八年级下数学 平行四边形 创新题型分类解析

合集下载

难点详解北师大版八年级数学下册第六章平行四边形难点解析试题(含答案解析)

难点详解北师大版八年级数学下册第六章平行四边形难点解析试题(含答案解析)

北师大版八年级数学下册第六章平行四边形难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平行四边形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=OC B的坐标为()A.1) B.(1) C.+1,1) D.(11)2、若一个多边形的每一个内角均为120°,则下列说法错误的是()A.这个多边形的内角和为720°B.这个多边形的边数为6C.这个多边形是正多边形D.这个多边形的外角和为360°3、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则∠COF的度数是()A.74°B.76°C.84°D.86°4、如图,已知正方形ABCD中,G、P分别是DC、BC上的点,E、F分别是AP、GP的中点,当P在BC 上从B向C移动而G不动时,下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定5、如图,五边形ABCDE是正五边形,若l1∥l2,则∠1﹣∠2的值是()A.108°B.36°C.72°D.144°6、正五边形的外角和是()A.180︒B.360︒C.540︒D.720︒7、一个n边形的所有内角之和是900°,则n的值是().A.5 B.7 C.9 D.108、正八边形的外角和为()A.360︒B.720︒C.900︒D.1080︒9、如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=4,点D是斜边AB的中点,以CD为底边在其右侧作等腰三角形CDE ,使∠CDE =∠A ,DE 交BC 于点F ,则EF 的长为( )A .3BCD .3.510、如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB 于E ,在线段AB 上,连接EF 、CF .则下列结论:①∠BCD =2∠DCF ;②∠ECF =∠CEF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF ,其中一定正确的是( )A .②④B .①②④C .①②③④D .②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,M 、N 分别为AB 、BC 的中点,若OM =1.5,ON =1,则平行四边形ABCD 的周长是________.2、若正n 边形的每个内角都等于120°,则这个正n 边形的边数为________.3、如图,1,2,3∠∠∠是三角形ABC 的不同三个外角,则123∠+∠+∠=___________4、每个外角都为36°的多边形共有___条对角线.5、如图所示,在Rt ABC 中,90ACB ∠=︒,6AC =,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若 2.5EF =,则EBF △的面积为_______.三、解答题(5小题,每小题10分,共计50分)1、如图的网格纸中,每个小方格都是边长为1个单位的正方形,三角形ABC 的三个顶点都在格点上.(每个小方格的顶点叫格点)(1)画出三角形ABC 向上平移4个单位后的三角形A 1B 1C 1;(2)画出三角形A 1B 1C 1向左平移5个单位后的三角形A 2B 2C 2;(3)经过(1)次平移线段AC 划过的面积是 .2、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC 中,M 、N 分别是AC 、AB 上的点,BM 与CN 相交于点O ,若∠BON =60°,则BM =CN ;②如图(2),在正方形ABCD 中,M 、N 分别是CD 、AD 上的点,BM 与CN 相交于点O ,若∠BON =90°,则BM =CN .然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE 中,M 、N 分别是CD 、DE 上的点,BM 与CN 相交于点O ,若∠BON =108°,则BM =CN .任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n (n ≥3)边形ABCDEF …中,M 、N 分别是CD 、DE 上的点,BM 与CN 相交于点O ,试问当∠BON 等于多少度时,结论BM =CN 成立(不要求证明);②如图(4),在正五边形ABCDE 中,M 、N 分别是DE 、AE 上的点,BM 与CN 相交于点O ,∠BON =108°时,试问结论BM =CN 是否成立.若成立,请给予证明;若不成立,请说明理由.3、如图,已知ABC ∆,以AB 为直径的半⊙O 交AC 于D ,交BC 于E ,BE CE =,65C =︒∠,求DOE∠的度数.4、如图,在ABCD中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求(1)ABCD的面积;(2)△AOD的周长.5、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明BE=DF.-参考答案-一、单选题1、C【分析】作BD x⊥,求得OD、BD的长度,即可求解.【详解】解:作BD x ⊥,如下图:则90BDA ∠=︒在平行四边形OABC 中,AB OC OA ==AB OC ∥∴45DAB AOC ∠=∠=︒∴ADB △为等腰直角三角形则222AD BD AB +=,解得1AD BD ==∴1OD OA AD =+1,1)B故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解.2、C【分析】先根据多边形的外角和求出这个多边形的边数,再根据多边形的内角和、正多边形的定义即可得.【详解】解:多边形的每一个内角均为120︒,∴这个多边形的每一个外角均为60︒,∴这个多边形的边数为360606︒÷︒=,则选项B 说法正确;∴这个多边形的内角和为()18062720︒⨯-=︒,则选项A 说法正确;多边形的外角和为360︒,∴选项D 说法正确;各边相等,各内角也相等的多边形叫做正多边形,∴选项C 说法错误;故选:C .【点睛】本题考查了多边形的内角和与外角和、正多边形的定义,熟练掌握多边形的内角和与外角和是解题关键.3、C【分析】利用正多边形的性质求出∠EOF ,∠BOC ,∠BOE 即可解决问题.【详解】解:由题意得:∠EOF =108°,∠BOC =120°,∠OEB =72°,∠OBE =60°,∴∠BOE =180°﹣72°﹣60°=48°,∴∠COF =360°﹣108°﹣48°﹣120°=84°,故选:C【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识.4、C【分析】AG,因此线段EF的长不变.连接AG,根据三角形中位线定理可得EF= 12【详解】解:如图,连接AG,∵E、F分别是AP、GP的中点,∴EF为△APG的中位线,AG,为定值.∴EF= 12∴线段EF的长不改变.故选C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AG不变,则对应的中位线的长度就不变.5、C【分析】过点B作l1的平行线BF,利用平行线的性质推出∠CBF+∠1=180°,∠CBF+∠2=108°,两个式子相减即可.【详解】解:过点B作l1的平行线BF,则l1∥l2∥BF,∵l 1∥l 2∥BF ,∴∠ABF =∠2,∠CBF +∠1=180°①,∵五边形ABCDE 是正五边形,∴()=521805=108ABC ∠-⨯÷,∴∠ABF +∠CBF =∠CBF +∠2=108°②,∴①-②得∠1-∠2=72°,故选C .【点睛】本题主要考查了平行线的性质以及正多边形的内角问题,解题的关键是通过作辅助线,搭建角之间的关系桥梁.6、B【分析】根据多边形的外角和等于360°,即可求解.【详解】解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.故选:B .【点睛】本题主要考查多边形的外角和定理,解答本题的关键是掌握任意多边形的外角和都是360°.7、B【分析】n-⨯=,由此进行求解即可.根据n边形内角和公式即可得到()2180900【详解】解:∵一个n边形的所有内角之和是900°,n-⨯=,∴()2180900n=,∴7故选B.【点睛】本题主要考查了多边形内角和公式,解题的关键在于能够熟练掌握多边形内角和公式.8、A【分析】根据多边形的外角和都是360︒即可得解.【详解】解:∵多边形的外角和都是360︒,∴正八边形的外角和为360︒,故选:A.【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是360︒是解题的关键.9、D【分析】根据勾股定理求出BC ,根据直角三角形的性质得到CD =AD ,证明AC ∥DF ,根据勾股定理计算,得到答案.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =1,AB =4,则BC在Rt △ABC 中,∠ACB =90°,点D 是斜边AB 的中点,∴CD =12AB =AD ,∴∠DCA =∠A ,∵∠CDE =∠A ,∴∠CDE =∠DCA ,∴AC ∥DF ,∴∠EFC =∠ACB =90°,∵AC ∥DF ,点D 是斜边AB 的中点,∴DF =12AC =12,CF =12BC 设EF =x ,则ED =x +12=CE ,在Rt △EFC 中,EC 2=EF 2+CF 2,即(x +12)2=x 2+2, 解得:x =3.5,即EF =3.5,故选:D .【点睛】 本题考查的是勾股定理、直角三角形的性质,等腰三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.10、B【分析】根据易得DF=CD,由平行四边形的性质AD∥BC即可对①作出判断;延长EF,交CD延长线于M,可证明△AEF≌△DMF,可得EF=FM,由直角三角形斜边上中线的性质即可对②作出判断;由△AEF≌△DMF 可得这两个三角形的面积相等,再由MC>BE易得S△BEC<2S△EFC,从而③是错误的;设∠FEC=x,由已知及三角形内角和可分别计算出∠DFE及∠AEF,从而可判断④正确与否.【详解】①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正确;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,A FDM AF DF AFE DFM ⎧⎪⎨⎪=∠=∠=∠⎩∠ , ∴△AEF ≌△DMF (ASA ),∴FE =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵FM =EF ,∴FC =FE ,∴∠ECF =∠CEF ,故②正确;③∵EF =FM ,∴S △EFC =S △CFM ,∵MC >BE ,122ECM EFC S CM CE S =⨯=,12BEC S BE CE =⨯ ∴S △BEC <2S △EFC ,故S △BEC =2S △CEF , 故③错误;④设∠FEC =x ,则∠FCE =x ,∴∠DCF =∠DFC =90°﹣x ,∴∠EFC =180°﹣2x ,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正确,故选:B.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点.二、填空题1、10【分析】根据平行四边形的性质可得BO=DO,AD=BC,AB=CD,再由条件M、N分别为AB、BC的中点可得MO 是△ABD的中位线,NO是△BCD的中位线,再根据三角形中位线定理可得AD、DC的长.【详解】解:∵四边形ABCD是平行四边形,∴BO=DO,AD=BC,AB=CD,∵M、N分别为AB、BC的中点,∴MO=12AD,NO=12CD,∵OM=1.5,ON=1,∴AD=3,CD=2,∴平行四边形ABCD的周长是:3+3+2+2=10,故答案为:10.【点睛】此题主要考查了平行四边形的性质,以及中位线定理,关键是掌握平行四边形对边相等,对角线互相平分.2、6【分析】多边形的内角和可以表示成(2)180n -⋅︒,因为所给多边形的每个内角均相等,故又可表示成120n ︒,列方程可求解.【详解】解:设所求正n 边形边数为n ,则120(2)180n n ︒=-⋅︒,解得6n =,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.3、360°.【分析】利用三角形的外角和定理解答.【详解】解:∵1,2,3∠∠∠是三角形ABC 的不同三个外角,三角形的外角和为360°,∴∠1+∠2+∠3=360°,故答案为:360°.【点睛】本题主要考查了三角形的外角和定理,三角形的外角的性质,属于中考常考题型.4、35【分析】设这个多边形为n 边形,然后根据多边形外角和为360度以及多边形对角线公式()32n n -进行求解即可.【详解】解:设这个多边形为n 边形,由题意得:36036n ÷=,∴10n =,∴这个多边形的对角线条数()10103352⨯-==条, 故答案为:35.【点睛】本题主要考查了多边形外角和,多边形对角线条数,解题的关键在于能够熟练掌握相关知识进行求解.5、3【分析】根据三角形中位线定理求出CM ,根据直角三角形的性质求出AB 根据勾股定理得出BC ,求出24ABC S ∆=,由中线的性质得1122BCM ABC S S ∆∆==,再根据中位线的性质可得结论. 【详解】解:∵E 、F 分别为MB 、BC 的中点,∴CM =2EF =5,∵∠ACB =90°,CM 是斜边AB 上的中线,∴AB =2CM =10,∵∠ACB =90°,∴222AC BC AB +=∴8BC =∴11682422ABC S AC BC ∆==⨯⨯= ∵CM 是斜边AB 上的中线,∴1122BCM ABC S S ∆∆==∵EF 是CBM ∆的中位线,∴1112344EBF CBM S S ∆∆==⨯=故答案为:3.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)16【分析】(1)先找出A 、B 、C 三个点平移后的位置,然后依次连接即可;(2)先找出1A 、1B 、1C 三个点平移后的位置,然后依次连接即可; (3)从图中可知线段AC 划过的图形为平行四边形11A ACC ,根据平行四边形面积计算公式即可得.【详解】解(1)先找出A 、B 、C 三个点平移后的位置,然后依次连接即可,如图所示,111A B C ∆即为所求;(2)先找出1A 、1B 、1C 三个点平移后的位置,然后依次连接即可,如图所示,222A B C ∆即为所求;(3)线段AC 划过的图形为平行四边形11A ACC ,4416S =⨯=,故答案为:16.【点睛】题目主要考查图形的平移方法及平行四边形的面积,熟练掌握图形的平移方法是解题关键.2、(1)选①或②或③,证明见详解;(2)①当2180()-∠︒=n BON n 时,结论BM CN =成立;②当108BON ∠=︒时,BM CN =还成立,证明见详解. 【分析】(1)命题①,根据等边三角形的性质及各角之间的等量代换可得:13∠=∠,然后依据全等三角形的判定定理可得:BCM CAN ≌,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:13∠=∠,然后依据全等三角形的判定定理可得:BCM CDN ≌,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:13∠=∠,然后依据全等三角形的判定定理可得:BCM CDN ≌,再由全等三角形的性质即可证明;(2)①根据(1)中三个命题的结果,得出相应规律,即可得解;②连接BD 、CE ,根据全等三角形的判定定理和性质可得:BCD CDE ≌, BD CE =,BDC CED ∠=∠,DBC ECD ∠=∠,利用各角之间的关系及等量代换可得:BDM CEN ∠=∠, DBM ECN ∠=∠,继续利用全等三角形的判定定理和性质即可得出证明.【详解】解:(1)如选命题①,证明:如图所示:∵ 60BON ∠=︒,∴ 1260∠+∠=︒,∵ 3260∠+∠=︒,∴ 13∠=∠,在 BCM ∆与ΔΔΔΔ中,1360BC CA BCM CAN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ BCM CAN ≌,∴ BM CN =;如选命题②,证明:如图所示:∵ 90BON ∠=︒,∴ 1290∠+∠=︒,∵ 3290∠+∠=︒,∴ 13∠=∠,在 BCM ∆与ΔΔΔΔ中,1390BC CD BCM CDN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ BCM CDN ≌,∴ BM CN =;如选命题③,证明:如图所示:∵ 108BON ∠=︒,∴ 12108∠+∠=︒,∵ 23108∠+∠=︒,∴ 13∠=∠,在 BCM ∆与ΔΔΔΔ中,13108BC CD BCM CDN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ BCM CDN ≌,∴ BM CN =;(2)①根据(1)中规律可得:当2180()-∠︒=n BON n 时,结论BM CN =成立;②答:当108BON ∠=︒时,BM CN =成立.证明:如图所示,连接BD 、CE ,在BCD 和CDE 中,108BC CD BCD CDE CD DE =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCD CDE ≌,∴ BD CE =,BDC CED ∠=∠,DBC ECD ∠=∠,∵ 108CDE DEN ∠=∠=︒,∴ BDM CEN ∠=∠,∵ 108OBC OCB ∠+∠=︒,108OCB OCD ∠+∠=︒.∴ MBC NCD ∠=∠,又∵ 36DBC ECD ∠=∠=︒,∴ DBM ECN ∠=∠,在BDM 和CEN 中,BDM CEN BD CE DBM ECN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ BDM CEN ≌,∴ BM CN =.【点睛】题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.3、50︒【分析】先证明OE 为ABC 的中位线,则,OE AC ∥证明65,OEB C 再求解50,BOE 证明50,DAB BOE 再利用三角形的内角和定理及平角的定义,从而可得答案.【详解】 解: BE CE =,,OB OA =OE ∴为ABC 的中位线,,∥OE ACC65,65,OEB C=OE OB,B OEB65,BOE18026550,∥OE AC,DAB BOE50,OD OA=,ODA OAD50,AOD18025080,DOE180805050.【点睛】本题考查的是圆的基本性质,三角形中位线的定义与性质,三角形的内角和定理的应用,等腰三角形的性质,熟练的运用以上知识解题是关键.4、(1)48(2)11【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8∴BC =AD =8∵AC ⊥BC∴∠ACB =90°在Rt △ABC 中,由勾股定理得AC 2=AB 2-BC 2∴6AC∴8648ABCD S BC AC =⋅=⨯=(2)∵四边形ABCD 是平行四边形,且AC =6 ∴13,2OA OC AC OB OD ==== ∵∠ACB =90°,BC =8∴OB =∴OD OB ==∴8311AOD C AD AO OD =++=+=【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.5、见详解【分析】由题意易得AB =CD ,AB ∥CD ,AE =CF ,则有∠BAE =∠DCF ,进而问题可求证.【详解】证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF ,∵E ,F 是对角线AC 的三等分点,∴AE =CF ,在△ABE 和△CDF 中,AB CD BAE DCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS ),∴BE =DF .【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键.。

苏教版八年级下册数学[平行四边形(基础)知识点整理及重点题型梳理]

苏教版八年级下册数学[平行四边形(基础)知识点整理及重点题型梳理]

苏教版八年级下册数学[平行四边形(基础)知识点整理及重点题型梳理]本文介绍了苏教版八年级下册数学中平行四边形的重难点,包括定义、性质、判定和距离等方面。

首先,平行四边形的定义是指两组对边分别平行的四边形,记作“ABCD”,读作“平行四边形ABCD”。

平行四边形的基本元素包括边、角、对角线,其中相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条。

其次,平行四边形的性质包括边的性质、角的性质、对角线性质和中心对称性质。

边的性质是指平行四边形两组对边平行且相等;角的性质是指平行四边形邻角互补,对角相等;对角线性质是指平行四边形的对角线互相平分;中心对称性质是指平行四边形是中心对称图形,对角线的交点为对称中心。

这些性质可以证明线段的相等关系或倍半关系,也可以解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决。

其次,平行四边形的判定方法包括两组对边分别平行、两组对边分别相等、一组对边平行且相等、两组对角分别相等和对角线互相平分。

这些判定方法是研究本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法。

同时,这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据。

最后,两条平行线间的距离是指两条平行线中,一条直线上的任意一点到另一条直线的距离,是垂线段的长度,处处相等。

这些知识点的掌握可以初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题,综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算。

任何两条平行线间的距离都是存在且唯一的,它们之间的最短线段就是夹在这两条平行线之间的距离。

同时,两条平行线之间的任何两条平行线段都是相等的。

平行四边形的面积可以通过底和高的乘积来计算,而等底等高的平行四边形面积是相等的。

在平行四边形ABCD中,如果AE=AB,那么需要证明△ABC≌△EAD。

人教版八年级数学下册 特殊平行四边形 解答题训练(word版含解析)

人教版八年级数学下册   特殊平行四边形  解答题训练(word版含解析)

人教版八年级数学下册《18-2特殊平行四边形》解答题优生辅导训练(附答案)1.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD,BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,菱形BNDM的面积为120,求菱形BNDM的周长.2.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.(1)求证:四边形AECD是菱形;(2)过点E作EF⊥CD于点F,若AB=3,BC=5,求EF的长.3.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AD=10,EC=4,求AC的长度.4.如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:△NED≌△MEA.(2)当AM的值为何值时,四边形AMDN是矩形?并说明理由.5.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,点G为EF 中点,连接BD、DG.(1)试判断△ECF的形状,并说明理由;(2)求∠BDG的度数.6.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=8,求CE的长.7.如图,在正方形ABCD中,E,F分别在边AB,BC上,△DEF是等边三角形,连接BD交EF于点G.(1)求证:BE=BF;(2)若DE=2,求BD的长.8.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF,过点D作DG⊥CF于点G.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?(3)在(2)的条件下,若AB=6,BC=10,求DG的长.9.如图,在正方形ABCD中,AB=,E为正方形ABCD内一点,DE=AB,∠EDC=α(0°<α<90°),连结CE,AE,过点D作DF⊥AE,垂足为点F,交CE的延长线于点G,连结AG.(1)当α=20°时,则∠AEC=;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.10.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合),连接AF并延长交直线BC于点E,交BD于点H,连接CH,过点C作CG⊥HC交AE于点G.(1)若点F在边CD上,如图1.①证明:∠DAH=∠DCH;②猜想线段CG与EF的关系并说明理由;(2)取DF中点M,连结MG,若MG=4,正方形边长为6,求BE的长.11.在△ABC中,过A作BC的平行线,交∠ACB的平分线于点D,点E是BC上一点,连接DE,交AB于点F,∠CAD+∠BED=180°.(1)如图1,求证:四边形ACED是菱形;(2)如图2,若∠ACB=90°,BC=2AC,点G、H分别是AD、AC边中点,连接CG、EG、EH,不添加字母和辅助线,直接写出图中与△CEH所有的全等的三角形.12.如图,四边形ABCD为正方形,E为AD上一点,连接BE,∠AEB=60°,M为BE的中点,过点M的直线交AB、CD于P、Q.(1)如图1,当PQ⊥BE时,求证:BP=2AP;(2)如图2,若∠APQ为锐角,且PQ=BE,延长BE、CD交于点N,请你猜想QM与QN的数量关系,并说明理由.13.如图,点G在正方形ABCD的边CD上,且四边形CEFG也是正方形,连接BG,DE,AF,取AF的中点M,连接CM.求证:(1)BG=DE;(2)CM=AF.14.如图,在正方形ABCD中,点E是BC上一点,点F是CD延长线上的一点,且BE=DF,连接AE、AF、EF.(1)求证:AE=AF;(2)已知∠AEB=75°,若点P是EF的中点,连接CP,DP,求∠CPD的度数.15.如图,点O为矩形ABCD对角线的交点,过点D作DE⊥AC于点E,过点B作BF∥AC,交DE的延长线于F,在BF的延长线上取FG=OD,连接AG,OF.(1)求证:四边形AOFG为菱形;(2)若AD=5,DF=8,求BG的长.16.已知:在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.17.如图,▱ABCD,BE⊥AD于E,交AC于M,DF⊥BC于F,交AC于N,连接DM、BN.(1)求证:△ABM≌△CDN;(2)当▱ABCD是菱形时,判断四边形MBND的形状,并说明理由.18.如图,矩形ABCD中,对角线AC、BD相交于点O,BD的垂直平分线分别交边AD、BC于点E、F,连接BE、DF.(1)求证:四边形BEDF是菱形;(2)若∠BOC=120°,AB=6,求FC的长.19.如图,在△ABC中,∠ABC=90°,点O是斜边AC的中点,过点O作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD、DE.(1)求证:四边形ABCD是矩形;(2)若BC=3,∠BAC=30°,求DE的长.20.如图,四边形ABCD为正方形,E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC 于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度.参考答案1.(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵菱形BNDM的面积为120=×BD×MN,∴MN=10,∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.2.证明:(1)∵∠BAC=90°,E是BC的中点,∴AE=BC=CE,又∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形.∴四边形AECD是菱形.(2)过点A作AG⊥BC于点G,∵AB=3,BC=5,∴AC=,∵,∴,∴AG=,又∵S菱形AECD=CD•EF=CE•AG,∵CD=CE,∴EF=AG=.3.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=6,在Rt△ABE中,AE=,在Rt△AEC中,AC=.4.(1)证明:∵四边形ABCD为菱形,∴CD∥AB,∴∠DNE=∠AME,∵E为AD的中点,∴DE=AE,在△NED和△MEA中,∴△NDE≌△MAE(AAS);(2)当AM=2时,四边形AMDN是矩形.理由如下:由(1)知△NED≌△MEA,∴NE=ME,又∵DE=AE,∴四边形AMDN是平行四边形,∵菱形ABCD,AB=4,E为AD中点,∴AE=2=AM,又∵∠DAB=60°,∴△MEA为等边三角形,∴AE=ME,∴AD=MN,∴平行四边形AMDN为矩形.5.(1)解:△ECF是等腰直角三角形;理由如下:∵四边形ABCD是矩形,∴AD∥BC,∠DAB=∠ABC=∠BCD=90°,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE=45°,∴∠BEA=∠BAE=45°,∴∠CEF=45°,AB=BE,∴∠F=90°﹣45°=45°,∴EC=FC,又∵∠ECF=90°,∴△ECF是等腰直角三角形;(2)∵四边形ABCD是矩形,∴AB=CD,∵AB=BE,∴BE=CD,∵EC=FC,∠ECF=90°,∴CG=EF=EG,∠ECG=∠ECF=45°,∴∠DCG=90°+45°=135°,∵∠BEG=180°﹣45°=135°,∴∠DCG=∠BEG,在△DCG和△BEG中,,∴△DCG≌△BEG(SAS),∴DG=BG,∠DGC=∠BGE,∴∠BGD=∠EGC=90°,又∵DG=BG,∴∠BDG=45°.6.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=8,∴OA=OC,BD⊥AC,OB=OD=BD=4,∴∠AOB=90°,∴OA===2,∴AC=2OA=4,∴菱形ABCD的面积=AC×BD=×4×8=16,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=6CE=16,∴CE=.7.(1)证明:∵四边形ABCD为正方形,∴AD=CD=AB=BC,∠A=∠C=90°,∵△DEF为等边三角形,∴DE=DF,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL),∴AE=CF.又∵AB=BC,∴AB﹣AE=BC﹣CF,∴BE=BF;(2)解:由(1)可知BE=BF,∴△BEF为等腰直角三角形,∵四边形ABCD为正方形,∴BD平分∠ABC,∴点G为EF的中点,BD⊥EF,∵△DEF为等边三角形,DE=2,∴EF=DE=2,BG=EG=1,在Rt△EDG中,由勾股定理得,DG===,∴BD=BG+DG=1+.8.证明:(1)∵点D、E分别是边BC、AC的中点,∴DE∥AB,∵AF∥BC,∴四边形ABDF是平行四边形,∴AF=BD,则AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形;(2)当△ABC是直角三角形时,四边形ADCF是菱形,理由:∵点D是边BC的中点,△ABC是直角三角形,∴AD=DC,∴平行四边形ADCF是菱形;(3)∵△ABC是直角三角形,AB=6,BC=10,BD=DC,∴AD=DC=5,AC=,∵四边形ADCF是菱形,∴AC⊥DF,∴DE=,∴,即,解得:DG=.9.解:(1)∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD=DC,∵∠CDE=20°,∴∠ADE=70°,∵DE=AB,∴DC=DE,DA=DE,∴∠DEC=∠DCE=×(180°﹣20°)=80°,∠DAE=∠DEA=×(180°﹣70°)=55°,∴∠AEC=∠AED+∠DEC=80°+55°=135°,故答案为:135°;(2)结论:△AEG是等腰直角三角形.理由:∵AD=DE,DF⊥AE,∴DG是AE的垂直平分线,∴AG=GE,∴∠GAE=∠GEA,∵DE=DC=AD,∴∠DAE=∠DEA,∠DEC=∠DCE,∵∠DAE+∠DEA+∠DEC+∠DCE+∠ADC=360°,∴∠DEA+∠DEC=135°,∴∠GEA=45°,∴∠GAE=∠GEA=45°,∴∠AGE=90°,∴△AEG为等腰直角三角形.(3)如图,连接AC,∵四边形ABCD是正方形,∴AC=AB=,∵△AEG为等腰直角三角形,GF⊥AE,∴GF=AF=EF=1,∴AG=GE=,∵AC2=AG2+GC2,∴10=2+(EC+)2,∴EC=(负根已经舍弃).10.证明:(1)①∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,AD=DC,在△ADH和△CDH中,,∴△ADH≌△CDH(SAS),∴∠DAH=∠DCH;②结论:EF=2CG,理由如下:∵△DAH≌△DCH,∴∠DAF=∠DCH,∵CG⊥HC,∴∠FCG+∠DCH=90°,∴∠FCG+∠DAF=90°,∵∠DF A+∠DAF=90°,∠DF A=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∵∠GCE+∠GCF=90°,∠CFG+∠E=90°,∴∠GCE=∠GCF,∴CG=GE,∴EF=2CG;(2)①如图,当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=8,在Rt△DCE中,CE===2,∴BE=BC+CE=6+2;②如图,当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=6,在Rt△DCE中,CE=2,∴BE=BC﹣CE=6﹣2综上所述,BE的长为6+2或6﹣2.11.(1)证明:∵AD∥BC,∴∠ADC=∠BCD,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠ADE=∠DEB,∵∠DEB+∠DEC=180°,∠DEB+∠CAD=180°,∴∠DEC=∠DAC,∴∠ADE+∠DAC=180°,∴DE∥AC,∴四边形ACED是菱形;(2)解:∵∠ACB=90°,∴菱形ACED是正方形,∴∠D=∠CAG=∠DEC=90°,AC=AD=CE,∵G是AD的中点,H是AC边中点,∴AG=DG=CE,∴△EDG≌△CAG≌△ECH(SAS),∵BC=2AC,∴BE=CE=AD,∵AD∥BE,∴∠B=∠DAF,∵∠AFE=∠BFE,∴△BFE≌△AFD(AAS),∵AD=CE=BE,∴△BEF≌△ECH,∴图中与△CEH全等的三角形有△ADF,△EDG,△CAG,△EBF.12.(1)证明:连接PE,如图1,∵点M是BE的中点,PQ⊥BE,∴PQ垂直平分BE,∴PB=PE,∴∠PEB=∠PBE=90°﹣∠AEB=90°﹣60°=30°,∴∠APE=∠PBE+∠PEB=60°,∴∠AEP=90°﹣∠APE=90°﹣60°=30°,∵∠A=90°,∴BP=EP=2AP;(2)解:NQ=2MQ或NQ=MQ.理由如下:分两种情况:如图3所示,过点Q作QF⊥AB于点F,交BN于点G,则FQ=CB,∵正方形ABCD中,AB=BC,∴FQ=AB.在Rt△ABE和Rt△FQP中,,∴Rt△ABE≌Rt△FQP(HL),∴∠FQP=∠ABE=30°,又∵∠MGQ=∠BGF=∠AEB=60°,∴∠GMQ=90°,∵CD∥AB.∴∠N=∠ABE=30°,∴NQ=2MQ;如图2所示,过点Q作QF⊥AB于点F,则QF=CB,同理可证:△ABE≌△FQP,此时∠FPQ=∠AEB=60°,又∵∠FPQ=∠ABE+∠PMB=60°,∠N=∠ABE=30°,∴∠EMQ=∠PMB=30°,∴∠N=∠EMQ,∴NQ=MQ.13.(1)证明∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CG=CE,在Rt△BGC和Rt△DEC中,∴Rt△BGC≌Rt△DEC(HL),∴BG=DE,(2)连接AC,FC,∴∠ACD=∠FCD=45°,∠ACF=90°,∴△ACF为直角三角形,又∵M是AF的中点,∴CM=AF.14.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠ADF=90°,在△ABE和△ADF中,∴△ABE≌△ADF(SAS);∴AE=AF,(2)连接AP,∵△ABE≌△ADF,∴∠BAE=∠DAF,∠F AE=90°,在Rt△EAF和Rt△ECF中,P是EF中点,∴P A=PC=PE=PF=EF,又∵AE=AF,∠AEB=75°,∴∠AEP=45°,∠CEP=∠ECP=60°,∴∠DCP=30°,在△APD和△CPD中,∴△APD≌△CPD(SSS),∴∠CDP=45°,∴∠CPD=180°﹣30°﹣45°=105°.15.证明:(1)∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵DE⊥AC,BF∥AC,∴OF=OD=OA,∵FG=OD,∴FG=OA,∵FG∥OA,∴四边形AOFG为菱形;(2)∵AD=5,DF=8,∴DE=EF=4,AE=3,在Rt△DEO中,设OE=x,由勾股定理得:(x+3)2﹣42=x2,解得:x=,∴OD=,OE=,∴BF=2OE=,FG=OD=,∴BG=GF+BF=.16.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);(2)解:当AB=AC时,四边形ADCF是正方形,理由:由(1)知,△AEF≌△DEB,∴AF=DB,∵D是BC的中点,∴DB=DC,∴AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形,∵AB=AC,D是BC的中点,∴AD⊥BC,∴四边形ADCF是正方形.17.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠DAB=∠DCB,∴∠BAC=∠DCA,∵BE⊥AD,DF⊥BC,∴∠DAB+∠ABM=90°,∠DCB+∠CDN=90°,又∵∠DAB=∠DCB,∴∠ABM=∠CDN,在△ABM和△CDN中,,∴△ABM≌△CDN(ASA);(2)解:四边形MBND是菱形,理由如下:∵BE⊥AD,DF⊥BC,AD∥BC,∴BE∥DF,由(1)知△ABM≌△CDN,∴BM=DN,∴四边形MBND是平行四边形,连接BD,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,即MN⊥BD,∴平行四边形MBND是菱形.18.(1)证明:∵EF垂直平分BD,∴EB=ED,FB=FD,BO=DO,∵四边形ABCD是矩形,∴∠OBF=∠ODE,∵∠DOE=∠BOF,∴△EOD≌△FOB(AAS),∴DE=BF,∴EB=ED=FB=FD,∴四边形BEDF是菱形;(2)解:∵四边形ABCD是矩形,∴OB=OC,CD=AB=6,∴∠OBC=∠OCB,∵∠BOC=120°,∴∠OBC=∠OCB=30°,∵四边形EBFD为菱形,∴FB=FD,∴∠FBD=∠FDB=30°,∴∠DFC=60°,∴∠FDC=30°,设CF=x,则FD=2x,根据勾股定理得:(2x)2﹣x2=62,解得:x=2,∴FC的长为2.19.(1)证明:∵点O是AC的中点,∴OA=OC,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,在△OAD与△OCB中,,∴△OAD≌△OCB(AAS),∴AD=BC,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AD=BC=3,∵∠ABC=90°,∠BAC=30°,∴AC=2BC=6,∴OA=3,∵OE⊥AC,∴∠AOE=90°,∵∠BAC=30°,∴OE=OA=,∴AE=2OE=2,∴DE===.20.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在△EQF和△EPD中,,∴△EQF≌△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中,AC=AB=2,∵CE=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴四边形DECG是正方形,∴CG=CE=.。

第18章平行四边形典型题型总结课件课件2021—2022学年人教版数学八年级下册

第18章平行四边形典型题型总结课件课件2021—2022学年人教版数学八年级下册

△AOB的周长比△DOA的周长长5cm,求这个平行四边形
各边的长.
D
C
解:∵四边形ABCD是平行四边形,
O
∴OB=OD,AB=CD,AD=BC. A
B
∵△AOB的周长比△DOA的周长长5cm,∴AB-AD=5cm.
又∵ ABCD的周长为60cm,∴AB+AD=30cm.
则AB=CD=17.5cm,AD=BC=12.5cm. 提示:平行四边形被对角线分成四个小三角形,相邻两个 三角形的周长之差等于邻边边长之差.
∴∠BAE=∠DCF.
B
FC
又∵AE=CF,
∴ △ABE≌ △CDF.
∴BE=DF.
如图,小明用一根36m长的绳子围成了一个平行四边形的 场地,其中一条边AB长为8m,其他三条边各长多少?
A 8m B
D C
解:∵ 四边形ABCD是平行四边形, ∴AB=CD, AD=BC. ∵AB=8m, ∴CD=8m. 又AB+BC+CD+AD=36m, ∴ AD=BC=10m.
=S△AOB+S△COB=1 S
∴S四边形ANMB=S四边形CMND,
2
ABCD
.
即平行四边形ABCD被EF所分的两个四边形面积相等.
把一个平行四边形分成3个三角形,已知两个阴影三角形的面 积分别是9cm2和12cm2,求平行四边形的面积.
解:(9+12)×2 =21×2 =42(cm2)
答:平行四边形的面积是42cm2.
∴AB∥ CD , AD∥ BC.
∴四边形ABCD是平行四边形.
十一.利用两组对边分别相等识别平行四边形 如图,在Rt△MON中,∠MON=90°.求证:

平行四边形的性质(精讲)2021-2022学年八年级数学下学期重要考点精讲精练(人教版)(解析版)

平行四边形的性质(精讲)2021-2022学年八年级数学下学期重要考点精讲精练(人教版)(解析版)

18.1平行四边形的性质(解析版)平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.注意:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.题型1:平行四边形的定义1.如图,在▱ABCD中,若EF∥AD,OH∥CD,EF与GH相交于点O,则图中的平行四边形一共有()A.4个B.5个C.8个D.9个【分析】根据平行四边形的判定和性质定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵AD∥EF,CD∥GH,【变式1-1】如图,点D、E、F分别是AB、BC、CA的中点,则图中平行四边形一共有()A.1个B.2个C.3个D.4个【分析】根据三角形的中位线定理得出EF∥AB,DF∥BC,DE∥AC,根据有两组对边分别平行的四边形是平行四边形推出即可.【解答】解:有3个平行四边形,有平行四边形ADEF,平行四边形CFDE,平行四边形BEFD,理由是:∵D、E、F分别是△ABC的边AB、BC、CA的中点,∴EF∥AB,DF∥BC,∴四边形BEFD是平行四边形,同理四边形ADEF是平行四边形,四边形CFDE是平行四边形,∴图中平行四边形一共有3个,故选:C综上所述,可以作0个或3个平行四边形.故答案为:0个或3个.平行四边形的性质(1)1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;注意:①平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;题型2:平行四边形的性质与角度计算2如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=128°,则∠A=()A.32°B.42°C.52°D.62°【分析】根据平行四边形的外角的度数求得其相邻的内角的度数,然后求得其对角的度数即可.【解答】解:∵∠DCE=128°,∴∠DCB=180°﹣∠DCE=180°﹣128°=52°,∵四边形ABCD是平行四边形,∴∠A=∠DCB=52°,故选:C【变式2-1】如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=50°,则∠BCE的度数为()A.50°B.45°C.40°D.35°【分析】由平行四边形的性质得出∠B=∠EAD=50°,由角的互余关系得出∠BCE=90°﹣∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=∠EAD=50°,∵CE⊥AB,∴∠BCE=90°﹣∠B=40°;故选:C【变式2-2】如图,平行四边形ABCD中,BD为对角线,∠C=60°,BE平分∠ABC交DC于点E,连接AE,若∠EAB=38°,则∠DBE为22度.【分析】根据平行四边形的性质和全等三角形的判定和性质解答即可.【解答】解:∵平行四边形ABCD中,∠C=60°,∴AD=BC,∠ADE=∠ABC=120°,∠BAD=60°,∵∠EAB=38°,∴∠EAD=∠BAD﹣∠EAB=22°,∵BE平分∠ABC,∴∠CBE=60°,∴△BCE是等边三角形,∴BE=BC,∠BEC=60°,∴BE=AD,∠BED=120°=∠ADE,在△BDE与△AED中,,∴△BDE≌△AED(SAS),∴∠DBE=∠EAD=22°,故答案为:22题型3:平行四边形的性质与求线段3.如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=2,则AB的长为()A.B.2C.2D.2【分析】利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB即可得出答案.【解答】解:∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,在平行四边形ABCD中,AD∥BC,AB=CD,∴∠DEC=∠ECB,∴∠DEC=∠DCE,∴DE=DC,∵AD=2AB,∴AD=2CD,∴AE=DE=AB=2.故选:C【变式3-1】如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.7【分析】首先由在▱ABCD中,AD=8,BE=3,求得CE的长,然后由DE平分∠ADC,证得△CED 是等腰三角形,继而求得CD的长.【解答】解:在▱ABCD中,AD=8,∴BC=AD=8,AD∥BC,∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠CED,∴CD=CE=5,故选:B【变式3-2】如图,在▱ABCD中,∠BCD的平分线交BA的延长线于点E,AE=2,AD=5,则CD的长为()A.4B.3C.2D.1.5【分析】根据平行四边形的性质可得AB∥CD,AD=BC=5,由CE平分∠BCD得∠DCE=∠BCE,由平行线的性质得∠DCE=∠E,运用等量代换得∠E=∠BCE,从而得到△BCE为等腰三角形,计算出BE的长度,由AE=2可求得AB的长度,继而得到CD的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=5,CD=AB,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AB=BE﹣AE=5﹣2=3,∴CD=3.故选:B平行四边形的性质(2)1.对角线性质:平行四边形的对角线互相平分;2.平行四边形是中心对称图形,对角线的交点为对称中心.注意:(1)对角线的性质可以证明线段的相等关系或倍半关系.(2)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.(3)对角线性质的拓展∶①两条对角线将平行四边形分为面积相等的四个三角形;②过平行四边形的对角线交点作直线与平行四边形的一组对边或对边的延长线相交,得到线段总相等;③过对角线交点的任一条直线都将平行四边形分成面积相等的两部分.且与对角线围成的三角形相对的两个全等.题型4:平行四边形的性质与求周长4.如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,若△BCO的周长为14,则AD的长为()A.12B.9C.8D.6【分析】由平行四边形的性质可得AO=CO=AC,BO=DO=BD,由△BCO的周长为14,可求BC=AD=6.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO=AC,BO=DO=BD,∵AC+BD=16,∴BO+CO=8,∵△BCO的周长为14,【变式4-1】在▱ABCD中,若∠B=60°,AB=16,AC=14,则▱ABCD的周长是52或44.【分析】过点A作AE⊥BC于E,利用勾股定理得出BE,AE,EC,进而根据平行四边形的性质解答即可.【解答】解:①当△ABC是锐角三角形时,如图所示,过点A作AE⊥BC于E,∵∠B=60°,AB=16,∴BE=8,AE=8,由勾股定理得,EC=,∴BC=BE+EC=8+2=10,∴▱ABCD的周长=2(AB+BC)=2×(10+16)=52,②当△ABC是锐角三角形时,如图所示,过点A作AE⊥BC于E,由①可知,BE=8,EC=2,∴BC=BE﹣EC=6,∴▱ABCD的周长=2(AB+BC)=2×(16+6)=44,故答案为:52或44(2)若CD=7,AD=5,OE=2,求四边形AEFD的周长.【分析】(1)根据平行四边形的性质得出AD∥BC,OA=OC,求出∠EAO=∠FCO,根据ASA推出△AEO≌△CFO,从而结论;(2)由△AOE≌△COF(ASA),可得EF=2OE=4,DF+AF=AB=6,继而求得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DC,OA=OC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF;(2)解:∵△OAE≌△OCF,∴CF=AE,∴DF+AE=AB=CD=7,又∵EF=2OE=4,∴四边形AEFD的周长=AD+DF+AE+EF=7+4+5=16题型5:平行四边形的性质与面积5.如图,在▱ABCD中,BC=13,过点A作AE⊥DC于E,AE=12,CE=10.(1)求AB的长;(2)求▱ABCD的面积.【分析】(1)根据平行四边形的性质和勾股定理得出DE,进而解答即可;(2)根据平行四边形的面积公式解答即可.【解答】解:(1)在▱ABCD中,AB=CD,AD=BC=13,在Rt△ADE中,,=.∴CD=DE+CE=5+10=15.∴AB=15;(2)S▱ABCD=CD×AE=15×12=180【变式5-1】如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF、AC.(1)求证:△ABE≌△FCE;(2)若AD=AF,AB=3,BC=5,求四边形ABFC的面积.【分析】(1)由平行四边形的性质得到AB∥DF,从而证得∠ABC=∠BCF,利用ASA可证明结论;(2)由△ABE≌△FCE得到AE=FE,利用对角线相等可证得四边形ABFC为平行四边形,得到AB =FC=CD,利用等腰三角形三线合一证得AC⊥DF,从而得到四边形ABFC是矩形,再利用勾股定理求出AC的长度,即可求出四边形ABFC的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABC=∠BCF,∵E为BC中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE.(2)解:∵△ABE≌△FCE,∴AE=FE,∵BE=FC,∴四边形ABFC是平行四边形,∴AB=CF=CD,∵AD=AF,∴AC⊥FD,∴四边形ABFC是矩形,∴∠BAC=90°,∵AB=3,BC=5,根据勾股定理得AC===4,∴矩形ABFC的面积为AB•AC=3×4=12【变式5-2】如图,▱ABCD中,∠B=60°,AB=4,BC=5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积为()A.5B.5C.10D.10【分析】利用▱的性质及判定定理可判断四边形AEPF为▱,EF、AP为▱AEPF的对角线,设交点为O,则EF、AP相互平分,从而证得△POF≌△AOE,则阴影部分的面积等于△ABC的面积.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC∵PE∥BC,∴PE∥AD∵PF∥CD,∴PF∥AB,∴四边形AEPF为▱.设▱AEPF的对角线AP、EF相交于O,则AO=PO,EO=FO,∠AOE=∠POF∴△POF≌△AOE(SAS),∴图中阴影部分的面积等于△ABC的面积,过A作AM⊥BC交BC于M,∵∠B=60°,AB=4,∴AM=2,S△ABC=×5×2=5,即阴影部分的面积等于5.故选:B题型6:平行四边形的性质与三边关系6.如图,平行四边形ABCD和平行四边形EAFC的顶点D、E、F、B在同一条直线上,则下列关系正确的是()A.DE>BF B.DE=BF C.DE<BF D.DE=FE=BF【分析】本题要求的是DE与BF之间的关系,它们分别是在△ECD与△F AB中的两边,只要证明两个三角形全等即可.【解答】解:∵在平行四边形ABCD中,AB=CD,AB∥CD∴∠CDE=∠ABF∵在平行四边形EAFC中,EC∥AF∴∠AFE=∠CEF∴∠AFB=∠CED∴△ECD≌△F AB(AAS)所以DE=BF.故选:B【变式6-1】如图,AB=CD=DE,CE是由AB平移所得,则AC+BD与AB的大小关系是()A.AC+BD<AB B.AC+BD=AB C.AC+BD>AB D.无法确定【分析】由平移的性质可得AB∥CE,AB=CE,可证四边形ABEC是平行四边形,可得AC=BE,AB =CE,由三角形的三边关系可求解.【解答】解:∵CE是由AB平移所得∴AB∥CE,AB=CE∴四边形ABEC是平行四边形∴AC=BE,AB=CE,∴AB=CD=DE=CE,在△DBE中,DB+BE>DE,∴DB+AC>AB,故选:C【变式6-2】已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.【分析】由平行四边形的性质可得AD=BC,AD∥BC,由“SAS”可证△ADE≌△CBF,即可得结论.【解答】解:DE∥BF DE=BF理由如下:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC∴∠DAC=∠ACB,且AE=CF,AD=BC∴△ADE≌△CBF(SAS)∴DE=BF,∠AED=∠BFC∴∠DEC=∠AFB∴DE∥BF题型7:平行四边形的性质与角平分线7.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.连接BE,若BE⊥AF,EF=2,,则AB的长为()A.B.C.D.4【分析】由平行四边形的性质和角平分线的性质可证AB=BF,在Rt△BEF中,由勾股定理可求BF,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠F=∠BAE,∴AB=BF,∵BE⊥AF,EF=2,,∴BF===4,【变式7-1】如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=8.【分析】过点A作AM∥FC,交BE与点O,由平行线的性质和角平分线的性质可证∠BHC=90°,由平行线的性质可求∠AOE=∠BHC=90°,由平行线的性质和角平分线的性质可证AE=AB=5,由勾股定理可求AO的长,由“ASA”可证△ABO≌△MBO,可得AO=OM=4,通过证明四边形AMCF 是平行四边形,可得CF=AM=8.【解答】解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ABC+∠DCB+180°,∵BE平分∠ABC,CF平分∠BCD,∴∠ABE=∠EBC,∠BCF=∠DCF,∴∠CBE+∠BCF=90°,∴∠BHC=90°,∵AM∥CF,∴∠AOE=∠BHC=90°,∵AD∥BC,∴∠AEB=∠EBC=∠ABE,∴AB=AE=5,又∵∠AOE=90°,∴BO=OE=3,∴AO===4,在△ABO和△MBO中,,∴△ABO≌△MBO(ASA),∴AO=OM=4,∴AM=8,∵AD∥BC,AM∥CF,∴四边形AMCF是平行四边形,∴CF=AM=8,故答案为:8【变式7-2】如图,在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.求证:CD=BE.【分析】直接利用平行四边形的性质结合角平分线的定义、等腰三角形的性质得出AB=BE,进而得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,题型8:平行四边形的性质与垂直平分线8.在平行四边形ABCD中,对角线AC的垂直平分线交AD于点E,连接CE.若平行四边形ABCD的周长为30cm,则△CDE的周长为()A.20cm B.40cm C.15cm D.10cm【分析】根据线段垂直平分线的性质,可得AE=CE,又AB+BC=AD+CD=15cm,继而可得△CDE的周长等于AD+CD.【解答】解:如图,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长为30cm,∴AD+CD=15(cm),∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=15(cm).故选:C【变式8-1】如图,在▱ABCD中,D在AB的垂直平分线上,且▱ABCD的周长为42cm,△BCD的周长比▱ABCD的周长少12cm,则AB=12cm,S▱ABCD=36cm2.【分析】根据垂直平分线的性质可知,AD=DB,由于△ABD的周长比▱ABCD的周长少10cm,所以可求出BD=9cm,再根据周长的值求出AB,根据勾股定理求出高DE,即可求出答案.【解答】解:∵AB的垂直平分线EF经过点D,∴DA=DB,∵四边形ABCD是平行四边形,∴DA=CB,∵△ABD的周长比▱ABCD的周长少10cm∴BD=9cm,∴ADBC=BD=9cm,∵▱ABCD的周长为42cm,∴AB=DC=×42cm﹣9cm=12cm,在△ADB中,AD=BD=9cm,AB=12cm,∵DE垂直平分AB,∴∠AED=90°,AE=BE=6cm,由勾股定理得:DE==3(cm),∴S平行四边形ABCD=AB×DE=12cm×3cm=36cm2,故答案为:12,36.【变式8-2】如图,在平行四边形ABCD中,AC的垂直平分线分别交CD,AB于点F和E,AB=4,BC =,AC=3,求EF的长.【分析】过C作CG∥FE交AB的延长线于G、作CH⊥BG交BG于H.构建直角△AHC、直角△BCH,相似三角形△ACH∽△AGC,以及平行四边形EFCG.利用勾股定理和相似三角形的对应边成比例可以求得CG的长度,则平行四边形EFCG的对边相等:EF=CG.【解答】解:如图,过C作CG∥FE交AB的延长线于G、作CH⊥BG交BG于H.由勾股定理得到:CH2=AC2﹣(AB+BH)2=BC2﹣BH2,∵AB=4,BC=,AC=3 ,∴(3 )2﹣(4+BH)2=()2﹣BH2,解得∴BH=1.∴AH=AB+BH=4+1=5.∴CH==.∵CG∥FE、AC⊥FE,∴CG⊥AC.∵∠CAH=∠GAC,∠AHC=∠ACG=90°,∴△ACH∽△AGC,∴CH:CG=AH:AC,∴CG==.∵四边形ABCD平行四边形,∴FC∥EG.又CG∥FE,∴四边形EFCG是平行四边形,∴EF=CG=.题型9:平行四边形的性质与最值9.如图,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M是线段AD上任意一点,连接MC并延长到点E,使MC=CE,以MB和ME为边作平行四边形MBNE,请直接写出线段MN长度的最小值.【分析】作辅助线,构建相似三角形,先根据平行线分线段成比例定理得:=,G是BC上一定点,得出当MN⊥AD时,MN的长最小,计算AH的长就是MN的最小值.【解答】解:当MN⊥AD时,MN的长最小,∴MN∥DC∥AB,∴∠DCM=∠CAN=∠MNB=∠NBH,设MN与BC相交于点G,∵ME∥BN,MC=CE,∴=,∴G是BC上一定点,作NH⊥AB,交AB的延长线于H,∵∠D=∠H=90°,∴Rt△MDC∽Rt△NHB,即=,∴BH=2DC=4,∴AH=AB+BH=6+4=10,∴当MN⊥AD时,MN的长最小,即为10;则线段MN长度的最小值为10.【变式9-1】如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,求DE的最小值.【分析】由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【解答】解:∵在Rt△ABC中,∠B=90°,∴BC⊥AB,∵四边形ADCE是平行四边形,∴OD=OE,OA=OC,∴当OD取最小值时,DE线段最短,此时OD⊥BC,∴OD是△ABC的中位线,∴OD=AB=2,∴ED=2OD=4;则DE的最小值是4.【变式9-2】在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣1)、点B(m,m+1)(m≠﹣1),点C(4,1),则对角线BD的最小值是()A.3B.2C.5D.6【分析】先根据B(m,m+1),可知B在直线y=x+1上,设AC,BD的交点为M,则M(2,0),BD=2BM,所以当BM最小时,BD最小,根据垂线段最短,得到当BM⊥直线y=x+1时,BM最小,此时BD亦最小,如图2,可以证得△BEM为等腰直角三角形,从而利用勾股定理,求得此时BM的值,即可解决.【解答】解:∵点B(m,m+1),∴令,∴y=x+1,∴B在直线y=x+1上,设AC,BD交于点M,如图1,∴M是AC和BD的中点,∴M(2,0),BD=2BM,∴当BM最小时,BD最小,过M作MH⊥直线y=x+1于H,根据垂线段最短,BM≥MH,所以BM的最小值为MH,即当BM⊥直线y=x+1时,BM最小,则BD最小,设直线y=x+1与x轴,y轴交于点E,F,如图2,令x=0,则y=1,∴F(0,1),同理,E(﹣1,0),∴OE=OF=1,∴∠BEM=45°,又∠MBE=90°,∴∠BEM=∠BME=45°,∴△BME为等腰直角三角形,∵E(﹣1,0),M(2,0),∴ME=3,∵BE2+BM2=ME2,且BM=BE,∴BM=,∴,即对角线BD的最小值为3,故选:A.题型10:平行四边形的性质与折叠问题10.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C【变式10-1】如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于()A.70°B.40°C.30°D.20°【分析】根据折叠的性质得出AM=MD=MF,得出∠MF A=∠A=70°,再由三角形内角和定理即可求出∠AMF.【解答】解:根据题意得:AM=MD=MF,∴∠MF A=∠A=70°,∴∠AMF=180°﹣70°﹣70°=40°;故选:B【变式10-2】如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.题型11:平行四边形的性质与证明题11.如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明:BE=DF.【分析】根据平行四边形的性质得出AB=CD,AB∥CD,进而利用全等三角形的判定和性质解答即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠DCA,∵E,F是对角线AC的三等分点,∴AE=CF,在△ABE与△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.【变式11-1】如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)线段AF与CE有什么关系?请证明你的结论.【分析】(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)AE=CF且AF∥CE,理由如下:由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.【变式11-2】如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)求证:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以证明.【分析】(1)只要证明∠MAB+∠MBA=90°即可;(2)结论:DF=CE.只要证明AD=DE,CF=BC,可得DE=CF即可解决问题;【解答】(1)证明:∵AE、BF分别平分∠DAB和∠ABC,∴∠EAB=∠DAB,∠ABF=∠ABC,∵四边形ABCD是平行四边形∴∠DAB+∠ABC=180°,∴∠EAB+∠ABF=×180°=90°,∴AE⊥BF.(2)DF=CE.证明:∵AE平分∠DAB∴∠EAB=∠EAD,∵DC∥AB,∴∠EAD=∠EAD,∴AD=DE,同理:FC=BC,∵四边形ABCD是平行四边形,∴AD=BC,∴DE=FC,∴DF=CE两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度.两条平行线间的任何两条平行线段都是相等的.题型12:平行线的距离12.如图,平行四边形ABCD中,对角线AC=21cm,BE⊥AC,垂足为E,且BE=5cm,AD=7cm,求AD和BC之间的距离.【分析】利用等积法,设AD与BC之间的距离为x,由条件可知▱ABCD的面积是△ABC的面积的2倍,可求得▱ABCD的面积,再由S四边形ABCD=AD•x,可求得x.【解答】解:设AD和BC之间的距离为x,则平行四边形ABCD的面积等于AD•x,∵S平行四边行ABCD=2S△ABC=2×AC•BE=AC•BE,∴AD•x=AC•BE,即:7x=21×5,x=15(cm),答:AD和BC之间的距离为15cm.【变式12-1】如图,在▱ABCD中,AC⊥AB,AB=6,BC=10,求:(1)AB与CD的距离;(2)AD与BC的距离.【分析】(1)在直角三角形中,由勾股定理解直角三角形,再利用三角形的面积公式求解即可;(2)由面积相等建立等式关系,进而可求解其距离.【解答】解:(1)在Rt△ABC中,由勾股定理可得AC===8,∴AB与CD的距离=AC=8;(2)∵在Rt△ABC中,AC=8,∴AD、BC之间的距离为6×8÷10=4.8【变式12-2】如图,在▱ABCD中,AE⊥BC于点E,CF⊥AD于点F.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=2,求AD与BC之间的距离.【分析】(1)根据平行四边形的对边相等可得AB=CD,对角相等可得∠B=∠D,然后利用“角角边”证明△ABE和△CDF即可;(2)利用∠B的正弦值求出AE,再根据平行线间的距离的定义解答.【解答】(1)证明:在▱ABCD中,AB=CD,∠B=∠D,∵AE⊥BC,CF⊥AD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);(2)解:∵∠B=60°,AB=2,∴AE=AB•sin60°=2×=,∵▱ABCD的边AD∥BC,∴AD与BC之间的距离为word可编辑文档。

第6章平行四边形 题型解读6 多边形的内角和与外角和计算题型北师大版八年级数学下册

第6章平行四边形 题型解读6 多边形的内角和与外角和计算题型北师大版八年级数学下册

《平行四边形》题型解读6 多边形的内角和与外角和计算题型【知识梳理】1.多边形的内角和公式:(n-2)×180º;2.多边形的外角和会等于360º,它是个定值,与边数无关;3.正多边形的定义:每条边均相等,每个内角均相等的多边形是正多边形;【典型例题】例1.正十边形的每一个内角的度数为_______【解析】:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;例2.一个五边形的内角和为________【解析】:根据正多边形内角和公式:180°×(5﹣2)=540°,一个五边形的内角和是540度,例3.已知一个多边形的内角和是900º,则这个多边形是____边形。

【解析】依多边形内角和公式求解,即(n-2)×180º=900º,解得n=7,∴这个多边形是七边形。

例4. 已知一个多边形的每个内角均是108º,则这个多边形是____边形。

【解析】依平角定义及多边形外角和公式求解,由内角是108º可得它的外角是72º, 360º÷72º=5∴这个多边形是五边形。

例5.若正多边形的一个外角是60°,则该正多边形的内角和为______【解析】:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.例6. 已知一个多边形的内角和等于它的外角和的2倍,则这个多边形是____边形。

【解析】依多边形内角和公式及外角和公式求解,即(n-2)×180º=720º,解得n=6,∴这个多边形是六边形。

例7.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.【解析】:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.例8.一个正多边形的每个外角为60°,那么这个正多边形的内角和是 .【解析】:这个正多边形的边数为360°÷60°=6,所以这个正多边形的内角和=(6﹣2)×180°=720°.例9.已知正n 边形的每一个内角为135°,则n= .【解析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多 边形的边数.多边形的外角是:180°﹣135°=45°,n=360°÷45°=8例10.若一个多边形的每个外角都等于30°,则这个多边形的边数为 .【解析】:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是360°÷30°=12,例11.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .【解析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.解:n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.例12.将一个多边形截去一个角后,形成另一个多边形,这个新的多边形内角和为720º,则原多边形的边数为____【解析】一个多边形截去一个角,存在三种情况:①减少一条边;②增加一条边;③边数不变,所以需分三种情况进行讨论.由多边形内角和公式可得:(n-2)×180º=720º,解得n=6,∴新多边形是六边形。

特殊平行四边形单元整体分类总复习八年级数学下学期重难点及章节分类精品讲义原卷版

1 第8讲 特殊平行四边形单元整体分类总复习 考点一 矩形的判定与性质 知识点睛:

1. 矩形的判定方法: ①有一个角是直角的平行四边形是矩形; ②有三个角是直角的四边形是矩形; ③四个角都相等的四边形是矩形; ④对角线相等的平行四边形是矩形; ⑤对角线相等且互相平分的四边形是矩形.

2. 矩形的性质 ①矩形的对边平行且相等; ②矩形的四个角都是直角; ③矩形的对角线相等且互相平分; ④矩形既是轴对称图形,又是中心对称图形。 类题训练

1.矩形具有而平行四边形不一定具有的性质是( ) A.对边相等 B.对角相等 C.对角线相等 D.对角线互相平分 2.如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则( )

A.(θ1+θ4)﹣(θ2+θ3)=30° B.(θ2+θ4)﹣(θ1+θ3)=40° C.(θ1+θ2)﹣(θ3+θ4)=70° D.(θ1+θ2)+(θ3+θ4)=180° 3.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是( ) A.1 B. C.2 D.

第3题 第4题 第5题 4.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为( ) A.10 B.12 C.16 D.18 5.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( ) A. B. C. D. 2

6.如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论: ①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE, 其中正确结论有( ) A.1个 B.2个 C.3个 D.4个

八年级数学下册《平行四边形的判定》练习题及答案解析

八年级数学下册《平行四边形的判定》练习题及答案解析一、选择题(共12小题)1. 下面几组条件中,能判定一个四边形是平行四边形的是( )A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2. 在同一平面内,设a,b,c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为( )A. 1cmB. 3cmC. 5cm或3cmD. 1cm或3cm3. 下面条件中,能判定四边形是平行四边形的条件是( )A. 一组对角相等B. 对角线互相平分C. 一组对边相等D. 对角线互相垂直4. 如图,四边形ABCD中,AD∥BC,点M是AD的中点,若动点N从点B出发沿边BC方向向终点C运动,连接BM,CM,AN,DN,则在整个运动过程中,阴影部分面积和的大小变化情况是( )A. 不变B. 一直变大C. 先减小后增大D. 先增大后减小5. 在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为( )A. 2√5B. 2√10C. 6√2D. 3√56. 如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A. a户最长B. b户最长C. c户最长D. 三户一样长7. 在同一平面内,已知a∥b∥c,若直线a,b间的距离为3cm,直线a,c间的距离为5cm,则直线b,c间的距离是( ).A. 2cmB. 8cmC. 2cm或8cmD. 不确定8. 下列命题中,说法正确的是( )A. 所有菱形都相似B. 两边对应成比例且有一组角对应相等的两个三角形相似C. 三角形的重心到一个顶点的距离,等于它到这个顶点对边距离的两倍D. 斜边和直角边对应成比例,两个直角三角形相似9. 如图,已知直线a∥b,小王在直线a上任取5个点:P1,P2,P3,P4,P5,经测量发现它们到直线b的距离都是3cm;小丁在直线b上任取5个点:Q1,Q2,Q3,Q4,Q5,经测量发现它们到直线a的距离b也都是3cm.该操作反映了平行线的某种性质,下列对该性质的描述中,不正确的是( )A. 如果直线a∥b,那么直线a上任意一点到直线b的距离都相等B. 如果直线a∥b,那么直线b上任意一点到直线a的距离都相等C. 两条平行线中,任意一条直线上的所有点到另一条直线的距离是一个定值D. 两条平行线中,一条直线上的任意一点与另一条直线上的任意一点之间的距离都是一个定值10. 平行四边形ABCD中,E,F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )A. BE=DFB. AE=CFC. AF∥CED. ∠BAE=∠DCF11. 如图所示,l1∥l2,B,C是l2上的两点,A,D,E是l1上的三点,S△ABC记作S1,S△DBC记作S2,S△EBC记作S3,则( )A. S1>S2>S3B. S3>S2>S1C. S1=S2=S3D. 无法比较12. 有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形(如图①),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图②),如果按此规律继续“生长”下去,那么它将变得“枝繁叶茂”.在“生长”了2021次后形成的图形中所有正方形的面积和是( )A. 2019B. 2020C. 2021D. 2022二、填空题(共8小题)13. 下列四边形中,是平行四边形的是(请填写序号).14. 如图,在四边形ABCD中,AB∥CD,请你添加—个条件,使得四边形ABCD成为平行四边形,你添加的条件是 .15. 一个四边形四条边顺次是a,b,c,d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是.16. 如图,a∥b,AB⊥b,CD⊥b,AB=4cm,则CD=.17. 已知直线a、b、c互相平行,直线a与b的距离是2厘米,直线b与c的距离是6厘米,那么直线a与c的距离是.18. 如图,已知AD∥BC,AB∥CD,过点A分别画直线BC,CD的垂线,垂足为点E,F.通过度量,可以得到平行线AD与BC间的距离为,平行线AB 与CD间的距离为.19. 在平面直角坐标系中,点A,B,C的坐标分别为A(−2,1),B(−3,−1),C(1,−1).若四边形ABCD为平行四边形,那么点D的坐标是.20. 如图,AD∥BC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是1,则△BOC的面积是.三、解答题(共6小题)21. 已知:如图所示,C为线段BE上一点,AB∥DC,AB=EC,BC=CD.求证:∠A=∠E.22. 如图,已知点E,F分别在长方形ABCD的边AB,CD上,且AF∥CE.请分别度量AE与CF之间的距离,AF与CE之间的距离(精确到0.1cm).23. 若两个角的两边分别垂直,其中一个角比另一个角的2倍少30∘,求这两个角的度数.24. 如图,已知E为平行四边形ABCD的边BC上的任一点,DE延长线交AB延长线于点F.试说明S△ABE=S△CEF的理由.25. 如图,在平行四边形ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.求证:AE=BF.26. 如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=√a−21+√21−a+16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P,Q分别从点A,O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒).(1)求B,C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P,Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P,Q两点的坐标.参考答案与解析1. B2. C3. B4. A【解析】连接MN,过F作WQ⊥AD于Q,交BC于W,过E作EH⊥AD于Q,交BC于P,∴QW=PH,∵AD∥BC,∴WQ⊥BC,∴S△MFD+S△FNC=12×MD×FQ+12×NC×FW=12×(MD+NC)×QW,S△AEM+S△BNE=12×AM×EH+12×BN×EP=12×(AM+BN)×PH,∴阴影部分面积=12×(AD+BC)×QW,∴阴影部分面积不变.5. B【解析】作A(0,2)关于x轴的对称点A′(0,−2),过A′作A′E∥x轴且A′E=CD=2,故E(2,−2),连接BE交x轴与D点,过A′作A′C∥DE交x轴于点C,所以四边形CDEA′为平行四边形,此时AC+BD最短等于BE的长,即AC+BD=A′C+BD=DE+BD=BE=√(2−0)2+(−2−4)2=2√10.6. D7. C8. D9. D10. B【解析】A.如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B.如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C.如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF∥CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF∥CE且AF=CE,∴四边形AECF是平行四边形,故不符合题意;D.如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE∥CF,∴AE∥CF且AE=CF,∴四边形AECF是平行四边形,故不符合题意.11. C【解析】同底等高的三角形的面积相等.12. D 【解析】设正方形A,B,C围成的直角三角形的三条边长分别是a,b,c.如图,根据勾股定理,得a2+b2=c2,一次“生长”后,S A+S B=S C=1.第二次“生长”后,S D+S E+S F+S G=S A+S B=S C=1,推而广之,“生长”了2021次后形成的图形中所有的正方形的面积和是2022×1=2022.13. ①②③14. 答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B= 180∘或∠C+∠D=180∘等.15. 平行四边形16. 4cm17. 4厘米或8厘米18. 4cm,5cm【解析】如图所示:通过度量,得到AE=4cm,AF=5cm,故平行线AD与BC的距离为4cm,AB与CD 的距离为5cm.19. (−6,1),(2,1),(0,−3)20. 421. ∵AB∥DC,∴∠B=∠ECD,在△ABC和△ECD中,{AB=EC,∠B=∠ECD, BC=CD,∴△ABC≌△ECD(SAS),∴∠A=∠E(全等三角形的对应角相等).22. 过点E作EH⊥AF于点H.经测量可得:AD=3.2cm,EH=1.3cm,则AE与CF之间的距离是 3.2cm,AF与CE之间的距离是 1.3cm.23. 设另一个角的度数为α,则这个角的度数是2α−30∘.因为两个角的两边分别垂直,所以α+2α−30∘=180∘或α=2α−30∘,解得α=70∘或α=30∘,所以2α−30∘=110∘或2α−30∘=30∘.故这两个角的度数分别是110∘,70∘或30∘,30∘.24. 提示:连接BD,因为AD∥BC,所以S△ABE=S△DBE,因为CD∥AF,所以S△EFD=S△BFC,所以S△BED=S△CEF,所以S△ABE=S△CEF.25. ∵CF∥BD且CF=DE,∴四边形CDEF是平行四边形,∴CD∥EF,CD=EF.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴AB∥EF,AB=EF,∴四边形ABFE是平行四边形,∴AE=BF.26. (1)因为b=√a−21+√21−a+16,所以a=21,b=16,故B(21,12),C(16,0).(2)根据题意得:QP=2t,QO=t,则:PB=21−2t,QC=16−t,因为当PB=QC时,四边形PQCB是平行四边形,所以21−2t=16−t,计算得出:t=5,所以P(10,12),Q(5,0).(3) 当 PQ =CQ 时,过 Q 作 QN ⊥AB ,如图所示,根据题意得:122+t 2=(16−t )2,计算得出:t =72,故 P (7,12),Q (72,0),当 PQ =PC 时,过 P 作 PM ⊥x 轴,如图所示,根据题意得:QM =t ,CM =16−2t ,则 t =16−2t ,计算得出:t =163,2t =323, 故 P (323,12),Q (163,0).。

创新型四边形探究题专题(八年级)

图(1) 图(2) 图(1) 图(2)图(2)★ 课题:创新型四边形探究题★ 范例精讲【创新型四边形探究题】1. 〖旋转变换型〗如图①所示,已知两个全等正方形ABCD 与A 1B 1C 1D 1,正方形ABCD 的点C 与正方形A 1B 1C 1D 1的中心重合,且绕点C 旋转.⑴当正方形ABCD 由图①旋转至图②时,两个阴影部分的面积是否相等?说明理由; ⑵当正方形ABCD 旋转至任意位置时,如图③,重叠部分的面积会怎样变化?说明你的结论.解析:⑴观察图①和图②可知阴影部分面积等于其中任意一个正方形面积的14,所以两个阴影部分的面积相等;⑵重叠部分面积不变,仍等于其中一个正方形面积的14.理由如下:如图③,连结CC 1、CD 1,在△CC 1F 和△CD 1E 中,CC 1=CD 1,∠C 1CF =90°-∠FCD 1=∠D 1CE ,∠CC 1F =∠CD 1E =45°,∴△CC 1F ≌△CD 1E ,∴S 四边形FCED 1=S △C 1CD 1=14S 正方形ABCD .2. 〖归纳猜想型〗将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,如此循环进行下去,将⑵如果剪n 次共有A n 个正方形,试用含n、A n 的等式表示这个规律;⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么? ⑸如果原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ; ⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系. 解:3. 〖拼图多解型〗如图,边长为2cm 的正方形剪成四个全等的直角三角形,请将四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠,且不留空隙). ⑴不是正方形的菱形;⑵不是正方形的矩形;⑶不是矩形和菱形的平行四边形; ⑷等腰梯形;⑸不是梯形和平行四边形的凸四边形. 解析:4. 〖几何作图型〗如图,两种规格的钢板原料,图(1)的规格为1m ×5m ,图(2)是由5个1m ×1m 的小正方形组成。

初二数学:平行四边形知识点总结及压轴题练习(附答案解析)

A C BD 初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。

3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形; ⑷一组对边平行且相等的四边形是平行四边形。

4、矩形的定义:有一个角是直角的平行四边形。

5、矩形的性质:⑴矩形的四个角都是直角;⑵矩形的对角线相等。

6、矩形判定定理:⑴ 有三个角是直角的四边形是矩形;⑵对角线相等的平行四边形是矩形。

7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

(连接三角形两边中点的线段叫做三角形的中位线。

)8、菱形的定义 :有一组邻边相等的平行四边形。

9、菱形的性质:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

S 菱形=1/2×ab (a 、b 为两条对角线长)10、菱形的判定定理:⑴四条边相等的四边形是菱形。

⑵对角线互相垂直的平行四边形是菱形。

11、正方形定义:一个角是直角的菱形或邻边相等的矩形。

12正方形判定定理:⑴ 邻边相等的矩形是正方形。

⑵有一个角是直角的菱形是正方形。

(矩形+菱形=正方形)常考题:一.选择题(共14小题)1.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等2.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形5.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.117.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.168.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.1711.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.812.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1913.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣414.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°二.填空题(共13小题)15.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.16.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.17.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO 的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.19.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.20.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.21.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.22.如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.23.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.24.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C (0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.25.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标.26.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.27.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三.解答题(共13小题)28.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.29.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.30.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.31.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.32.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.33.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.34.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?35.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.36.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.37.如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.38.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.39.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.40.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.(2014•河池)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.4.(2011•张家界)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.5.(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.6.(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【分析】在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD 沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EFB′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.【点评】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8.(2013•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.9.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.10.(2013•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.11.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC 的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF 为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD 与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF 与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.12.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.13.(2013•连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.14.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE 相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.二.填空题(共13小题)15.(2008•恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.16.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD 的周长等于20.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.17.(2013•厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF 是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.18.(2007•临夏州)如图,矩形ABCD的对角线AC和BD相交于点O,过点O 的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE =S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.19.(2014•宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B 的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D 在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.20.(2015•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.21.(2013•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是1.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=,∴CE==2,∴AB=1,故答案为:1.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.22.(2013•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF ⊥CD于F,∠B=60°,则菱形的面积为.【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【解答】解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.【点评】本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.23.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.24.(2015•攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4).【分析】由矩形的性质得出∠OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.25.(2013•阜新)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D 的坐标(3,2),(﹣5,2),(1,﹣2).【分析】首先根据题意画出图形,分别以BC,AB,AC为对角线作平行四边形,即可求得答案.【解答】解:如图:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(3,2),(﹣5,2),(1,﹣2).故答案为:(3,2),(﹣5,2),(1,﹣2).【点评】此题考查了平行四边形的性质.注意坐标与图形的关系.26.(2014•丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF 是等边三角形,再利用菱形的边长为4求出时间t的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形 创新题型分类解析
平行四边形部分是初中数学的重点内容,在各地中考试卷中都占有一定的分量。随着
课程改革的进一步深入,出现了许多构思新、重素质、考能力的创新题型,令人耳目一
新;它对培养和考查学生的发散能力和综合能力大有裨益。现例举中考题几例并加以归类
浅析,希望对同学们有所启发。

一、补充说理型
例1. 如图1,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,
∠ADC的平分线DG交边AB于G。

(1)求证:AF=GB;
(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并
说明理由。

图1
解析:(1)∵四边形ABCD是平行四边形
∴AB∥CD,∴∠AGD=∠CDG
又∵DG是∠ADC的平分线
∴∠ADG=∠GDC
∴∠AGD=∠ADG
∴AD=AG
同理可得:BF=BC
在平行四边形ABCD中,AD=BC
∴AG=BF
∴AF=GB
(2)可以添加条件∠ADC=90°或四边形ABCD是矩形
说理如下:∵四边形ABCD是矩形
∴∠ADC=∠BCD=90°
又DG、CF平分∠ADC和∠BCD
∴∠EDC=∠ECD=45°
∴∠AGD=∠BFC=45°,∠FEG=90°
即△EFG是等腰直角三角形。
点评:此例把解题的主动性交给学生,让学生添加条件再说理,给学生创造了一个适
度的思维空间;富有创意,活而不难,有利于激发学生的信心和探索欲望。

二、判断类比型
例2.
已知任意四边形ABCD,且线段AB、BC、CD、DA、AC、BD的中点分别是E、F、
G、H、P、Q。

(1)若四边形ABCD如图2-1,判断下列结论是否正确(正确的在括号里填“√”,
错误的在括号里填“×”)。

甲:顺次连接EF、FG、GH、HE一定得到平行四边形;( )
乙:顺次连接EQ、QG、GP、PE一定得到平行四边形。( )
(2)请选择甲、乙中的一个,证明你对它的判断。
(3)若四边形ABCD如图2-2,请你判断(1)中的两个结论是否成立?
解析:(1)甲的判断是正确的;乙的判断是错误的。
(2)对甲说理如下:
连接EF、FG、GH、HE(如图2-3)
∵E、F分别是AB、BC的中点
∴EF是△ABC的中位线

∴∥,EFACEFAC
1
2

同理,HG∥AC

HGAC
1
2

∴EF∥HG,EF=HG
∴四边形EFGH是平行四边形
对乙可举反例说明:如图2-4,在矩形ABCD中,顺次连接EQ、QG、GP、PE得到一
条线段,而不是一个平行四边形。

(3)对图2-2,类似于(1)中的结论甲、乙都成立。
点评:此例通过设计问题串,让学生经历判断、归纳,从而建立认识,再作判断;体
现了新课程下命题者关注学生思维过程的良苦用心。

三、猜想证明型
例3.
已知:如图3,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一
点,且DE=BF。请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,
猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可)。

图3
(1)连接_____________;
(2)猜想_____________=_____________;
(3)证明
解析:连接AF,猜想AF=AE。
证明:连接AC,交BD于O
∵四边形ABCD是菱形,∴AC⊥BD于O,DO=BO
∵DE=BF,∴EO=FO
∴AC垂直平分EF
∴AF=AE
点评:此例要求学生经历探索—猜想—证明的思维过程,这种螺旋上升的结构符合学
生的心理特征和认知规律。让考生在试卷上留下思维的痕迹,能创造性地激活学生的思
维。

四、运动探究型
例5.
如图4,已知平行四边形ABCD及四边形外一直线,四个顶点A、B、C、D到直线
l
的距离分别为a、b、c、d。
l

(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论。
(2)现将向上平移,你得到的结论还一定成立吗?请分情况写出你的结论。
l
解析:(1)
acbd

证明:连接AC、BD,且AC、BD相交于点O,为点O到的距离
OO
1
l

图4
∴为直角梯形的中位线
OO
1BBDD11
∴2
111
OODDBBbd

同理:
2
111
OOAACCac

∴acbd
(2)不一定成立。
分别有以下情况:
直线过A点时,;
lcbd
直线过A点与B点之间时,;
lcabd
直线过B点时,;
lcad
直线过B点时与D点之间时,;
lacbd
直线过D点时,;
lacb
直线过C点与D点之间时,;
lacbd
直线过C点时,;
labd
直线过C点上方时,。
lacbd
点评:将静态的数学与动态的变化结合起来,给数学以生命,让学生在图形的变化中
理解体验变与不变。本题以“平行四边形”、“线”为背景,在“动”中开拓学生视野,
拓宽学生的思维空间,在“静”中寻找关系,从而找到解决问题的途径。该题较好地考查
了学生观察、分析、判断论证能力和探究创新能力;有利于培养学生严谨的思维习惯和缜
密的治学态度。

五、图形设计型
例5.
在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后,用得到
的△AEF和四边形EBCF可以拼成平行四边形EBCP,剪切线与拼图如图示1,仿上述的
方法,按要求完成下列操作设计,并在规定位置画出图示。

图示1
(1)在△ABC中,增加条件_____________,沿着_____________一刀剪切后可以拼
成矩形,剪切线与拼图画在图示2的位置;
(2)在△ABC中,增加条件_____________,沿着_____________一刀剪切后可以拼
成菱形,剪切线与拼图画在图示3的位置;

(3)在△ABC中,增加条件_____________,沿着_____________一刀剪切后可以拼
成正方形,剪切线与拼图画在图示4的位置;

(4)在△ABC(AB≠AC)中,一刀剪切后也可以拼成等腰梯形,首先要确定剪切
线,其操作过程(剪切线的作法)是____________________________

然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置。
解:(1)方法一:∠B=90°,中位线EF,如图示2-1。
方法二:AB=AC,中线(或高)AD,如图示2-2。
(2)AB=2BC(或者∠C=90°,∠A=30°),中位线EF,如图示3。
(3)方法一:∠B=90°且AB=2BC,中位线EF,如图示4-1。
方法二:AB=AC且∠BAC=90°,中线(或高)AD,如图示4-2。
(4)方法一:不妨设∠B>∠C,在BC边上取一点D,作∠GDB=∠B交AB于G,
过AC的中点E作EF∥GD交BC于F,则EF为剪切线,如图示5-1。

方法二:不妨设∠B>∠C,分别取AB、AC的中点D、E,过D、E作BC的垂线,
G、H为垂足,在HC上截取HF=GB,连接EF,则EF为剪切线,如图示5-2。

方法三:不妨设∠B>∠C,作高AD,在DC上截取DG=DB,连接AG,过AC的中
点E作EF∥AG交BC于F,则EF为剪切线,如图示5-2。
7

点评:重视提高动手操作能力和实践能力,是素质教育新课程的切入点。此类题设计
新颖,不落俗套,为考生画图操作、类比联想、反思探究提供了自由发挥、自主探究的广
阔思维空间;对进一步理解和应用所学知识,发展创新能力、实践能力、操作能力大有裨
益;让学生在具体的操作情境中,领悟数学的发展与形成的真谛。

初三中考作业本有这样一道题:如图所示,已知四边形纸片ABCD,现需将该纸片剪拼成一个
与它面积相等的平行四边形纸片,如果限定裁剪线有两条,能否做到:____(选填"能"或"不能"),
请确定裁剪线的位置,并说明拼接方法:若填"不能",请简要说明理由.

拿到此题,学生们感觉无从下手.仔细分析此题,此题涉及到如何剪,如何拼的问题,因
而我作了如下的解题分析.

一.寻找解题思路.
(1)由于四边形内角和为3600,因而可以将四个内角拼成一个周角,可以进行平面镶嵌.
(2)由于拼成的四边形是平行四边形,因而必须注意边长的特殊性,可以取各边的中点.
在找到思路的基础上,我们就可动手裁剪--沿对边的中点剪开,分割成四部分.
二.如何拼凑是本题的难点,关键是不能将剪下的图形弄乱.拼时以其中一块图形不动,抓相等
的边拼在一起,以相临两边的中点为旋转中心将其中两块图形转1800,不相临的第三块图形
平移到空缺处.

三.如何说明它是平行四边形.
(1)必须说明三点共线.可用两角之和为1800.
(2)必须说明它是平行四边形.可用角的关系证明两组对边平行.
经过以上的分析,裁剪,拼凑,证明,才可完整的完成此题.

相关文档
最新文档