝⎭在区间π,02⎛⎫- ⎪⎝⎭上恰有唯一极值点,则ω的取值范围为()A.28,33⎡⎤⎢⎣⎦B.28,33⎛⎤ ⎥⎝⎦C.28,36⎛⎤ ⎥⎝⎦D.17,33⎛⎫ ⎪⎝⎭4.(2023·吉林长春·一模)将函数2π()cos 3f x x ⎛⎫=+ ⎪⎝⎭图象上所有点的横坐标变为原来的1(0)ωω>,纵坐标不变,所得图象在区间2π0,3⎡⎤⎢⎥⎣⎦上恰有两个零点,且在ππ,1212⎡⎤-⎢⎥⎣⎦上单调递减,则ω的取值范围为()A.9,34⎡⎤⎢⎥⎣⎦B.9,44⎡⎫⎪⎢⎣⎭C.11,44⎡⎤⎢⎥⎣⎦D.11,64⎛⎤ ⎥⎝⎦5.(2024·全国·模拟预测)若函数()()π3cos 03f x x ωω⎛⎫=+> ⎪⎝⎭恒有()()2πf x f ≤,且()f x 在ππ,63⎡⎤-⎢⎥⎣⎦上单调递减,则ω的值为()A.16-B.56C.116D.56或1166.(2024·全国·模拟预测)已知函数()()πsin 0,2f x A x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,且π2π1632f f A ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则当ω取最小值时,ϕ的值为()A.π12B.π18C.π18-D.π12-7.(2024·四川巴中·一模)已知函数()()sin f x x ωϕ=+π02,ωϕ⎛⎫>< ⎪⎝⎭,若()π6f x f ⎛⎫≤ ⎪⎝⎭,()4π3f x f x ⎛⎫-=-⎪⎝⎭,且()f x 在π5π,312⎛⎫⎪⎝⎭上单调,则ω的取值可以是()A.3B.5C.7D.98.(2023·四川绵阳·模拟预测)已知函数()()4cos (0),12f x x f x πωω⎛⎫=-> ⎪⎝⎭在区间0,3π⎡⎤⎢⎣⎦上的最小值恰为ω-,则所有满足条件的ω的积属于区间()A.(]1,4B.[]4,7C.()7,13D.[)13,+∞二、多选题1.(2024·辽宁葫芦岛·一模)已知()()sin cos 0f x x x ωωω=>在区间ππ,64⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值可能在()A.20,3⎛⎤ ⎥⎝⎦B.2,73⎛⎫ ⎪⎝⎭C.267,3⎡⎤⎢⎥⎣⎦D.50,193⎡⎤⎢⎥⎣⎦2.(2024·辽宁·一模)已知函数()π2cos 2(0)6f x x ωω⎛⎫=++> ⎪⎝⎭在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递减,且在区间[]0,π上有且仅有一个零点,则ω的值可以为()A.23B.56C.1112D.13123.(2023·全国·模拟预测)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象上相邻最低点和最高点的距离为()f x 在(0,)ϕ上有最大值,则()A.2ω=B.ϕ的取值范围为ππ,π22⎛⎫⎪+⎝⎭C.()f x 在区间0,2ϕ⎛⎫⎪⎝⎭上无零点D.()f x 在区间,2ϕϕ⎛⎫⎪⎝⎭上单调递减三、填空题1.(2024·安徽芜湖·二模)已知偶函数()()()sin 0f x x ωϕω=+>的图像关于点π,03⎛⎫⎪⎝⎭中心对称,且在区间π0,4⎡⎤⎢⎥⎣⎦上单调,则ω=.2.(2024·湖北·二模)已知函数()πsin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭满足()2π3f x f ⎛⎫≤ ⎪⎝⎭恒成立,且在区间π,π3⎛⎫⎪⎝⎭上无最小值,则ω=.3.(2024·广东·一模)已知函数()sin()(0)f x x ωϕω=+>在区间π7π(,)612上单调,且满足π()16f =-,3π()04f =,则ω=.四、解答题1.(23-24高三上·重庆·阶段练习)已知函数()()()2sin 0,0πf x x ωϕωϕ=+><<,π6x =-为()f x 的零点,π3x =是()y f x =图象的对称轴.(1)求ω;(2)若()f x 在ππ,612⎛⎫- ⎪⎝⎭上单调,求ϕ.2.(2023·河北承德·模拟预测)已知1ω>,函数π()cos 3f x x ω⎛⎫=- ⎪⎝⎭.(1)当2ω=时,求()f x 的单调递增区间;(2)若()f x 在区间ππ,63⎡⎤⎢⎥⎣⎦上单调,求ω的取值范围.3.(2024·北京平谷·模拟预测)已知函数()sin 2cos cos 2sin f x x x ϕϕ=-,其中π2ϕ<,再从条件①、条件②、条件③这三个条件中选择一个作为已知条件,使()f x 存在,并完成下列两个问题.(1)求ϕ的值;(2)若0m >,函数()f x 在区间[]0,m 上最小值为12-,求实数m 的取值范围.条件①:对任意的x ∈R ,都有()π3f x f ⎛⎫≤ ⎪⎝⎭成立;条件②:π142f ⎛⎫=- ⎪⎝⎭;条件③:ππ236f f ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭.4.(2024·全国·模拟预测)已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>≤ ⎪⎝⎭.(1)若()f x 的图象经过点3π,04A ⎛⎫⎪⎝⎭,π,24B ⎛⎫ ⎪⎝⎭,且点B 恰好是()f x 的图象中距离点A 最近的最高点,试求()f x 的解析式;(2)若()01f =-,且()f x 在5π,π9⎛⎫⎪⎝⎭上单调,在3π0,4⎛⎫ ⎪⎝⎭上恰有两个零点,求ω的取值范围.5.(2024·广东佛山·一模)记T 为函数()()sin f x x ωϕ=+的最小正周期,其中0,0πωϕ><<,且()0f =,直线112x T =为曲线()y f x =的对称轴.(1)求ϕ;(2)若()f x 在区间[]π,2π上的值域为2⎡-⎢⎣⎦,求()f x 的解析式.。

三角函数中ω的取值范围研究

三角函数中w 的求值及范围研究——从一道高考题引起的思考在三角函数图象中, w 对整个图象的性质影响巨大,因此,对 w 的取值范围的考察就是高考的热门考点之一,这部分考题呈现出综合性较强,对学生的逻辑推理,直观想象素养要求较高,比如2022全国甲卷理11,2021全国甲卷理16,2020年新高考10题,2020年全国Ⅰ卷理7,2019 年一卷 11 题、三卷 12 题,2018全国新课标Ⅱ理10等等,所以,对 w 的取值范围的系统研究,找到解题的通性通法对提高学生的整体数学素养有巨大的帮助.例(2020年新高考10)(多选)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)=( )A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -变式1:(2020年全国Ⅰ卷理7)设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6 C .4π3 D .3π2变式2:已知函数()sin()(0)4f x x πωω=+>的图象向右平移23π个单位长度后,所得图象与原函数图象重合,则ω的最小值为__________:已知函数()sin()(0)4f x x πωω=+>的图象向右平移3π个单位长度后,与函数sin()6y x πω=+的图象重合,则ω的最小值为__________变式2.2:已知函数()sin()(0)4f x x πωω=+>的图象向右平移6π个单位长度后,与函数cos()4y x πω=+ 的图象重合,则ω的最小值为__________变式3:若函数)0(1sin 2)(>+=ωωx x f 在区间]32,2[ππ-上是增函数,求ω的取值范围。

变式3.1:已知函数)0(cos sin 3)(>+=ωωωx x x f 在)4,0(π上不单调,在)32,3(ππ上单调,则实数ω的取值范围为( )A.]2,1(B.]2,53( C.]2,1[ D.]2,34(变式4:(多选)函数)0(sin 2)(>=ωωx x f 在]4,3[ππ-∈x 上的最小值为2-,则实数ω的值可以取( )A.32 B.23C.2D.3 变式4.1:函数x x f ωsin 2)(=在]4,3[ππ-∈x 上的最小值为2-,则实数ω的取值范围为( )A.]23,(--∞B.),23[+∞C.),23[]2,(+∞⋃--∞D.),2[]23,(+∞⋃-∞变式4.2:若函数)0(sin 2)(>=ωωx x f 在]2,3[ππ-∈x 内有且仅有一个最大值2,则实数ω的取值范围为( )A.)5,43[ B.)5,1[ C.)291[, D.]43,0(:为了使函数)0(sin 2)(>=ωωx x f 在区间[0,1]上至少出现50次最大值,则ω的最小值为( )A .98πB .1972πC .1992π D .100π变式5:若函数*sin()()6y x N πωω=+∈图像的一条对称轴是直线6x π=,则ω的最小值是______变式5.1:若函数())(0)3f x x πωω=+>相邻两对称轴之间的距离为2,则ω=_____变式5.2:已知函数sin()(0)6y x πωω=+>的图象在 (0,π )上有且仅有两条对称轴,求w 的取值范围.变式 5.3:已知函数()f x cos x ω=(其中x R ∈,0ω>)的图象在[0]2π,上恰有四个对称中心点,求ω的取值范围。

三角函数中ω的求解问题

三角函数中ω的求解问题
在三角函数中,ω代表角频率,是描述周期性变化的频率。

求解ω的问题是求
解给定函数的周期。

下面将介绍一些方法来解决三角函数中ω的求解问题。

1. 查找周期性变化特征:首先,我们需要观察函数的图像并分析其周期性变化
特征。

对于正弦函数和余弦函数,它们的周期是2π。

而其他三角函数,如正切函数、余切函数、正割函数和余割函数,它们的周期等于π。

2. 借助公式计算:另一种方法是利用特定的公式来计算ω。

对于正弦函数和余
弦函数,可以使用下面的公式来求解ω:
- 正弦函数:f(x) = A*sin(ωx + φ)的周期为T = 2π/|ω|
- 余弦函数:f(x) = A*cos(ωx + φ)的周期为T = 2π/|ω|
其中,A是振幅,φ是相位。

3. 观察函数周期数:观察函数在一个周期内的变化次数,即函数的周期数。


于正弦函数和余弦函数,一个完整的周期内变化了一次,因此其周期数为1。

而其
他三角函数的周期数有所不同。

4. 利用数学工具求解:对于更复杂的三角函数,可以利用数学工具如计算机软
件或计算器来求解ω。

这些工具可以绘制函数图像并提供周期信息。

总结起来,求解三角函数中ω的问题,可以通过观察函数图像、计算周期公式、观察函数周期数以及利用数学工具来得到准确的结果。

这些方法可以帮助我们理解函数的周期性变化以及解决相关的问题。

微专题有关求函数y=asin(ωx φ)参数ω的范围或最值的问题


π 2
,
π 2
ù
ú
û

增,而
由区

éêë
π 2
,
π 2
ù
ú
û
变为
éêë
π 4
,
π 4
ù
ú
û

要将
y=sinx
的图象纵坐标不
变,横坐标缩为原
来一半,此时 ω=2,又因为随着 ω 的变化,ω 越小函数 y=sinωx
的 图 象 将 伸 的 越 长 ,所 以 当 ω ≤2 时 函 数 y=sinωx 一 定 会 在
+
ϕ
=

+
π 2
,
n

Z②,

-


,π 2
ω
=(n
-
m)π
+
π 2
=

+
π2 , k

Z,即
ω
=
2k + 1,∴ω 为奇数。

f(x)在


é
ê
ë
π 18
,
5π 36
ù
ú
û



,∴
π 18
ω
+
ϕ

2kπ
-
π 2
,
k

Z③,53π6
ω
+
ϕ

2kπ
+
π2 , k

Z④
③×(-1)+④得
3 36
ωπ
考点聚焦
128
微专题有关求函数 y=Asin(ωx+φ)参数 ω 的范围或最值的问题

三角函数难题之参数ω的取值范围问题(含详细答案)精选全文

精选全文完整版(可编辑修改)三角函数难题之参数ω的取值范围问题整理1.(2019江苏高一月考)已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π4(ω>0)的图象在区间[-1,1]上有3个最低点,则ω的取值范围是( )A .⎣⎡⎭⎫21π4,29π4B .⎣⎡⎭⎫9π2,13π2C .⎣⎡⎭⎫11π4,13π4 D .[4π,6π)解:2.(2019·四川高三月考(理))已知函数f (x )=cos ⎝⎛⎭⎫ωx -2π3(ω>0),x 1,x 2,x 3∈[0,π],且∀x ∈[0,π] 都有f (x 1)≤f (x )≤f (x 2),满足f (x 3)=0的实数x 3有且只有3个,给出下述四个结论:①满足题目条件的实数x 1有且只有1个;②满足题目条件的实数x 2有且只有1个;③f (x )在⎝⎛⎭⎫0,π10上单调递增;④ω的取值范围是⎣⎡⎭⎫136,196.其中所有正确结论的编号是( )A .①④B .②③C .①②③D .①③④解:3.(2019年江西高三月考(文))已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6+a cos ωx (a >0,ω>0)对任意x 1,x 2∈R 都有f (x 1)+f (x 2)≤43,若f (x )在[0,π]上的值域为[3,23],则实数ω的取值范围为( )A .⎣⎡⎦⎤16,13B .⎣⎡⎦⎤13,23C .⎣⎡⎭⎫16,+∞D .⎣⎡⎦⎤12,1解:π2≤ωx +π3≤2π3,16≤ω≤13.选A .4.(2019年广东高三开学考试(理))将函数y =sin2x 的图象向右平移φ()0<φ<π2个单位长度得到f (x )的图象,若函数f (x )在区间[]0,π3上单调递增,且f (x )的最大负零点在区间()-5π12,-π6上,则φ的取值范围是( ) A .(]π6,π4 B .(]π12,π4 C .()π6,π2 D .()π12,π2解:5.(2019年湖南高一期末)函数f (x )=A sin(ωx +φ) ,(A >0,ω>0),若f (x )在区间[]0,π2上是单调函数,f (-π)=f (0)=-f ()π2,则ω的值为( )A .12B .2C .12或23D .23或2解:6.(2019年内蒙古高一期末(理))函数f (x )=2sin ⎝⎛⎭⎫ωx +π4(ω>0),当x ∈[0,1]上恰好取得5个最大值,则实数ω的取值范围为( )A .⎣⎡⎭⎫9π4,25π4B .⎣⎡⎭⎫19π2,27π2C .⎣⎡⎭⎫33π4,41π4D .⎣⎡⎭⎫41π4,50π4解:7.(2019年河南高考模拟(文))已知函数f (x )=sin(ωx +φ)(ω>0)在区间⎝⎛⎭⎫7π12,2π3上单调,且f ⎝⎛⎭⎫π4=1,f ⎝⎛⎭⎫3π4=0,则ω的最大值为( )A .7B .9C .11D .138.(2019年陕西高一期中)若函数f (x )=cos(2x +φ)(其中φ>0)的图象关于点()2π3,0成中心对称,则φ的最小值为( ) A .π6 B .π4 C .π3 D .π2解:9.(2019年山西高考模拟(理))已知函数f (x )=sin(ωx +φ)(ω>0,0<φ<π)的图象过两点A ⎝⎛⎭⎫0,22,B ⎝⎛⎭⎫π4,0,f (x )在⎝⎛⎭⎫0,π4内有且只有两个极值点,且极大值点小于极小值点,则f ′(x )=( )A .f (x )=sin ⎝⎛⎭⎫3x +π4B .f (x )=sin ⎝⎛⎭⎫5x +3π4C .f (x )=sin ⎝⎛⎭⎫7x +π4D .f (x )=sin ⎝⎛⎭⎫9x +3π4解:10.(2019年云南省云天化中学高一期中)已知函数f (x )=2sin(ωx +φ)(0<ω<6,|φ|<π2)的图象经过点⎝⎛⎭⎫π6,2和⎝⎛⎭⎫2π3,-2.若函数g (x )=f (x )-m 在区间⎣⎡⎦⎤-π2,0上有唯一零点,则实数m 的取值范围是( ) A .(-1,1]∪⎣⎡⎦⎤-12,12 B .{-1}∪⎣⎡⎦⎤-12,12 C .⎝⎛⎦⎤-12,1 D .{-2}∪(-1,1]解:11.(2019年安徽高考模拟(理))已知函数f (x )=sin(ωx +φ),其中ω>0,|φ|≤π2,-π4为f (x )的零点,且f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π4恒成立,f (x )在区间⎝⎛⎭⎫-π12,π24上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .17 解:12.(2019年湖南高考模拟(理)) 已知函数f (x )=sin(ωx +φ)(ω>0,φ∈⎣⎡⎦⎤π2,π)的部分图象如图所示,且f (x )在(0,2π)上恰有一个最大值和一个最小值,则ω的取值范围是( )A .⎣⎡⎭⎫712,1312B .⎣⎡⎦⎤1112,1712C .⎝⎛⎦⎤712,1312D .⎝⎛⎦⎤1112,1712解:13.(2019年吉林高考模拟)定义在[0,π]上的函数y =sin ⎝⎛⎭⎫ωx -π6(ω>0)有零点,且值域M ⊆⎣⎡⎭⎫-12,+∞,则ω的取值范围是( )A .⎣⎢⎡⎦⎥⎤12,43B .⎣⎢⎡⎦⎥⎤43,2 C .⎣⎢⎡⎦⎥⎤16,43 D .⎣⎢⎡⎦⎥⎤16,2 解:14.(2019年辽宁鞍山一中高考模拟 (理) )函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的图象在⎣⎡⎦⎤0,π4内有且只有一条对称轴,则实数ω的取值范围是( )A .(1,5)B .(1,+∞)C .[1,5)D .[1,+∞)解:15.(2019年湖北荆州中学高三期末(理))已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π2,π3上是增函数,且在区间[0,π]上存在唯一的x 0使得f (x 0)=2,则ω的取值不可能为( )A .13B .23C .45 D .1解:16.(2018年河北高一期末)已知函数f (x )=A sin(ωx +φ) ⎝⎛⎭⎫A >0,ω>0,|φ|<π2,x =-π4是函数的一个零点,且x =π4是其图象的一条对称轴.若⎝⎛⎭⎫π9,π6是f (x )的一个单调区间,则ω的最大值为( ) A .18 B .17 C .15 D .13 解:17.(2018天津耀华中学高考模拟(理))已知函数f (x )=sin ωx +3cos ωx (ω>0),若在区间(0,π)上有三个不同的x 使得f (x )=1,则ω的取值范围是( )A .⎝⎛⎦⎤52,236B .⎝⎛⎭⎫52,236C .⎝⎛⎭⎫32,169D .⎝⎛⎦⎤32,169解:解析:化简()2sin()3f x x πω=+,抓中心角()333x πππωωπ+∈+,=2,36x k ππωπ++或526k ππ+. k =0时,,6π56π,k =1时,13,6π176π,k =2时,25,6π要使f (x )=1有三个解,56π,13,6π176π,175632ππωπω<+>,则,2523636ππωπω≥+≤,则 思维路线:化简、解三角方程(集合)、估算k 、找边界点、解含ω的不等式、验证区间开闭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数()f x ωϕ+中ω、ϕ的取值范围问题
利用对称中心与对称轴间距离
例1:已知0ω>,函数()cos()3f x x πω=+的一条对称轴为直线3x π=,一个对称中心为点(,0)12π
,则ω有( )B
A . 最大值2
B .最小值2
C .最小值1
D .最大值1
例2:设函数()sin()f x x ωϕ=+(,,A ωϕ是常数,0A >,0ω>)
.若()f x 在区间[,]62ππ上具有单调性,且2()()()236
f f f π
ππ==-,则()f x 的最小正周期为______.(π) 利用特殊点的坐标
例3:已知函数()sin()f x A x ωϕ=+(0ω>,0ϕπ≤≤)是R 上的偶函数,其图象关于点3(,0)4M π对称,且在区间[0,]2
π上是单调函数,则ω和ϕ的值分别为( )C A .2,34π B .2,3π C .2,2
π D .10,32π 例4:如果函数3cos(2)y x ϕ=+的图象关于点4(
,0)3π中心对称,那么ϕ的最小值为( )A
A .6π
B .4π
C .3π
D .2
π 例5:若将函数()sin 2cos 2f x x x =+图象向右平移ϕ(0ϕ>)个单位,所得图象关于y 轴对称,则ϕ的最小值是( )C
A .8π
B .4
π C .38π D .34π 例6:若将函数tan()4y x π
ω=+(0ω>)的图象向右平移6
π个单位长度后,与函数tan()6
y x πω=+的图象重合,则ω的最小值为( )D A .
16 B .14 C .13 D .12 利用题设区间长度与周期的关系建立不等式
例7:已知函数()cos()4f x A x πωω=+
(0A >)在(0,)8
π内是减函数,则ω的最大值是______.( 8 ) 例8:已知()sin()3f x x πω=+(0ω>),()()63f f ππ=,且()f x 在区间(,)63ππ内有最小值,无最大值,则ω=______.(143
) 利用“函数单调区间I ”与该函数“在区间D 上单调”的包含关系建立不等式
例9:函数()2sin f x x ω=(0ω>)在[0,
]4π上单调递增,3,那么ω=______.(43
) 例10:已知函数()2sin f x x ω=,其中常数0ω>.
(1) 若()y f x =在2[,]43ππ
-上单调递增,求ω的取值范围;(304
ω<≤) (2) 令2ω=,将函数()y f x =的图象向左平移6
π个单位,再向上平移1个单位,得到()y g x =的图象,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少。

相关文档
最新文档