三角函数w的取值问题

合集下载

重难点专题18 三角函数中w取值范围问题八大题型汇总(原卷版) 备战2024年高考数学重难点突破

重难点专题18 三角函数中w取值范围问题八大题型汇总(原卷版) 备战2024年高考数学重难点突破

题型8新定义 (9)已知函数y =Asin(ωx +φ)(A >0,ω>0),在[x 1,x 2]上单调递增(或递减),求ω的取值范围第一步:根据题意可知区间[x 1,x 2]的长度不大于该函数最小正周期的一半,即x 2-x 1≤12T =πω,求得0<ω≤πx 2-x 1.第二步:以单调递增为例,利用[ωx 1+φ,ωx 2+φ]⊆[―π2+2kπ,π2+2kπ],解得ω的范围;第三步:结合第一步求出的ω的范围对k 进行赋值,从而求出ω(不含参数)的取值范围.结合图象平移求ω的取值范围1、平移后与原图象重合思路1:平移长度即为原函数周期的整倍数;思路2:平移前的函数=平移后的函数.2、平移后与新图象重合:平移后的函数=新的函数.3、平移后的函数与原图象关于轴对称:平移后的函数为偶函数;4、平移后的函数与原函数关于轴对称:平移前的函数=平移后的函数-;5、平移后过定点:将定点坐标代入平移后的函数中。

()f x ()g x ()f x ()g x y x ()f x ()g x三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”为T,相邻的对称轴和对2,也就是说,我们可以根据三角函数的对称性来研究其周期称中心之间的“水平间隔”为T4性,进而可以研究ω的取值。

三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.已知三角函数的零点个数问题求ω的取值范围对于区间长度为定值的动区间,若区间上至少含有k个零点,需要确定含有k个零点的区间长度,一般和周期相关,若在在区间至多含有k个零点,需要确定包含k+1个零点的区间长度的最小值.三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.ππ。

三角函数w范围

三角函数w范围

三角函数w范围三角函数在数学中是非常重要的一个概念,它对于解决各种问题和计算具有广泛的应用。

在我们学习三角函数的时候,常常会涉及到三角函数的定义域和值域,也就是三角函数的范围。

下面我将详细介绍三角函数的范围,并且从不同的角度进行讨论。

首先我们来看正弦函数sin(x)。

正弦函数的定义域是整个实数集R,也就是对于任意实数x都可以求得sin(x)的值。

那么,对于sin(x)的值域是多少呢?我们知道sin(x)的值介于-1和1之间,可以表示为-1≤sin(x)≤1。

也就是说,对于任意实数x,sin(x)的值都在-1和1之间。

接下来让我们来看余弦函数cos(x)。

余弦函数的定义域也是整个实数集R,对于任意实数x都可以求得cos(x)的值。

那么,对于cos(x)的值域是多少呢?我们知道cos(x)的值介于-1和1之间,可以表示为-1≤cos(x)≤1。

也就是说,对于任意实数x,cos(x)的值都在-1和1之间。

再来看正切函数tan(x)。

正切函数的定义域是x∈(2n-1)π/2≤x≤nπ/2 (n∈Z),这是因为对于tan(x)来说,分母是cos(x),当cos(x)等于0的时候,tan(x)是无穷大。

所以我们需要剔除这些点。

另外,tan(x)也是一个周期性函数,它的周期是π。

那么,对于tan(x)的值域是多少呢?我们知道tan(x)可以取到任何实数的值,也就是说,tan(x)的值域是整个实数集R。

接下来让我们来看余切函数cot(x)。

余切函数的定义域是x∈nπ<x<(n+1)π (n∈Z),与tan(x)类似,我们也需要除去分母为0的点。

另外,cot(x)的周期也是π,这是因为cot(x)等于tan(x)的倒数。

那么,对于cot(x)的值域是多少呢?我们知道cot(x)可以取到任何实数的值,也就是说,cot(x)的值域是整个实数集R。

最后我们来看正割函数sec(x)和余割函数csc(x)。

正割函数的定义域是x∈2nπ<x<(2n+1)π (n∈Z),与cos(x)=0时对应的点。

专题二 三角函数中一类求w的范围问题

专题二 三角函数中一类求w的范围问题

专题二 三角函数中一类求w 的最值问题三角函数的性质是高考必考内容,也是高考中的热点内容。

本文筛选了一部分高考题和模考题,就三角函数中一类求w 的取值范围问题做了整理,希望对大家有所帮助。

类型一 已知周期求w 的范围【例1】(2010.辽宁)设>0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是(A ) (B) (C) (D)3 【答案】C 【解析】将2)3sin(++=πωx y 的图像向右平移个单位后为 , 所以有=2k ,即, 又因为,所以k ≥1,故≥,所以选C 【题后反思】该题的突破点在于平移后与原图像重合,因此和函数的周期性有关。

借助平移和诱导公式的相关知识点可以解决问题。

类型二 已知值域求w 的范围【例2】已知函数],0[),0)(6sin()(πωπω∈>-=x x x f ,)(x f 的值域为]1,21[-,则ω的最小值为( )A. 32B.43C.34D.23 【答案】A【解析】由于],0[π∈x ,所以666πωππωπ-≤-≤-xωω3π34πω23433234π4sin[()]233y x ππω=-++4sin()233x πωπω=+-+43ωππ32k ω=0ω>32k ω=32又因为)(x f 的值域为]1,21[-,且21)6sin(-=-π,2167sin -=π 结合图象可得6762ππωππ≤-≤,解之得3432≤≤ω,故选A 【题后反思】该题在处理时运用整体的思想,将值域问题转化在基本函数y=sinx 上结合图象处理更为简单明了。

类型三 已知零点情况求w 的范围【例3】(2016.天津)已知函数R x x x x f ∈>-+=),0(21sin 212sin )(2ωωω,若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是A. ]81,0(B.)1,85[]41,0(⋃C.]85,0(D.)85,41[]81,0(⋃ 【答案】D 【解析】化简得)0)(4sin(22)(>-=ωπωx x f ,由于0),2,(>∈ωππx , 所以4244πωππωπωπ-<-<-x ,)(x f 在区间)2,(ππ内没有零点包含以 下情况: ①ππωπk 24≥-且πππωπ+≤-k 242,其中Z k ∈ 解得Z k k k ∈++∈]85,412[ω,取0=k ,则]85,41[∈ω ②πππωπ+≥-k 24且πππωπ2242+≤-k ,其中Z k ∈ 解得Z k k k ∈++∈]89,452[ω,取1-=k ,则]81,43[-∈ω 综上,结合0>ω得]85,41[]81,0(⋃∈ω,故选D 【相关例题1】已知函数]3,4[),0)(sin()(ππϕωϕω∈>+=x x f ,已知)(x f 在]2,0[π上有且仅有4个零点,则下列ω的值中满足条件的是( )A. 613=ωB.611=ωC.47=ωD.43=ω 【答案】A【相关例题2】已知函数),0)(6sin(cos )(>++=ωπωωx x x f 在],0[π上恰有一个最大值和两个零点,则ω的取值范围是________.【答案】)613,35[ 【题后反思】几个题目类型相同,处理时同样体现整体换元的思想,结合基本函数y=sinx 的图象,更易求解。

三角函数w的取值问题

三角函数w的取值问题

三角函数w 的取值问题1.ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,那么ω的取值范围是________. 答案:⎣⎡⎦⎤12,54答案:C4.函数f 〔x 〕=sin 〔ωx +φ〕〔ω>0,0≤φ≤π〕是R 上的偶函数,其图象关于点对称,且在区间上是单调函数,那么ω的值为〔 〕 A .B .C .D .解:由f 〔x 〕是偶函数,得f 〔﹣x 〕=f 〔x 〕,即sin 〔﹣ωx +∅〕=sin 〔ωx +∅〕, 所以﹣cosφsinωx=cosφsinωx ,对任意x 都成立,且ω>0,所以得cosφ=0. 依题设0<φ<π,所以解得φ=,由f 〔x 〕的图象关于点M 对称,得f 〔﹣x 〕=﹣f〔+x 〕,取x=0,得f 〔〕=sin 〔+〕=cos ,∴f〔〕=sin 〔+〕=cos,∴cos=0,又ω>0,得=+kπ,k=1,2,3,∴ω=〔2k +1〕,k=0,1,2,当k=0时,ω=,f 〔x 〕=sin 〔x +〕在[0,]上是减函数,满足题意; 当k=1时,ω=2,f 〔x 〕=sin 〔2x +〕在[0,]上是减函数;当k=2时,ω=,f 〔x 〕=〔x +〕在[0,]上不是单调函数;所以,综合得ω=或2.应选D .5.〔2021年全国I 高考〕函数ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π()1836,单调,那么ω的最大值为 〔A 〕11 〔B 〕9 〔C 〕7 〔D 〕5 解:∵x=﹣为f 〔x 〕的零点,x=为y=f 〔x 〕图象的对称轴, ∴,即,〔n ∈N 〕即ω=2n +1,〔n ∈N 〕 即ω为正奇数,∵f 〔x 〕在〔,〕那么﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k ∈Z ,∵|φ|≤,∴φ=﹣,此时f 〔x 〕在〔,〕不单调,不满足题意;当ω=9时,﹣+φ=kπ,k ∈Z ,∵|φ|≤,∴φ=,此时f 〔x 〕在〔,〕单调,满足题意;故ω的最大值为9,应选:B6. 函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,那么ω的最小值等于________. 答案:328. 〔第十三周周考题〕函数()2sin()3f x x πω=-〔13ω>,x R ∈〕,假设()f x 的任意一个对称中心的横坐标都不属于区间(),2ππ,那么ω的取值范围是 .答案:12,33⎛⎤ ⎥⎝⎦9.〔2021年天津高考改编〕函数2())(0)4f x x πωω=->,R x ∈.假设)(x f 在区间)2,(ππ内没有零点,那么ω的取值范围是〔 〕〔A 〕]81,0( 〔B 〕)1,85[]41,0( 〔C 〕]85,0( 〔D 〕]85,41[]81,0(答案:D。

三角函数中的参数w的范围问题

三角函数中的参数w的范围问题

三角函数中的参数问题三角函数中的参数范围问题是三角函数中中等偏难的问题,很多同学由于思维方式不对,导致问题难解。

此类问题主要分为四类,它们共同的方法是将相位看成整体,结合正弦函数或余弦函数的图像与性质进行求解。

【题型示例】1.已知,0ω函数在上单调递减,则ω的取值范围是()A. B. C. D.2.已知函数在上有且只有两个零点,则实数ω的取值范围为()A. B. C. D.3.已知函数,若的图象的任意一条对称轴与x轴的交点的横坐标都不属于区间,则ω的取值范围是()A、 B. C. D.4.已知函数,其中,,若且恒成立在区间上有最小值无最大值,则ω的最大值是()A.11B.13C. 15D.17【专题练习】1.已知函数在上单调递减,则ω的取值范围是()A. B. C. D.2.已知函数,若方程在上有且只有四个实根数,则实数ω的取值范围为()A. B. C. D.3.将函数的图像向右平移个单位后,所得图像关于y轴对称,则ω的最小值为()A.2B. 1C.D.4.已知函数的图象过点,若对恒成立,则ω的最小值为()A. 2B.10C.4D.165.已知函数,若对满足的,有,若对任意恒成立,则φ的取值范围是()A. B. C. D.6.将函数的图象向右平移个单位,得取函数的图象,若在上为减函数,则ω的最大值为()A.2B. 3C.4D.57.函数在内的值域为,则ω的取值范围为()A. B. C. D.8.已知函数,若且在区间上有最小值,无最大值,则ω的值为()A. B. C. D.。

三角函数w的取值问题[共3页]

三角函数w的取值问题[共3页]

三角函数w 的取值问题[共3页]1.已知a>0. 函数 f (x )=sin (ωx +π4),f (π2,x)上单调递减,则ω的取值范围是 .答案:112.设ω>0,函数 y =sin (ax +π3)+2的图象向右平移 4π3个单位后与原图象重合,则ω的最小值是 ( )A.23B.43C.32D.3 答案:C3.若 f (x )=sin (ωx +π3)(ω⟩0),f (π6)=f (π3)在 (π6,π3)上有最小值无最大值,则=“ .4. M (3π4)0)对称,且在区间 [0,π2]上是单调函数,则w 的值为( ) A.13或2 B.13 32c 25a 22 D.23或2x =π6+π32=π4 解析 依题意,如图 4-19所示,在处: f(x)取得最小值,因此 T 2>π4−π6=π12, 所以 T ≥π4, 2ππ>π6,0<ω≤12,且当 x =π4时,f(a) 取得最小值,故nπ4+π3=2kπ+3π2,uczug ω=2k +143, 因此 0<Bk +143<12,k ∈Z,令人一口,此时 u =143.依题设0<φ<π. 所以解得 :φ1 π2.由f(x) 的图象关于点M 对称,得 f (3π4x)=f( 3π4+x),取消。

否 f (3π4)=sin (3ωπ4+π2)ron 3aπ4,∴t (3π4)sin (3ωπ4+π2)=cos 3ωπ4,∴cos 3ωπ4=0,又w>0,得 3ωπ4=π2kn,kn1,2,3,∴tan 23(2k +1),k =0,1,2, 当k=0时. tan 23,f (x )=sin (x +π2)在 [0,π2]上是减函数,满足题意: 当k=1时, tanα=2,tan (2x +π2)在 [0,π2]上是减函数: (A)11 (B)9 (C)? (D)5解: ∵x =π4为(x) 的零点。

三角函数中w取值范围研究

三角函数中w取值范围研究在三角函数中,我们常用的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)。

在研究三角函数中w的取值范围时,我们可以从两个方面进行讨论,即角度角和弧度角两个方面。

首先,我们来讨论角度角的情况。

在角度角中,一个完整的圆周角为360°。

因此,我们可以将w看作一个角度值,而角度值的取值范围是从0°到360°之间。

即0°≤w≤360°。

在这个取值范围内,我们可以观察到一些特殊的取值点。

比如当w等于0°时,sin(w)和tan(w)都为0,而cos(w)为1、当w等于90°时,sin(w)和cos(w)都为1,而tan(w)不存在。

当w等于180°时,sin(w)为0,而cos(w)为-1,tan(w)不存在。

当w等于270°时,sin(w)和cos(w)都为-1,而tan(w)不存在。

最后,当w等于360°时,sin(w)和tan(w)都为0,而cos(w)为1、可以看出,在这些特殊的取值点上,三角函数会有一些特殊的性质。

接下来,我们来讨论弧度角的情况。

在弧度角中,一个完整的圆周角为2π(π≈3.14)。

因此,我们可以将w看作一个弧度值,而弧度值的取值范围是从0到2π之间。

即0≤w≤2π。

同样地,在这个取值范围内,我们可以观察到一些特殊的取值点。

比如当w等于0时,sin(w)和tan(w)都为0,而cos(w)为1、当w等于π/2时,sin(w)和cos(w)都为1,而tan(w)不存在。

当w等于π时,sin(w)为0,而cos(w)为-1,tan(w)不存在。

当w等于3π/2时,sin(w)和cos(w)都为-1,而tan(w)不存在。

最后,当w等于2π时,sin(w)和tan(w)都为0,而cos(w)为1总结起来,三角函数中w的取值范围在角度角中是0°≤w≤360°,在弧度角中是0≤w≤2π。

三角函数之w的取值范围解析

三角函数之w 的取值范围解析一、单选题1.(2023·湖北·二模)已知0w >,函数()π3sin 24f x wx ⎛⎫=+- ⎪⎝⎭在区间π,π2⎡⎤⎢⎥⎣⎦上单调递减,则w 的取值范围是()A .10,2⎛⎤B .(]0,2C.13,24⎡⎤⎢⎥D .15,24⎡⎤⎢⎥2.(2017·山西太原·三模)已知函数()(0)f x sinwx w =->在()0,π上有且只有两个零点,则实数w 的取值范围为A .40,3⎛⎤ B .47,33⎛⎤ ⎥C .710,33⎛⎤ ⎥D .1013,33⎛⎤ ⎥3.(2019·安徽·三模)已知奇函数()sin())f x x x ωϕωϕ=+-+,(其中0ω>,ϕ∈R )在[1,1]x ∈-有7个零点,则实数w 的取值范围是A .(3,4]B .(3,4]ππC .[3,4)D .[3,4)ππ4.(19-20高三下·湖南·阶段练习)已知函数()()222sin cos sin 024f x x x ωωω⎛⎫=⋅-> ⎪⎝⎭在区间2π5π,36⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[]0,π上恰好取得一次最大值1,则w 的取值范围是A .30,5⎛⎤ ⎥B .13,25⎡⎤⎢⎥C .13,24⎡⎤⎢⎥D .15,22⎡⎫⎪⎢5.(17-18高三·河南南阳·阶段练习)已知函数()21cos sin (0,)222wx f x wx w x R =+->∈,若()f x 在区间(,2)ππ内没有零点,则w 的取值范围是A .5(0,)12πB .5(0,]12πC .5(0,6D .5511(0,[,]126126.(2018·安徽合肥·一模)已知0w >,函数()cos()3f x wx π=+在(,)32ππ上单调递增,则w 的取值范围是()A .210(,33B .210[,]33C .10[2,]3D .5[2,3二、多选题7.(2024·贵州黔西·一模)已知()cos (0)f x wx wx w =+>,则下列说法正确的是()A .若()f x 的最小正周期为π,则()f x 的对称中心为ππ,0,62k k ⎛⎫-+∈ ⎪⎝⎭ZB .若()f x 在区间π0,4⎡⎤⎢⎥⎣⎦上单调递增,则w 的取值范围为40,3⎤⎛ ⎥⎝⎦C .若()01f x =,则02π1cos 32wx ⎛⎫+=⎝⎭D .若()f x 在区间[]0,π上恰好有三个极值点,则w 的取值范围为710,33⎡⎫⎪⎢三、填空题8.(21-22高一下·安徽池州·阶段练习)已知函数()2sin f x wx =在区间ππ,43⎡⎤-⎢⎥⎣⎦上的最小值为2-,则w 的取值范围是.9.(18-19高三上·天津武清·期中)已知函数()()sin (0,02f x wx w πϕϕ=+><<,若()f x 的图象的一条对称轴是3x π=,且在区间,64ππ⎛⎫- ⎪上单调递增,则w 的取值范围是10.(20-21高三上·江西抚州·期末)若函数()cos()(0)4f x wx w π=+>在[]0,π的值域为1⎡-⎢⎣⎦,则w 的取值范围是。

三角函数求w的取值范围题型

三角函数求w的取值范围题型一、问题描述在三角函数求解题中,常常需要求出某个三角函数的取值范围。

本文将介绍如何求解一个典型的三角函数题目:求出$w$的取值范围,其中$w=\sin x+\cos x$。

二、基础知识在开始解答问题之前,我们需要掌握一些基础知识。

1. 三角函数三角函数是数学中的一类特殊函数,它们描述了正弦曲线和余弦曲线等周期性现象。

常见的三角函数有正弦函数、余弦函数、正切函数等。

2. 弧度制与角度制在计算三角函数时,我们通常使用弧度制或角度制。

弧度制是以圆的半径为单位来测量角度的方法,而角度制则是以圆周上的度数为单位来测量角度的方法。

两种方法可以相互转换。

3. 周期性正弦曲线和余弦曲线都具有周期性。

正弦曲线的周期为$2\pi$,余弦曲线也是如此。

这意味着,在一个周期内,正弦曲线和余弦曲线都会重复自己。

4. 取值范围不同的三角函数具有不同的取值范围。

例如,正弦函数的取值范围为$[-1,1]$,余弦函数的取值范围也是如此。

三、解题步骤在掌握了基础知识之后,我们可以开始解答问题了。

下面是求解$w$的取值范围的具体步骤。

1. 画出函数图像首先,我们需要画出函数$w=\sin x+\cos x$的图像。

这可以帮助我们更好地理解函数的性质。

2. 求导数接下来,我们需要求出函数的导数。

对于$w=\sin x+\cos x$,它的导数为:$$w'=\cos x-\sin x$$3. 确定极值点接下来,我们需要确定函数的极值点。

对于这个问题,我们只需要找到导数等于0的点即可:$$\cos x-\sin x=0$$将上式移项得:$$\cos x=\sin x$$两边同时除以$\cos x$得:$$\tan x=1$$因此,$$x=k\pi+\frac{\pi}{4}$$其中$k$为整数。

4. 确定区间和符号接下来,我们需要确定$x$在哪些区间内满足条件。

根据三角函数的周期性和周期性质可得,在$x\in[0,2\pi]$内,当$x\in[0,\frac{\pi}{4})\cup[\frac{5\pi}{4},2\pi]$时,$\cos x>0$,$\sin x<0$,因此$w<0$。

三角函数中“ω”的取值范围(解析版)

专题2 三角函数中“ω”的取值范围2022·全国甲卷(理)T11【分析】由x 的取值范围得到3x πω+的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ +∈+, 要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ∈的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω∈.2023·新高考Ⅰ卷T152.已知函数()cos 1(0)f x x ωω=−>在区间[]0,2π有且仅有3个零点,则ω的取值范围是 . 【答案】[2,3)【分析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解. 【详解】因为02x π≤≤,所以02x πωω≤≤, 令()cos 10f x x ω=−=,则cos 1x ω=有3个根, 令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,2023·新高考Ⅱ卷T16【分析】设1211,,,22A x B x,依题可得,21π6x x −=,结合1sin 2x =的解可得,()212π3x x ω−=,从而得到ω的值,再根据2π03f = 以及()00f <,即可得2()sin 4π3f x x =− ,进而求得()πf . 【详解】设1211,,,22A x B x,由π6AB =可得21π6x x −=,由1sin 2x =可知,π2π6xk =+或5π2π6x k =+,Z k ∈,由图可知, ()215π2ππ663x x ωϕωϕ+−+=−=,即()212π3x x ω−=,4ω∴=. 因为28ππsin 033f ϕ =+=,所以8ππ3k ϕ+=,即8ππ3k ϕ=−+,Z k ∈. 所以82()sin 4ππsin 4ππ33f x x k x k=−+=−+, 所以()2sin 4π3f x x =−或()2sin 4π3f x x=−− ,又因为()00f <,所以2()sin 4π3f x x =− ,()2πsin 4ππ3f ∴=− 2022·全国乙卷数学(理)T15【分析】首先表示出T ,根据()f T=求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解: 因为()()cos f x x ωϕ=+,(0ω>,0πϕ<<) 所以最小正周期2πT ω=,因为()()2πcos cos 2πcos f T ωϕϕϕω=⋅+=+==, 又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω=+, 又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈, 因为0ω>,所以当0k =时min 3ω=;1.已知函数()cos (0)6f x x πωω=−>在区间7,26ππω上有且只有3个零点,则ω的取值范围是____________.【答案】117,63解:7,2,2666x x πππωπωωπ∈⇒−∈π−由于()cos (0)6f x x πωω=−>在区间7,26ππω上有且只有3个零点,则有 226263πωω7ππ9π117≤−<⇒≤<,所以,w 的取值范围是117,63重点题型·归类精讲2023·湖南郴州·统考三模【分析】根据图象平移得π()sin()5f x x ω=+,结合零点个数及正弦型函数的性质可得1229510ω≤<,进而判断极值点个数判断B 、D ;代入法判断A ,整体法判断C. 【详解】由题设ππ()()sin()55f x g x x ωω=+=+,在[]0,2π上,若πππ[,2π]555t x ωω+∈+, 所以sin y t =在ππ[,2π]55ω+上有5个零点,则π5π2π6π5ω≤+<,解得1229510ω≤<,D 正确; 在()0,2π上ππ(,2π)55t ω∈+,由上分析知:极值点个数可能为5或6个,B 错误;πππ()sin()225f ω=+且ππ33π)2520ω+∈,故π()2f 不为0,A 错误; 在π0,10上πππ(,)5105t ω∈+,则ππ11π49π[,)10525100ω+∈,故sin y t =递增,即()f x 在π0,10上递增,C 正确. 故选:CD2024届·江苏省南京市六校联合调研(10月)3.(多选)已知函数()sin (0)f x x x ωωω=>,下列说法正确的是( )【答案】ACD【分析】化简()f x 的解析式,根据三角函数的值域、最值、周期、单调性、极值点等知识对选项进行分析,从而确定正确答案.【详解】已知函数()π2sin 3f x x ω=+,可知其值域为[]22−,,故选项A 正确; 若存在12,x x ∈R ,使得对x ∀∈R 都有()()()12f x f x f x ≤≤, 所以12x x −的最小值为π2T ω=,故选项B 错误; 函数()f x 的单调递增区间为πππ2π2π232k x k ω−≤+≤+,()5ππ2π2π66,Z k k x k ωω−+ ∈∈, 所以5π2ππ66π2ππ63k k ωω− ≤− + ≥ ,令0k =,则10,2ωω<≤∴的取值范围为10,2 ,故选项C 正确;若函数()f x 在区间()0,π上恰有3个极值点和2个零点,πππ,π333x ωω+∈+, 由如图可得:5ππ138π3π2363ωω<+≤⇒<≤,ω∴的取值范围为138,63,故选项D 正确 2024届·广东省六校第二次联考【分析】先将()f x 的函数式化简成形如sin()y A x k ωθ++的形式,根据()f x 在π5π,66−上为增函数,列出关于ω的不等式组求解即可.【详解】π1()4cos sin cos(π2)4sin sin cos 262f x x x x x x x x ωωωωωωω=++−=−−222sin 2sin cos sin 21x x x x x x ωωωωωω=−−+=−,当π5π,66x∈−时,π5π2,33x ωωω ∈−, 若函数()f x 在π5π,66 − 上为增函数,则ππ325ππ32ωω −≥− ≤ ,由0ω>,解得3010ω<≤, 则ω的最大值为310.2024届长郡中学月考(二) 5.已知函数211()sin sin (0)222xf x x ωωω=+−>,x R ∈.若()f x 在区间(,2)ππ内没有零点,则ω的取值范围是A .10,8B .150,,148 ∪C .50,8D .1150,,848 ∪【答案】D【分析】先把()f x化成()4f x x πω=−,求出()f x 的零点的一般形式为+4,k x k Z ππω∈,根据()f x 在区间(,2)ππ内没有零点可得关于k 的不等式组,结合k 为整数可得其相应的取值,从而得到所求的取值范围.【详解】由题设有1cos 11()sin 2224f x x x x πωωω−=+−=−, 令()0f x =,则有,4x k k Z πωπ−=∈即+4,k x k Z ππω∈.因为()f x 在区间(,2)ππ内没有零点, 故存在整数k ,使得5++442k k ππππππωω≤<<,即14528k k ωω ≥+ ≤+,因为0ω>,所以1k ≥−且15428k k +≤+,故1k =−或0k =,所以108ω<≤或1548ω≤≤,2024届浙江省名校协作体高三上学期适应性考T7【分析】令ππππ(,π)3333t x ωωω+∈++,将问题转化为sin y t =,πππ(,π)333t ωω∈++只有1个零点,则πππππ33πππππ3k k k k ωω−≤+<<+≤+(Z k ∈),从而讨论可求出结果. 【详解】令ππππ(,π)3333t x ωωω+∈++,因为函数π()sin()(0)3f x x ωω+>在π(π)3,上恰有1个零点,即转化为sin y t =,πππ(,π)333t ωω∈++只有1个零点,故可得πππππ33πππππ3k k k k ωω −≤+< <+≤+(Z k ∈),即34311233k k k k ωω−≤<− −<≤+ (Z k ∈), 又0ω>,要使上述方程组有解,则需13132343203310k k k k k k −<−−≤++> −> (Z k ∈),所以1733k <≤(Z k ∈),故1,2k =,当1k =时,2533ω<≤,当2k =时,283ω≤≤【分析】根据正弦型函数的最小值的性质,结合题意进行求解即可.【详解】因为函数()()πsin 04f x x ωω +> 在π7π,44内恰有两个最小值点,0ω>,所以最小正周期满足1711713πππππ=π,3442442T −=≤<− 所以42π7154,ππ+ππ312444Tωω<≤<≤,所以有:4413337π7ππ11π72442ωωω <≤ ⇒<≤<+≤8.已知函数π()cos sin (0)6f x x x ωωω =−+>,若()f x 在[0,π]上的值域为11,2 −,则ω的取值范围为( ) A. 2,13B. 24,33C. 74,63D. 27,36【答案】B 【解析】【分析】化简函数解析式可得π()cos 3f x x ω =+,求出π3x ω+的范围,再由函数的值域可得π5πππ33ω≤+≤,解不等式即可求解. 【详解】函数π()cos sin 6f x x x ωω=−+可化为ππ1π()cos sin coscos sin cos cos 6623f x x x x x x x ωωωωω=−−==+, 所以π()cos 3f x x ω=+, 因为0πx ≤≤,所以ππππ+333x ωω≤+≤, 因为()f x 在[0,π]上的值域为11,2−,所以π5πππ33ω≤+≤, 所以2433ω≤≤,所以ω的取值范围为24,33. 2024届山东联考9.若函数()()cos 05πf x x ωω =+>在区间π3π,22上恰有两个零点,则ω的取值范围是( )A .2311,155B .2311,155C .23111343,,155515D .23111343,,155515【答案】C【分析】利用整体思想,结合余弦函数得图象与性质列出不等式组,解之即可. 【详解】由题可知3ππ32222T T <−≤,解得13ω<≤,πππ3ππ25525x ωωω+<+<+. 因为函数()πcos 5f x x ω =+ 在区间π3π,22上恰有两个零点, 所以πππ3π,22525π3ππ7π,2252ωω ≤+< <+≤ 或3πππ5π,22527π3ππ9π,2252ωω ≤+<<+≤解得2311155ω<≤或1343515ω≤≤,即23111343,,155515ω ∈.2024届·长沙一中月考(二)10.函数()2sin()f x x ωϕ=+(0ω>,ππ2ϕ<<)的部分图象如图所示,若()()1gx f x =+在[]6,ππ上有且仅有3个零点,则ω的最小值为( )A .52B .3C .196D .92【答案】A【分析】先求得ϕ,然后根据()()1g x f x =+在[]6,ππ上有且仅有3个零点列不等式,从而求得ω的取值范围,进而求得正确答案.【详解】由图可知()0=2sin f ϕϕ 由于ππ2ϕ<<,所以2π=3φ,2π()2sin()3f x x ω=+ 令()2π=2sin 1=03g x x ω++,得2π1sin =32x ω+− ,由ππ6≤≤x 得π2π2π2ππ6333x ωωω+≤+≤+,依题意,()()1gx f x =+在[]6,ππ上有且仅有3个零点,故当ω取值最小时,有2ππ2π7π3636π2ππ3ππ4π636ωω <+≤ +≤+<−,解得532ω≤≤,所以ω的最小值为52.2024届·合肥一中高三上学期第一次检测(10月)11.已知函数()()2sin f x x ωϕ=+,其中0ω>,0πϕ<<,且()π3f x f ≤恒成立,若()f x 在区间π0,2上恰有3个零点,则ω的取值范围是( )【分析】分析可得π23f=,可得出()ππ2π23k k ωϕ=+−∈Z ,再结合题意可得出关于ω的不等式,结合k 的取值可求得ω的取值范围.【详解】因为()π3f x f≤恒成立,则ππ2sin 233f ωϕ=+=,所以,()ππ2π32k k ωϕ+=+∈Z ,则()ππ2π23k k ωϕ=+−∈Z , 当π02x <<时,π2x ωϕωϕϕ<+<+, 因为0πϕ<<,则()0sin 0f ϕ=>,因为()f x 在区间π0,2上恰有3个零点,则0ππ3π4π2ϕωϕ<< <+≤, 即ππ02ππ23π3π4π2k ωωϕ<+−< <+≤,k ∈Z ,解得33662215122112k k k k ωω −<<+ −<≤− ,k ∈Z ,假设ω不存在,则3621122k k −≥−或3615122k k +≤−,解得34k ≤或54k ≥,因为ω存在,则3544k <<,因为k ∈Z ,则1k =.所以,9152239ωω <<<≤ ,可得91522ω<< 2024届·广州市越秀区高三上学期月考(十月)12.函数()()sin 0f x x ωω=>,将()f x 的图象上所有的点纵坐标保持不变横坐标变为原来的ω倍,然后将()0,2π内恰有4个零点,则ω的取值范围是 .【答案】 cos x 3π5π,22【分析】根据三角函数图象平移可得()cos g x x =,再代入()()10f g x −=,数形结合求解即可 【详解】由题意()πsin cos 2g x x x=+=,又()()()1h x f g x =−在()0,2π内恰有4个零点, 故()cos 10f x −=,即()sin cos 1x ω=在()0,2π内恰有4个零点, 则()πcos 2π,Z 2x k k ω=+∈在()0,2π内恰有4个零点, 数形结合可得,当0k =时πcos 2x ω=有两根,当1k =−时3πcos 2x ω=−也有两根,故3π25π2ωω−<− ≤,即3π5π22ω<≤,故ω的取值范围是3π5π,22 .题型二 在某区间上单调2023武汉市华中师大附一中高三上期中【答案】16【分析】由π,π2x∈得到πππ2π,2π666x ωωω +∈++ ,结合正弦函数图象得到不等式组,求出21236k k ω−+≤≤+,Zk ∈,利用21236106k k k −+<+ +> ,求出0k =,从而得到106ω<≤,得到答案.【详解】π,π2x∈ ,则πππ2π,2π666x ωωω +∈++ ,因为0ω>,所以要想()f x 在π,π2上单调递增,需要满足πππ2π26k ω+≥−+且ππ2π2π62k ω+≤+,Z k ∈,解得:21236k k ω−+≤≤+,Z k ∈,所以21236106k k k −+<+ +> ,解得:1566k −<<,因为Z k ∈,所以0k =, 因为0ω>,所以106ω<≤, ω的最大值是16.【分析】由三角函数的图象与性质可得πππ33ω+>及2π3ππ242T ω=≥− ,继而可得3πππ2233ππ5π432ωω ≤+ +≤ ,计算可得结果.【详解】化简π()sin 2sin()3f x x x x ωωω==+, 在π0,3x∈ 时,ππππ,3333x ωω +∈+ ,该区间上有零点,故πππ233ωω+>⇒>,又π3π,24x ∈ 时()f x 单调,则2π3ππ2442T ωω≥−⇒≤ ,即(]2,4ω∈, 故4πππ7π3πππ7263233223,11π3ππ10π3ππ5π396433432ωωωωω <+≤≤+ ⇒⇒∈<+≤+≤ 总结:有难度,先通过无零点区间和周期求出ω大致范围,进一步确定单调区间的增减性,最终得出ω范围2023届杭州市二模T8【分析】通过对称轴与对称点得出ω的式子,再通过单调得出ω的范围,即可得出答案.【详解】()sin()f x x ωφ=+(0)>ω满足()14f π=,503f π=, 53442T nT ππ∴−=+,即()1736Tn n π=∈+N , ()61217nn ω+∴=∈N , ()f x 在5,46ππ上单调, 572641222T ππππω∴−≤,即127ω≤,∴当1n =时ω最大,最大值为1817, 故选:B.2024届·重庆市高三上学期入学调研【分析】三角函数在区间上单调,可知在区间内不含对称轴,构建不等式即可求得ω的取值范围.【详解】因为()πsin 2(0)3g x x ωω=+> ,令ππ22π,32x k ω+=+()k ∈Z ,可得对称轴方程1ππ26x k ω+()k ∈Z , 函数()πsin 2(0)3g x x ωω =+> 在区间π,π2上是单调的,∴1π22T ≥,且1πππ,π262x k ω=+∉ ,()k ∈Z ,∴12ππ222ω⋅≥即01ω<≤, 函数()πsin 2(0)3g x x ωω =+>在区间π,π2 上是单调的,所以()1πππ2621π1ππ26k k ωω +≤++≥ ,即6167612k k ω++≤≤()k ∈Z , 又01ω<≤, 可得1012ω<≤或17612ω≤≤2023·杭州二模T8(改)最大值为 . 【答案】3013【分析】由函数在区间π2π,43上单调,求出ω的取值范围,再由π14f = ,4π03f = 得到*2113π,N 412k T k −=∈,即可求出的取值集合,从而求出ω的最大值; 【详解】因为()f x 在区间π2π,43上单调,所以2ππ5π23412T ≥−=,5π6T ∴≥,2π5π60ωω ≥ ∴ >,解得1205ω<≤; 因为π14f=,4π()03f =,所以*214ππ13π,N 43412k T k −=−=∈,所以13π3(21)T k =−,所以2π13π3(21)k ω=−,所以*6(21),N 13k k ω−=∈; 当6(21)12135k ω−=≤,解得3110k ≤,所以max6(231)301313ω×−==.是 .【答案】1117,46【分析】利用辅助角公式化简函数()f x 的解析式,利用函数()f x 在区间π0,3上存在最值,以及函数()f x 在2π,π3上单调分别求出ω的取值范围,取交集可得ω的取值范围. 【详解】因为()sin π2sin 3s x x f x x ωωω−= ,当π03x <<时,因为0ω>,则ππππ3333x ωω−<−<−, 因为函数()f x 在π0,3上存在最值,则πππ332ω−>,解得52ω>,当2ππ3x <<时,2πππππ3333x ωωω−<−<−, 因为函数()f x 在2π,π3上单调,则()2πππππ,ππ,π33322k k k ωω −−⊆−+∈Z , 所以,2ππππ332ππππ32k k ωω −≥−−≤+,其中k ∈Z ,解得()315246k k k ω−≤≤+∈Z , 所以,315246k k −≤+,解得136k ≤,又因为0ω>,则{}0,1,2k ∈.当0k =时,506ω<≤;当1k =时,51146ω≤≤;当2k =时,111746ω≤≤.又因为52ω>,因此,实数ω的取值范围是1117,46题型三 涉及多个函数性质2024届深圳宝安区10月调研【答案】11,44【分析】先根据题目的要求平移伸缩对称变换得到()g x 的解析式,然后结合函数在2π0,3上恰有两个零点以及在ππ,1212−上单调递增,列出不等式组,即可求得本题答案.【详解】函数()f x 的图象向左平移2π3个单位长度,得到2πcos 3y x+的图象,再将图象上所有点的横坐标变为原来的1ω,纵坐标不变,得到2πcos 3yx ω+的图象,因为函数()g x 的图象与2πcos 3yx ω+的图象关于x 轴对称,所以2π()cos 3g x x ω=−+ 2ππsin 32x ω+−= πsin 6x ω +, 因为20π3x ≤≤,所以ππ2ππ6636x ωω≤+≤+, 又因为π()sin 6g x x ω =+ 在2π0,3 恰有2个零点,且()sin π0k =,Z k ∈, 所以2π2ππ3π36ω≤+<,解得1117<44ω≤, 令22πππ2π2π262k x k ω−+≤+≤+,2k ∈Z ,得222π2π2ππ33k k x ωωωω−+≤≤+,2k ∈Z ,令20k =,得()g x 在2ππ,33ωω − 上单调递增,所以ππ,1212 − 2ππ,33ωω⊆− , 所以2ππ312ππ312ωω −≤−≥ ,又0ω>,解得04ω<≤. 综上所述,1144ω≤≤,故ω的取值范围是11,4420.记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T,若()f T =9x π=为()f x 的零点,则ω的最小值为 . 【答案】3【分析】首先表示出T ,根据()f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解: 因为()()cos f x x ωϕ=+,(0ω>,0πϕ<<) 所以最小正周期2πT ω=,因为()()2πcos cos 2πcos f T ωϕϕϕω=⋅+=+==, 又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω=+, 又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈, 因为0ω>,所以当0k =时min 3ω=;故答案为:3湖北省黄冈市2023-2024学年高三上学期9月调研【分析】利用正弦型函数的对称性、奇偶性、单调性进行求解即可.【详解】因为函数()f x 在3π7π,88内单调递减,3π8x =是函数()f x 的一条对称轴, 所以有7π3π17π3π12π2882882T ωω−≤⇒−≤⋅⇒≤, 所以()()3ππ2πZ 182k k ωϕ⋅+=+∈, 因为ππsin 88y f x x ωωϕ=+=++是奇函数, 所以()()ππZ 28m m ωϕ+=∈,由()()12−可得:()422k m ω=−+,而2ω≤,所以2ω=±, 当2ω=时,()()2ππZ πZ 84m m m m πϕϕ+=∈⇒=−∈, 因为ππ22ϕ−<<,所以π4ϕ=−,即π()sin(2)4f x x =−, 当3π7π,88x∈ 时,ππ3π2,422x −∈ ,显然此时函数单调递减,符合题意,所以7π7πππ()sin(2)sin 242443f =×−==; 当2ω=−时,(()2πππZ πZ 84m m m m ϕϕ−+=∈⇒=+∈, 因为ππ22ϕ−<<,所以π4ϕ=,即π()sin(2)4f x x =+, 当3π7π,88x∈时,()π2π,2π4x +∈,显然此时函数不是单调递减函数,不符合题意2023·山东淄博·统考三模【答案】5π12【分析】先化简函数,利用零点求出ω,根据单调递增求出m 的值.【详解】因为()sin (0)f x x x ωωω=>,所以1π()2sin 2sin 23f x x x x ωωω ==−, 因为()f x 的零点是以π2为公差的等差数列,所以周期为π,即2π=πω,解得2ω=; 当[]0,x m ∈时,πππ2,2333x m−∈−−,因为()f x 在区间[]0,m 上单调递增,所以ππ232m −≤,解得5π12m ≤. 所以m 的最大值为5π12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数w的取值问题 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】
三角函数w 的取值问题
1.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭
⎪⎫π
2,π上单调递减,则ω的
取值范围是________.
答案:⎣⎢⎡⎦
⎥⎤
12,54
答案:C
4.已知函数f (x )=sin (ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点对称,且在区间上是单调函数,则
ω的值为( ) A .
B .
C .
D .
解:由f (x )是偶函数,得f (﹣x )=f (x ),即sin (﹣ωx +)=sin (ωx +),
所以﹣cosφsinωx=cosφsinωx,对任意x都成立,且ω>0,所以得cosφ=0.
依题设0<φ<π,所以解得φ=,由f(x)的图象关于点M对称,得f(﹣x)=﹣f(+x),
取x=0,得f()=sin(+)=cos,∴f()=sin (+)=cos,∴cos=0,又ω>0,得
=+kπ,k=1,2,3,∴ω=(2k+1),k=0,1,2,
当k=0时,ω=,f(x)=sin(x+)在[0,]上是减函数,满足题意;
当k=1时,ω=2,f(x)=sin(2x+)在[0,]上是减函数;
当k=2时,ω=,f(x)=(x+)在[0,]上不是单调函数;所以,综合得ω=或2.故选D.
5.(2016年全国I高考)已知函数
ππ()sin()(0),
24 f x x+x

ωϕωϕ
=>≤=-
为()
f x的零点,
π
4
x=为()
y f x
=图像的对称轴,且()
f x在
π5π
()
1836

单调,则ω的最大值为
(A)11? (B)9? (C)7? (D)5解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)
即ω为正奇数,∵f(x)在(,)则﹣=≤,
即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,
∵|φ|≤,∴φ=﹣,此时f (x )在(,)不单调,不满足
题意;当ω=9时,﹣+φ=kπ,k ∈Z , ∵|φ|≤
,∴φ=
,此时f (x )在(

)单调,满足题意;
故ω的最大值为9,故选:B
6. 已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡

⎥⎤

π3,π4上的最小值是-2,则ω的最小值等于________. 答案:3
2
8. (第十三周周考题)函数()2sin()3
f x x πω=-(1
3
ω>,x R ∈),若
()f x 的任意一个对称中心的横坐标都不属于区间(),2ππ,则ω的取值范
围是 .
答案:12,33⎛⎤ ⎥
⎝⎦
9.(2016
年天津高考改编)已知函数())(0)4
f x x π
ωω->,R x ∈.若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是( ) (A )]8
1
,0( (B ))1,8
5[]4
1,0( (C )]8
5,0( (D )
]85
,41[]81,0(
答案:D。

相关文档
最新文档