小学数学各类应用题类型及解题方法

合集下载

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

小学数学典型应用题归纳汇总30种题型

小学数学典型应用题归纳汇总30种题型

小学数学典型应用题归纳汇总 30种题型归一问题【含义】在解题时,先求出一份是多少〔即单一量〕,然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量份数量×所占份数=所求几份的数量另一总量÷〔总量÷份数〕=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要元钱,买同样的铅笔16支,需要多少钱?解〔1〕买1支铅笔多少钱?÷5=〔元〕〔2〕买16支铅笔需要多少钱?×16=〔元〕列成综合算式÷5×16=×16=〔元〕答:需要元。

归总问题【含义】解题时,常常先找出“总数量〞,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量〞是指货物的总价、几小时〔几天〕的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布米,改良裁剪方法后,每套衣服用布米。

原来做791套衣服的布,现在可以做多少套?解〔1〕这批布总共有多少米?×791=〔米〕〔2〕现在可以做多少套?÷=904〔套〕列成综合算式×791÷=904〔套〕答:现在可以做904套。

和差问题【含义】两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=〔和+差〕÷2小数=〔和-差〕÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=〔98+6〕÷2=52〔人〕乙班人数=〔98-6〕÷2=46〔人〕答:甲班有52人,乙班有46人。

小学数学几种类型应用题

小学数学几种类型应用题

几种解决问题的方法姓名:座号:(一)演示法解决问题:1、有一列火车长168米,以每小时18千米的速度通过一座长862米的铁桥,求车头进桥到车尾离桥一共需要多少时间?(二)消元法解决问题:1、少年宫美术小组第一天买了3盒彩笔和1枝毛笔,共付4.44元,第二天又买了同样的5盒彩笔和3枝毛笔,共付7.96元,求每盒彩笔和毛笔各多少元?2、小明和小楠去水果店买水果,小明买了4千克梨和5千克苹果共付5元,小楠买了4千克梨和6千克苹果,一共付5.6元,求每千克多少元?(三)假定法解决问题:1、用三辆卡车共运水泥910吨,第一辆比第二辆多30吨,第三辆比第二辆少运20吨,三辆卡车各运多少吨?2、小青有2分和5分的硬币20枚共0.58元,那么其中2分、5分各几枚?3、李刚和张琦一起跳绳,李刚先跳了3分钟,而后两人又共同跳2分钟,一共跳了610个,已知李刚每分钟比张琦多跳10个,求李刚比张琦一共多跳多少个? (四)逆推法解题(1)某数加7,其和乘以7,积再减去7,差又除以7,结果等于7,这个数?(2)甲、乙、丙三个儿童分苹果,甲分一半又半个,乙分剩下的一半又半个,丙再分剩下的一半又半个,正好分完,共有几个苹果?甲分几个?(3)仓库里原有化肥若干吨,第一次取出全部的一半多30吨,第二次取出余下的一半少100吨,第三次取出150吨,最后还剩下70吨,这批化肥原有多少吨?(五)替代法解决问题:1、某食堂运来面粉和大米共62袋,面粉袋数的15比大米袋数14少2袋。

面粉和大米各运来多少袋?2、建筑工地用5辆大车和4辆小车一次运来砂石42.5吨,每辆大车比每辆小车多运4吨。

每辆大车和每辆小车各运砂石多少吨?3、小明到水果店去买梨和苹果。

全部的钱可买3千克梨和12千克苹果,或者可买6千克梨和8千克苹果。

如用全部的钱只买梨或苹果,各可买多少千克?4、 大卡车运4次,小卡车运5次,共运货66吨。

大卡车2次的运货量等于小卡车3次的运货量。

小学数学应用题21种类型总结(附例题、解题思路)

小学数学应用题21种类型总结(附例题、解题思路)

小学数学应用题21种类型总结(附例题、解题思路) 1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2、归总问题【含义】解题时,常常先找出"总数量",然后再根据其它条件算出所求的问题,叫归总问题。

所谓"总数量"是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题讲解应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题. 以下主要研究30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25 、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

小学数学应用题分类及解答方法

小学数学应用题分类及解答方法

典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时100 千米的速度从甲地开往乙地,又以每小时60 千米的速度从乙地开往甲地。

求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。

此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为60 千米,所用的时间是,汽车共行的时间为+ = , 汽车的平均速度为2 ÷ =75 (千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。

又称“单归一。

”两次归一问题,用两步运算就能求出“单一量”的归一问题。

又称“双归一。

”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

小学数学应用题的21种类型

1【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。

3【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

小学数学常见的应用题的解答方法

小学数学常见的应用题的解答方法:1.和差问题:(和+差)÷2=较大数 ,(和-差)÷2=较小数或 和-较小数=较大数2. 和倍问题:和÷(倍+1)=较小数,和-较小数=较大数或 较小数×倍数=较大数3. 差倍问题:差÷(倍-1)=较小数 ,较小数×倍数=较大数或 较小数+差=较大数4. 行程问题:路程=速度×时间,速度=路程÷时间,时间=路程÷速度5. 相遇问题:相遇路程=速度和×共行时间 ,相遇时间=相遇路程÷速度和速度和=相遇路程÷共行时间6. 追及问题:追及路程=速度差×追及时间追及时间=追及路程÷速度差速度差=追及路程÷追及时间7. 利润与折扣:利润=售价-成本利润率=成本利润×100%利息=本金×利率×时间8. 价钱问题:总价=单价×数量单价=总价÷数量数量=总价÷单价9. 工作量问题:工作总量=工作效率×工作时间工作时间=工作总量÷工作效率工作效率=工作总量÷工作时间10. 产量问题:总产量=亩产量×亩数,亩产量=总产量÷亩数,亩数=总产量÷亩产量11. 植树问题:(1)、两头都栽:全长=株距×(棵数-1)(2)、只栽一头:全长=株距×棵数(3)、两头都不栽:全长=株距×(棵数+1)12. 鸡兔同笼: 假设是鸡,结果是兔,假设是兔,结果是鸡.大差 ÷ 小差13、分数和百分数应用题:(1)、找单位“1”。

单位“1”的数量已知,就是乘法。

列式为:单位“1”的数量×与问题相对应的份数。

(2)、如果单位“1”的数量未知,就是除法。

列式为:数量÷相对应的份数。

14、鸽巢问题:(1)、至少数=商+1(2)、至少数=颜色数+1(3)、至少数=颜色数×扩大倍数+1(4)、指定色=所有其它色的和+115、比例问题:(1)、正比例:一般情况下,题中有“照这样计算”、“按这样的 速度”等字眼。

小学数学总复习三十类应用题解题思路和方法

小学数学总复习三十类应用题解题思路和方法一、归一问题含义在解题时,先求出一份是多少即单一量,然后以单一量为标准,求出所要求的数量;这类应用题叫做归一问题;数量关系总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷总量÷份数=所求份数解题思路和方法先求出单一量,以单一量为标准,求出所要求的数量;例1 买5支铅笔要元钱,买同样的铅笔16支,需要多少钱解1买1支铅笔多少钱÷5=元2买16支铅笔需要多少钱×16=元列成综合算式÷5×16=×16=元答:需要元;例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷解11台拖拉机1天耕地多少公顷90÷3÷3=10公顷25台拖拉机6天耕地多少公顷10×5×6=300公顷列成综合算式90÷3÷3×5×6=10×30=300公顷答:5台拖拉机6 天耕地300公顷;例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次解 11辆汽车1次能运多少吨钢材100÷5÷4=5吨27辆汽车1次能运多少吨钢材5×7=35吨3105吨钢材7辆汽车需要运几次105÷35=3次列成综合算式105÷100÷5÷4×7=3次答:需要运3次;二、归总问题含义解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题;所谓“总数量”是指货物的总价、几小时几天的总工作量、几公亩地上的总产量、几小时行的总路程等;数量关系 1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路和方法先求出总数量,再根据题意得出所求的数量;例1 服装厂原来做一套衣服用布米,改进裁剪方法后,每套衣服用布米;原来做791套衣服的布,现在可以做多少套解 1这批布总共有多少米×791=米2现在可以做多少套÷=904套列成综合算式×791÷=904套答:现在可以做904套;例2 小华每天读24页书,12天读完了红岩一书;小明每天读36页书,几天可以读完红岩解 1红岩这本书总共多少页24×12=288页2小明几天可以读完红岩288÷36=8天列成综合算式24×12÷36=8天答:小明8天可以读完红岩;例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜;后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天解 1这批蔬菜共有多少千克50×30=1500千克2这批蔬菜可以吃多少天1500÷50+10=25天列成综合算式50×30÷50+10=1500÷60=25天答:这批蔬菜可以吃25天;三、和差问题含义已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题;数量关系大数=和+差÷ 2小数=和-差÷ 2解题思路和方法简单的题目可以直接套用公式;复杂的题目变通后再用公式;例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人解甲班人数=98+6÷2=52人乙班人数=98-6÷2=46人答:甲班有52人,乙班有46人;例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积;解长=18+2÷2=10厘米宽=18-2÷2=8厘米长方形的面积=10×8=80平方厘米答:长方形的面积为80平方厘米;例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克;解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多32-30=2千克,且甲是大数,丙是小数;由此可知甲袋化肥重量=22+2÷2=12千克丙袋化肥重量=22-2÷2=10千克乙袋化肥重量=32-12=20千克答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克;例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是14×2+3,甲与乙的和是97,因此甲车筐数=97+14×2+3÷2=64筐乙车筐数=97-64=33筐答:甲车原来装苹果64筐,乙车原来装苹果33筐;四、和倍问题含义已知两个数的和及大数是小数的几倍或小数是大数的几分之几,要求这两个数各是多少,这类应用题叫做和倍问题;数量关系总和÷几倍+1=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数解题思路和方法简单的题目直接利用公式,复杂的题目变通后利用公式;例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵解 1杏树有多少棵248÷3+1=62棵2桃树有多少棵62×3=186棵答:杏树有62棵,桃树有186棵;例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的倍,求两库各存粮多少吨解 1西库存粮数=480÷+1=200吨2东库存粮数=480-200=280吨答:东库存粮280吨,西库存粮200吨;例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站28-24辆;把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数52+32就相当于2+1倍,那么,几天以后甲站的车辆数减少为52+32÷2+1=28辆所求天数为 52-28÷28-24=6天答:6天以后乙站车辆数是甲站的2倍;例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量;因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时170+4-6就相当于1+2+3倍;那么,甲数=170+4-6÷1+2+3=28乙数=28×2-4=52丙数=28×3+6=90答:甲数是28,乙数是52,丙数是90;五、差倍问题含义已知两个数的差及大数是小数的几倍或小数是大数的几分之几,要求这两个数各是多少,这类应用题叫做差倍问题;数量关系两个数的差÷几倍-1=较小的数较小的数×几倍=较大的数解题思路和方法简单的题目直接利用公式,复杂的题目变通后利用公式;例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵;求杏树、桃树各多少棵解 1杏树有多少棵124÷3-1=62棵2桃树有多少棵62×3=186棵答:果园里杏树是62棵,桃树是186棵;例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁解 1儿子年龄=27÷4-1=9岁2爸爸年龄=9×4=36岁答:父子二人今年的年龄分别是36岁和9岁;例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元解如果把上月盈利作为1倍量,则30-12万元就相当于上月盈利的2-1倍,因此上月盈利=30-12÷2-1=18万元本月盈利=18+30=48万元答:上月盈利是18万元,本月盈利是48万元;例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差138-94;把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,138-94就相当于3-1倍,因此剩下的小麦数量=138-94÷3-1=22吨运出的小麦数量=94-22=72吨运粮的天数=72÷9=8天答:8天以后剩下的玉米是小麦的3倍;六、倍比问题含义有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题;数量关系总量÷一个数量=倍数另一个数量×倍数=另一总量解题思路和方法先求出倍数,再用倍比关系求出要求的数;例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少解 13700千克是100千克的多少倍3700÷100=37倍2可以榨油多少千克40×37=1480千克列成综合算式40×3700÷100=1480千克答:可以榨油1480千克;例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵解 148000名是300名的多少倍48000÷300=160倍2共植树多少棵400×160=64000棵列成综合算式400×48000÷300=64000棵答:全县48000名师生共植树64000棵;例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元全县16000亩果园共收入多少元解 1800亩是4亩的几倍800÷4=200倍2800亩收入多少元11111×200=2222200元316000亩是800亩的几倍16000÷800=20倍416000亩收入多少元2222200×20=元答:全乡800亩果园共收入2222200元,全县16000亩果园共收入元;七、相遇问题含义两个运动的物体同时由两地出发相向而行,在途中相遇;这类应用题叫做相遇问题;数量关系相遇时间=总路程÷甲速+乙速总路程=甲速+乙速×相遇时间解题思路和方法简单的题目可直接利用公式,复杂的题目变通后再利用公式;例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇解392÷28+21=8小时答:经过8小时两船相遇;例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间解“第二次相遇”可以理解为二人跑了两圈;因此总路程为400×2相遇时间=400×2÷5+3=100秒答:二人从出发到第二次相遇需100秒时间;例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离;解“两人在距中点3千米处相遇”是正确理解本题题意的关键;从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是3×2千米,因此,相遇时间=3×2÷15-13=3小时两地距离=15+13×3=84千米答:两地距离是84千米;八、追及问题含义两个运动物体在不同地点同时出发或者在同一地点而不是同时出发,或者在不同地点又不是同时出发作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体;这类应用题就叫做追及问题;数量关系追及时间=追及路程÷快速-慢速追及路程=快速-慢速×追及时间解题思路和方法简单的题目直接利用公式,复杂的题目变通后利用公式;例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马解 1劣马先走12天能走多少千米75×12=900千米2好马几天追上劣马900÷120-75=20天列成综合算式75×12÷120-75=900÷45=20天答:好马20天能追上劣马;例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑;小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米;解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了500-200米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间;又知小明跑200米用40秒,则跑500米用40×500÷200秒,所以小亮的速度是500-200÷40×500÷200=300÷100=3米答:小亮的速度是每秒3米;例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击;已知甲乙两地相距60千米,问解放军几个小时可以追上敌人解敌人逃跑时间与解放军追击时间的时差是22-16小时,这段时间敌人逃跑的路程是10×22-6千米,甲乙两地相距60千米;由此推知追及时间=10×22-6+60÷30-10=220÷20=11小时答:解放军在11小时后可以追上敌人;例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离;解这道题可以由相遇问题转化为追及问题来解决;从题中可知客车落后于货车16×2千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷48-40=4小时所以两站间的距离为 48+40×4=352千米列成综合算式 48+40×16×2÷48-40=88×4=352千米答:甲乙两站的距离是352千米;例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米;哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇;问他们家离学校有多远解要求距离,速度已知,所以关键是求出相遇时间;从题中可知,在相同时间从出发到相遇内哥哥比妹妹多走180×2米,这是因为哥哥比妹妹每分钟多走90-60米, 那么,二人从家出走到相遇所用时间为180×2÷90-60=12分钟家离学校的距离为90×12-180=900米答:家离学校有900米远;例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课;后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校;求孙亮跑步的速度;解手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到10-5分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了10-5分钟;如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用9-10-5分钟;所以步行1千米所用时间为1÷9-10-5=小时=15分钟跑步1千米所用时间为 15-9-10-5=11分钟跑步速度为每小时1÷11/60=千米答:孙亮跑步速度为每小时千米;九、植树问题含义按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题;数量关系线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷棵距×行距解题思路和方法先弄清楚植树问题的类型,然后可以利用公式;例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳解136÷2+1=68+1=69棵答:一共要栽69棵垂柳;例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树解400÷4=100棵答:一共能栽100棵白杨树;例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯解220×4÷8-4=110-4=106个答:一共可以安装106个照明灯;例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖解96÷×=96÷=400块答:至少需要400块地板砖;例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯解 1桥的一边有多少个电杆500÷50+1=11个2桥的两边有多少个电杆11×2=22个3大桥两边可安装多少盏路灯22×2=44盏答:大桥两边一共可以安装44盏路灯;十、年龄问题含义这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化;数量关系年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点;解题思路和方法可以利用“差倍问题”的解题思路和方法;例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍明年呢解35÷5=7倍35+1÷5+1=6倍答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍;例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍解 1母亲比女儿的年龄大多少岁 37-7=30岁2几年后母亲的年龄是女儿的4倍30÷4-1-7=3年列成综合算式 37-7÷4-1-7=3年答:3年后母亲的年龄是女儿的4倍;例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁解今年父子的年龄和应该比3年前增加3×2岁,今年二人的年龄和为 49+3×2=55岁把今年儿子年龄作为1倍量,则今年父子年龄和相当于4+1倍,因此,今年儿子年龄为55÷4+1=11岁今年父亲年龄为11×4=44岁答:今年父亲年龄是44岁,儿子年龄是11岁;例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”;乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”;求甲乙现在的岁数各是多少解这里涉及到三个年份:过去某一年、今年、将来某一年;列表分析:因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 61-4÷3=19岁甲今年的岁数为△=61-19=42岁乙今年的岁数为□=42-19=23岁答:甲今年的岁数是42岁,乙今年的岁数是23岁;十一、行船问题含义行船问题也就是与航行有关的问题;解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差;数量关系顺水速度+逆水速度÷2=船速顺水速度-逆水速度÷2=水速顺水速=船速×2-逆水速=逆水速+水速×2逆水速=船速×2-顺水速=顺水速-水速×2解题思路和方法大多数情况可以直接利用数量关系的公式;例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时解由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时320÷8-15=25千米船的逆水速为 25-15=10千米船逆水行这段路程的时间为320÷10=32小时答:这只船逆水行这段路程需用32小时;例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间解由题意得甲船速+水速=360÷10=36甲船速-水速=360÷18=20可见 36-20相当于水速的2倍,所以, 水速为每小时 36-20÷2=8千米又因为, 乙船速-水速=360÷15,所以, 乙船速为360÷15+8=32千米乙船顺水速为 32+8=40千米所以, 乙船顺水航行360千米需要360÷40=9小时答:乙船返回原地需要9小时;例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时解这道题可以按照流水问题来解答;1两城相距多少千米576-24×3=1656千米2顺风飞回需要多少小时1656÷576+24=小时列成综合算式576-24×3÷576+24=小时答:飞机顺风飞回需要小时;十二、列车问题含义这是与列车行驶有关的一些问题,解答时要注意列车车身的长度;数量关系火车过桥:过桥时间=车长+桥长÷车速火车追及:追及时间=甲车长+乙车长+距离÷甲车速-乙车速火车相遇:相遇时间=甲车长+乙车长+距离÷甲车速+乙车速解题思路和方法大多数情况可以直接利用数量关系的公式;例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟;这列火车长多少米解火车3分钟所行的路程,就是桥长与火车车身长度的和;1火车3分钟行多少米900×3=2700米2这列火车长多少米 2700-2400=300米列成综合算式900×3-2400=300米答:这列火车长300米;例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米解火车过桥所用的时间是2分5秒=125秒,所走的路程是8×125米,这段路程就是200米+桥长,所以,桥长为8×125-200=800米答:大桥的长度是800米;例3 一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间解从追上到追过,快车比慢车要多行225+140米,而快车比慢车每秒多行22-17米,因此,所求的时间为225+140÷22-17=73秒答:需要73秒;例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间解如果把人看作一列长度为零的火车,原题就相当于火车相遇问题;150÷22+3=6秒答:火车从工人身旁驶过需要6秒钟;例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒;求这列火车的车速和车身长度各是多少解车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长;可知火车在88-58秒的时间内行驶了2000-1250米的路程,因此,火车的车速为每秒2000-1250÷88-58=25米进而可知,车长和桥长的和为25×58米,因此,车长为25×58-1250=200米答:这列火车的车速是每秒25米,车身长200米;十三、时钟问题含义就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等;时钟问题可与追及问题相类比;数量关系分针的速度是时针的12倍,二者的速度差为11/12;通常按追及问题来对待,也可以按差倍问题来计算;解题思路和方法变通为“追及问题”后可以直接利用公式;例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格;每分钟分针比时针多走1-1/12=11/12格;4点整,时针在前,分针在后,两针相距20格;所以分针追上时针的时间为20÷1-1/12≈ 22分答:再经过22分钟时针正好与分针重合;例2 四点和五点之间,时针和分针在什么时候成直角解钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格包括分针在时针的前或后15格两种情况;四点整的时候,分针在时针后5×4格,如果分针在时针后与它成直角,那么分针就要比时针多走5×4-15格,如果分针在时针前与它成直角,那么分针就要比时针多走5×4+15格;再根据1分钟分针比时针多走1-1/12格就可以求出二针成直角的时间;5×4-15÷1-1/12≈ 6分5×4+15÷1-1/12≈ 38分答:4点06分及4点38分时两针成直角;例3 六点与七点之间什么时候时针与分针重合解六点整的时候,分针在时针后5×6格,分针要与时针重合,就得追上时针;这实际上是一个追及问题;5×6÷1-1/12≈ 33分答:6点33分的时候分针与时针重合;十四、盈亏问题含义根据一定的人数,分配一定的物品,在两次分配中,一次有余盈,一次不足亏,或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题;数量关系一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数=盈+亏÷分配差如果两次都盈或都亏,则有:参加分配总人数=大盈-小盈÷分配差参加分配总人数=大亏-小亏÷分配差解题思路和方法大多数情况可以直接利用数量关系的公式;例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个;问有多少小朋友有多少个苹果解按照“参加分配的总人数=盈+亏÷分配差”的数量关系:1有小朋友多少人11+1÷4-3=12人2有多少个苹果3×12+11=47个答:有小朋友12人,有47个苹果;例2 修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天;这条路全长多少米解题中原定完成任务的天数,就相当于“参加分配的总人数”,按照“参加分配的总人数=大亏-小亏÷分配差”的数量关系,可以得知原定完成任务的天数为260×8-300×4÷300-260=22天这条路全长为300×22+4=7800米答:这条路全长7800米;例3 学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完;问有多少车多少人解本题中的车辆数就相当于“参加分配的总人数”,于是就有1有多少车30-0÷45-40=6辆2有多少人40×6+30=270人答:有6 辆车,有270人;十五、工程问题含义工程问题主要研究工作量、工作效率和工作时间三者之间的关系;这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量;数量关系解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数它表示单位时间内完成工作总量的几分之几,进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式;工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=总工作量÷甲工作效率+乙工作效率解题思路和方法变通后可以利用上述数量关系的公式;例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成解题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”;由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的1/10+1/15;由此可以列出算式:1÷1/10+1/15=1÷1/6=6天答:两队合做需要6天完成;例2 一批零件,甲独做6小时完成,乙独做8小时完成;现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个解设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成1/6-1/8,二人合做时每小时完成1/6+1/8;因为二人合做需要1÷1/6+1/8小时,这个时间内,甲比乙多做24个零件,所以1每小时甲比乙多做多少零件24÷1÷1/6+1/8=7个2这批零件共有多少个7÷1/6-1/8=168个答:这批零件共有168个;解二上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3由此可知,甲比乙多完成总工作量的 4-3 / 4+3 =1/7所以,这批零件共有24÷1/7=168个例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成;现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成解必须先求出各人每小时的工作效率;如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是。

小学数学六年级应用题13种类型解题方法

1、已知条件类:根据题干中给定的条件,推导出最终结论;
2、识别规律类:根据题干中给出的数据,找出规律,然后得出结果;
3、概率类:依据事物发生的可能性计算结果;
4、几何类:借助图形,利用已知信息
求未知数;5、省略号类:找出省略号读值,得出结论;6、二次根式类:根据题干中给出的二次根式,求出解;7、变量代换类:根据题干中的变
量的特点,替换变量,得出结论;8、方程组类:根据题干给出的方程组,求解出结果;9、类比类:根据题干中的类比情景,得出相应结果;10、
对比分析类:根据题干中的对比情景,得出结论;11、容斥原理类:根据
题干中的容斥原理,求出解;12、反证法类:根据题干中的给定条件,反
证出结果;13、短路法类:根据题干中的情景,分析各种结果,不断缩小
范围,得出最终答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。

基本关系式是:两数差÷倍数差=较小数。

例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。

原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。

一般关系式有:(和-差)÷2=较小数(和+差)÷2=较大数。

例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?(24+4)÷2 =28÷2 =14 乙数(24-4)÷2 =20÷2 =10 甲数答:甲数是10,乙数是14还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。

还原问题是逆解应用题。

一般根据加、减法,乘、除法的互逆运算的关系。

由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。

例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。

第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?分析:如果第二天刚好售出剩下的一半,就应是19+12吨。

第一天售出以后,剩下的吨数是(19+12)×2吨。

以下类推。

列式:[(19+12)×2-12]×2 =[31×2-12]×2 =[62-12]×2 =50×2 =100(吨)答:这个仓库原来有大米100吨。

置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。

其结果往往与条件不符合,再加以适当的调整,从而求出结果。

例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。

这个集邮爱好者买这两种邮票各多少张?分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。

而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

列式:(2000-1880)÷(20-10)=120÷10 =12(张)→10分一张的张数100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

五盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。

其计算方法是:当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差例1、解放军某部的一个班,参加植树造林活动。

如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。

求这个班有多少人?一共有多少棵树苗分析:由条件可知,这道题属第一种情况。

列式:(14+4)÷(7-5)=18÷2 = 9(人)5×9+14 =45+14 =59(棵)或:7×9-4 =63-4 =59(棵)答:这个班有9人,一共有树苗59棵。

年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:成倍时小的年龄=大小年龄之差÷(倍数-1)几年前的年龄=小的现年-成倍数时小的年龄几年后的年龄=成倍时小的年龄-小的现在年龄例父亲今年54岁,儿子今年12岁。

几年后父亲的年龄是儿子年龄的4倍?(54-12)÷(4-1)=42÷3 =14(岁)→儿子几年后的年龄14-12=2(年)→2年后答:2年后父亲的年龄是儿子的4倍。

例2、父亲今年的年龄是54岁,儿子今年有12岁。

几年前父亲的年龄是儿子年龄的7倍?(54-12)÷(7-1)=42÷6=7(岁)儿子几年前年龄12-7=5(年)5年前答:5年前父亲的年龄是儿子的7倍。

例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。

王刚父母亲今年的年龄各是多少岁?(148×2+4)÷(3+1)=300÷4 =75(岁)→父亲的年龄148-75=73(岁)或:(148+2)÷2 =150÷2 =75(岁) 75-2=73(岁)答:王刚的父亲今年75岁,母亲今年73岁。

鸡兔问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。

一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。

常用的基本公式有:(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数例:鸡兔同笼共有24只。

有64条腿。

求笼中的鸡和兔各有多少只?(64-2×24)÷(4-2)=(64-48)÷(4-2)=16 ÷2 =8(只)→兔的只数24-8=16(只)→鸡的只数答:笼中的兔有8只,鸡有16只。

牛吃草问题(船漏水问题):若干头牛在一片有限范围内的草地上吃草。

牛一边吃草,草地上一边长草。

当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。

如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。

原因是因为其一,用的时间少;其二,对应的长出来的草也少。

这个差就是这片草地5天长出来的草。

每天长出来的草可供5头牛吃一天。

如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)=(150-125)÷(10-5)=25÷5 =5(头)→可供5头牛吃一天。

150-10×5 =150-50 =100(头)草地上原有草供100头牛吃一天100÷(10-5)=100÷5 =20(天)答:若供10头牛吃,可以吃20天。

例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。

现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?(100×4-50×6)÷(100-50)=(400-300)÷(100-50)=100÷50 =2400-100×2 =400-200=200 200÷(7-2)=200÷5 =40(分)答:用7部同样的抽水机,40分钟可以抽干这口井里的水。

公约数、公倍数问题:运用最大公约数或最小公倍数解答应用题,叫做公约数、公倍数问题。

例1:一块长方体木料,长2.5米,宽1.75米,厚0.75米。

如果把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少?共锯了多少块?分析:2.5=250厘米 1.75=175厘米0.75=75厘米其中250、175、75的最大公约数是25,所以正方体的棱长是25CM(250÷25)×(175÷25)×(75÷25)=10×7×3 =210(块)答:正方体的棱长是25厘米,共锯了210块。

例2、两啮合齿轮,一个有24个齿,另一个有40个齿,求某一对齿从第一次接触到第二次接触,每个齿轮至少要转多少周?分析:因为24和40的最小公倍数是120,也就是两个齿轮都转120个齿时,第一次接触的一对齿,刚好第二次接触。

120÷24=5(周) 120÷40=3(周)答:每个齿轮分别要转5周、3周。

分数应用题:指用分数计算来解答的应用题,叫做分数应用题,也叫分数问题。

分数应用题一般分为三类:1.求一个数是另一个数的几分之几。

2.求一个数的几分之几是多少。

3.已知一个数的几分之几是多少,求这个数。

其中每一类别又分为二种,其一:一般分数应用题;其二:较复杂的分数应用题。

例1:育才小学有学生1000人,其中三好学生250人。

三好学生占全校学生的几分之几?例2:一堆煤有180吨,运走了3/5 。

运走了多少吨?例3:某农机厂去年生产农机1800台,今年计划比去年增加1/3 。

今年计划生产多少台?1800×(1+1/3 )=1800×4/3=2400(台)答:今年计划生产2400台。

例4:修一条长2400米的公路,第一天修完全长的1/3 ,第二天修完余下的1/4 。

还剩下多少米?2400×(1-1/3 )×(1-1/4 )=2400×2/3 ×3/4=1200(米)答:还剩下1200米。

例5:一个学校有三好学生168人,占全校学生人数的4/7 。

全校有学生多少人?例6:甲库存粮120吨,比乙库的存粮少1/3 。

乙库存粮多少吨?120÷(1-1/3)=120×3/2 =180(吨)答:乙库存粮180吨。

例7:一堆煤,第一次运走全部的1/2 ,第二次运走全部的1/3 ,第二次比第一次少运8吨。

这堆煤原有多少吨?8÷( 1/2-1/3 )= 8÷1/6 =48(吨)答:这堆煤原有48吨。

工程问题:它是分数应用题的一个特例。

是已知工作量、工作时间和工作效率,三个量中的两个求第三个量的问题。

相关文档
最新文档