流体流动阻力测定实验报告
流体流动阻力实验报告

流体流动阻力实验报告引言流体力学是研究流体在运动中的行为及其影响的学科。
流体流动阻力是流体力学中的一个重要概念,它在各个领域都有广泛的应用。
本实验旨在通过测量流体在管道中流动时所产生的阻力,探究流体流动阻力的特性和影响因素。
实验目的1. 理解流体流动阻力的概念和意义;2. 探究流体流动阻力与管道直径、流速等因素的关系;3. 学习使用实验仪器和测量方法。
实验原理根据流体力学的基本原理,流体在管道中流动时,会受到管壁的摩擦力和流体内部分子之间的黏滞力的阻碍,从而产生阻力。
阻力的大小与流体的黏性有关,也与管道的形状、管径、流速等因素密切相关。
根据液体在静止时的压强和动能守恒定律,可以推导出流体流动阻力的计算公式。
实验装置与仪器1. 实验装置:包括液压台、流体供给装置、流量计、压力计等;2. 测量仪器:包括尺子、计时器等。
实验步骤1. 搭建实验装置,保证装置的稳定性;2. 调整流量控制阀,使流量计示数稳定在一定数值;3. 测量管道的直径和长度,并记录相关数据;4. 开始实验,打开液压台的电源,使流体进入管道;5. 启动计时器,测量流体通过管道的时间;6. 停止计时器,记录流量计示数和压力计示数;7. 根据实验数据计算流体流动阻力,并进行数据处理和分析。
实验结果与讨论通过多次实验,我们得到了不同流速下的流量计示数和压力计示数。
根据实验数据,我们可以计算出不同流速下的流体流动阻力。
分析实验结果,我们发现以下几点规律:1. 随着流速的增加,流体流动阻力呈线性增加的趋势。
这是因为流速增加会导致流体与管壁摩擦力增加,从而增加流动阻力。
2. 随着管道直径的增加,流体流动阻力减小。
这是因为管道直径增加会使流体流动的截面积增大,减小单位面积上流体的速度,从而减小流动阻力。
3. 随着管道长度的增加,流体流动阻力增加。
这是因为管道长度增加会导致流体流动的摩擦面积增大,从而增加流动阻力。
结论通过本次实验,我们深入了解了流体流动阻力的特性和影响因素。
流体流动阻力的测定(化工原理实验报告)

北 京 化 工 大 学实 验 报 告课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天流体流动阻力的测定摘要● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。
● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。
● 测定湍流状态下管道局部的阻力系数的局部阻力损失。
● 本次实验数据的处理与图形的拟合利用Matlab 完成。
关键词流体流动阻力 雷诺数 阻力系数 实验数据 Matlab一、实验目的1、掌握直管摩擦阻力系数的测量的一般方法;2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ;3、测定层流管的摩擦阻力4、验证湍流区内λ、Re 和相对粗糙度的函数关系5、将所得光滑管的Re -λ方程与Blasius 方程相比较。
二、实验原理不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。
影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群雷 诺 数:μρdu =Re相对粗糙度: d ε管路长径比: d l可导出:2)(Re,2u d d l p⋅⋅=∆εφρ这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系:22u d l pH f ⋅⋅=∆=λρ因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。
在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即:25.0Re 3163.0=λ对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得:Re 64=λ局部阻力:f H =22u ⋅ξ [J/kg]三、装置和流程四、操作步骤1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀;2、排尽体系空气,使流体在管中连续流动。
流体流动阻力的测定实验报告

流体流动阻力的测定实验报告一、实验目的1、掌握流体流经直管和管件时阻力损失的测定方法。
2、了解摩擦系数λ与雷诺数 Re 之间的关系。
3、学习压强差的测量方法和数据处理方法。
二、实验原理流体在管内流动时,由于黏性的存在,必然会产生阻力损失。
阻力损失包括直管阻力损失和局部阻力损失。
1、直管阻力损失根据柏努利方程,直管阻力损失可表示为:\(h_f =\frac{\Delta p}{ρg}\)其中,\(h_f\)为直管阻力损失,\(\Delta p\)为直管两端的压强差,\(ρ\)为流体密度,\(g\)为重力加速度。
摩擦系数\(λ\)与雷诺数\(Re\)及相对粗糙度\(\frac{\epsilon}{d}\)有关,其关系可通过实验测定。
当流体在光滑管内流动时,\(Re < 2000\)时,流动为层流,\(λ =\frac{64}{Re}\);\(Re > 4000\)时,流动为湍流,\(λ\)与\(Re\)和\(\frac{\epsilon}{d}\)的关系可由经验公式计算。
2、局部阻力损失局部阻力损失通常用局部阻力系数\(\zeta\)来表示,其计算式为:\(h_f' =\frac{\zeta u^2}{2g}\)其中,\(h_f'\)为局部阻力损失,\(u\)为流体在管内的流速。
三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种管件(如弯头、三通、阀门等)、压差计、流量计等。
2、实验流程水箱中的水经离心泵加压后进入实验管路,依次流经直管和各种管件,最后流回水箱。
通过压差计测量直管和管件两端的压强差,用流量计测量流体的流量。
四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法。
2、检查实验装置的密封性,确保无泄漏。
3、打开离心泵,调节流量至一定值,稳定后记录压差计和流量计的读数。
4、逐步改变流量,重复上述步骤,测量多组数据。
5、实验结束后,关闭离心泵,整理实验仪器。
流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征- 1 -流体流动阻力的测定王晓鸽一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。
2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。
3. 测定流体流经管件、阀门时的局部阻力系数ξ。
4. 学会流量计和压差计的使用方法。
5. 识辨组成管路的各种管件、阀门,并了解其作用。
二、实验原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:h f =∆p f ρ=p 1−p 2ρ=λl d u 22即,λ=2d∆p fρlu 2式中:λ—直管阻力摩擦系数,无因次; d —直管内径,m ;∆p f —流体流经l 米直管的压力降,Pa ;h f —单位质量流体流经l 米直管的机械能损失,J/kg ;ρ—流体密度,kg/m3;l—直管长度,m;u—流体在管内流动的平均流速,m/s。
层流流时,λ=64 Re湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。
欲测定λ,需确定l、d,测定∆p f、u、ρ、μ等参数。
l、d为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得,u通过测定流体流量,再由管径计算得到。
∆p f可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
求取Re和λ后,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
本实验采用阻力系数法。
流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。
流体流动阻力的测定实验报告

流体流动阻力的测定实验报告摘要:通过测算不同流速和管道直径下流体的流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。
实验的结果表明,流体流动阻力与流速和管道直径的平方成正比,结果与理论计算值基本吻合。
一、实验原理在流体力学中,我们研究流体在管道中的运动和分布。
不同形状、不同截面的管道中,流体的流动速度和压强是不同的,流体的动能和势能也会随着时间和位置的变化而发生变化。
在流体流动中,管道内壁与流体的相互作用形成一定的阻力,这种阻力称为流体流动阻力。
实验中,我们设计了一套管道流体流动测量装置,通过测算流体在不同流速和管道直径下流量和压降,确定了流体流动阻力与流速和管道直径的关系,并确立了相应的流体流动阻力公式。
二、实验步骤1. 准备工作:将实验装置安装好,并连接好各个部件。
2. 流量测定:打开水泵,将水流导向流量计中,通过观察流量计中的示数,测定流体的流量。
3. 压降测定:利用几何水平仪测定与水平面夹角,计算出流体在管道中的压降。
4. 流速测定:通过测算流量和管道截面积,计算出流体的平均流速。
5. 重复实验:重复以上测定步骤,测定不同流速和管道直径下的流量和压降数据,以确定流体流动阻力与流速和管道直径的关系。
6. 数据处理:根据实验数据计算出流体流动阻力公式,并与理论计算值对比。
三、实验结果与分析1. 流量与管道直径的关系通过实验测定,流量与管道直径的平方成正比。
实验数据如下:流量 Q (m3/h) 1 2 3 4 5直径 D (cm) 1 1.5 2 2.5 32. 压降与流速的关系通过实验测定,压降与流速的平方成正比。
实验数据如下:流速 v (m/s) 0.67 1.13 1.33 1.51压降 h (m) 0.05 0.09 0.12 0.163. 流体流动阻力与流速和管道直径的关系根据实验得到的数据,流体流动阻力与流速和管道直径的平方成正比。
流体流动阻力公式为:f = αρv2 D2/4其中,f 为阻力系数,ρ 为流体密度,v 为平均流速,D 为管道直径,α 为系数。
流动阻力的测定实验报告

流动阻力的测定实验报告化学工程与工艺专业化工原理实验报告姓名学院专业班级学号指导教师实验日期评定成绩:评阅人:流体流动阻力的测定实验报告一、实验目的(1)学习直管摩擦阻力Ap、直管摩擦系数大的测量方法。
(2)测定不同直管摩擦系数人与雷诺数Re之间的关系。
(3)测定弯头等局部阻力系数C与雷诺数Re之间的关系。
(4)掌握坐标系的选用方法和对数坐标系的使用方法。
二、实验基本原理(一)流动阻力的测定流体在管内流动时,由于黏性剪应力和涡流的存在,必然引起能量损耗。
这种损耗包括流体流经管道的直管阻力和流经管件阀门等的局部阻力。
1.直管阻力摩擦系数的测定流体在圆形直管内流动的阻力损失hf为:-.2△pI匕hf=—= A —P d 2、2ApdA = yIpu乙由式(1)可知,欲测定入,需知道1、d,测定等。
与因实验装置而异,由现场实测。
1为两测压点的距离,欲测定,只需测量液体的温度,再查有关手册。
欲测定U,需先测定流量,再由管径计算流速。
2.局部阻力系数的测定流体流经管件的阻力损失为:.2C =Ap 9(2)pu£待测的阀门或弯头,由现场指定。
(二)流量计校正流量测量中,广泛采用孔板流量计和文丘里流量计。
这两种流量计由孔板与U型管压差计组成。
当流体以一定流速通过孔板时,由于流道截面缩小,流速增大,而使孔板前后产生一定压差。
流体的体积流量与压差的关系如下式所示:即竿(3)V=CoA [2流量系数Co与流量计的结构参数(do/D)有关,与流体的流动状况Re有关。
通过实验确定Co与Re的关系曲线,称为流量计校正。
本实验是以水为工作流体,测定在一定范围内的Co〜Re曲线。
三、实验装置与流程实验装置流程如图所示,由管子、管件、闸阀、孔板、控制器、流量计及泵等组成, 实际实验装置由多个支路构成,分别用于直管阻力测定、局部阻力测定和流量计的校核。
四、实验内容(1)看懂阻力实验原理图。
熟悉现场指定的待测直管和管阀件,开启该支线进口阀,关闭其他支线进口阀。
流体流动阻力测定实验报告

流体流动阻力测定实验报告流体流动阻力测定实验报告引言:流体力学是研究流体在不同条件下的运动规律和力学性质的学科。
在工程领域中,流体力学的研究对于设计和优化流体系统至关重要。
而流体流动阻力的测定实验是流体力学中的基础实验之一,通过测量流体在不同条件下的阻力大小,可以进一步研究流体的流动规律和性质。
一、实验目的本实验的目的是通过实验测定不同条件下流体的流动阻力,并分析影响流体阻力的因素。
二、实验原理流体流动阻力是指流体在流动过程中受到的阻碍力,其大小取决于流体的性质、流动速度、管道尺寸等因素。
根据流体力学的基本原理,流体流动阻力可以通过测量流体流经管道时的压差来计算。
三、实验仪器与材料本实验所使用的仪器和材料有:1. 流量计:用于测量流体的流量。
2. 压力计:用于测量流体流经管道时的压差。
3. 管道系统:包括进口管道、出口管道和中间的测试段。
四、实验步骤1. 搭建实验装置:将进口管道、出口管道和测试段按照一定的顺序连接起来,并确保连接紧密、无泄漏。
2. 流量调节:通过调节流量计的开度,控制流体的流量大小。
3. 测量压差:在进口管道和出口管道上分别安装压力计,并通过读取压力计上的数值来测量流体流经管道时的压差。
4. 记录数据:在不同流量下,分别测量并记录流体流经管道时的压差。
5. 数据处理:根据测得的压差数据,计算不同流量下的流体流动阻力。
五、实验结果与分析根据实验数据,可以绘制流体流动阻力与流量的关系曲线。
通过分析曲线的斜率和曲线的形状,可以得出以下结论:1. 流体流动阻力与流量呈线性关系,即流量越大,流体流动阻力越大。
2. 流体流动阻力随着流速的增加而增加,但增速逐渐减缓。
3. 流体流动阻力与管道尺寸有关,管道越粗,阻力越小。
六、实验误差与改进在实际实验中,可能会存在一些误差,如仪器的误差、操作误差等。
为减小误差,可以采取以下改进措施:1. 仪器校准:定期对流量计和压力计进行校准,确保其测量结果的准确性。
流动流体综合实验报告(3篇)

第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。
2. 学习使用流体力学实验设备,如流量计、压差计等。
3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。
4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。
二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。
直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。
局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。
直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。
局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。
三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。
2. 流量计:涡轮流量计。
3. 压差计:U型管压差计。
4. 温度计:水银温度计。
5. 计时器:秒表。
6. 量筒:500mL。
7. 仪器架:实验台。
四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。
2. 连接流量计和压差计,确保仪器正常运行。
3. 在实验台上设置实验管道,调整管道长度和管件布置。
4. 开启实验台水源,调整流量计,使流体稳定流动。
5. 使用压差计测量直管和管件处的压力差,记录数据。
6. 使用温度计测量流体温度,记录数据。
7. 计算直管摩擦阻力损失和局部阻力损失。
8. 重复步骤4-7,改变流量和管件布置,进行多组实验。
五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。
2. 记录不同流量下的压力差、流体温度等数据。
3. 计算直管摩擦阻力损失和局部阻力损失。
4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。
六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实践创新基础》报告
姓名:
班级学号:
指导教师:
日期:
成绩:
南京工业大学化学工程与工艺专业
实验名称:流体流动阻力测定实验
一、实验目的
1 测定流体在圆直等径管内流动时的摩擦系数λ与雷诺数Re的关系,将测得的λ~Re曲线与由经验公式描出的曲线比较;
2 测定流体在不同流量流经全开闸阀时的局部阻力系数ξ
3 掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律
4 学会倒U形差压计 1151差压传感器 Pt温度传感器和转子流量计的使用方法
5 观察组成管路的各种管件阀门,并了解其作用。
6 掌握化工原理实验软件库的使用
二、实验装置流程示意图及实验流程简述
来自高位水槽的水从进水阀1首先流经光滑管11上游的均压环,均压环分别与光滑管的倒U形压差计和1151压差传感器15的一端相连,光滑管11下游的均压环也分别与倒U 形压差计和1151压差传感器的另一端相连。
当球阀3关闭且球阀2开启时,光滑管的水进入粗糙管12,粗糙管上下游的均压环分别同时与粗糙管的倒U形压差计和1151压差传感器的两端相连。
当球阀5关闭时,从粗糙管下来的水流经铂电阻温度传感器18,然后经流量调节阀6及流量计16后,排入地沟。
当球阀2关闭且球阀3打开时,从光滑管来的水就流入装有闸阀4的不锈钢管13,闸阀两端的均压环分别与一倒U形压差计的两端相连,最后水流经流量计,再排入地沟。
三、简述实验操作步骤及安全注意事项
1 操作步骤
(1)排管路中的气泡。
打开阀1、2、3、6,排除管路中的气泡,直至流量计中的水不含气泡为至,然后关闭阀6。
(2)1151压差传感器排气及调零。
排除两个1151压差传感器内气泡时,只要打开压差传感器下面的考克7、8、9、10,当软管内水无气泡时,排气结束,此过程可反复多次,直至无气泡为至。
压差传感器排气结束后,用螺丝刀调节压差传感器背后Z旋扭,使相应的仪表数字显示在0左右,压差传感器即可进入实验状态。
(3)U形压差计内及它们连接管内的气泡的排除。
关闭倒U形压差计上方的放空阀,打开U形压差计下方的排水考克,再打开U形压差计下方与软管相连的左右阀,关闭左右阀中间的平衡阀,直到玻璃管中水不出现气泡,然后关闭U形压差计下方与软管相连的左右阀,打开上方的放空阀和下方的排水考克,令玻璃管内水位下降到适当高度,再打开左右阀中间的平衡阀,倒U形压差计两玻璃管内的水位会相平,否则重复上过排汽过程,直至两玻璃管内的水位相平。
测定光滑管直管阻力、粗糙管直管阻力、局部阻力的三个倒U形压差计的排气方法相同,再此不再一一介绍。
特别注意的是,实验过程不能碰撞玻璃管,以免断裂。
(4)直管阻力的测定。
打开阀2,关闭阀3,调节阀6,流量从2m3 /h开始,分别记录相应的光滑管及粗糙管的倒U形压差计两玻璃管内的指示剂高度差,流量每次增加1 m3/h, 直至最大流量。
在测量过程应密切注意转子流量计中的流量变化,因为四套实验装置的水流量会相互干扰。
(5)局部阻力的测定。
关闭阀2,排开阀3,调即阀6,取三个不同的流量,如2、3、4m3/h,记录相应指示剂高度差。
水温可在最后测,测一次即可。
2 注意事项
开关阀门时,一定要缓慢开关,以防止仪表受损。
四、实验装置的主要设备仪器一览表
五、学习体会与建议
检验系统内的空气已经被排除干净 ,可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;若开机后真空表和压力表的读数为零,则表明,系统内的空气没排干净。
本实验数据须在对数坐标纸上进行标绘, 因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,做出来的图一目了然。
.。