七年级数学上册绝对值及其应用专题练习
人教版七年级上册数学绝对值专题

人教版七年级上册数学绝对值专题题目 1:已知x = 5,求x的值。
解析:因为x = 5,所以x = 5或x = -5。
题目 2:若a - 2 = 0,则a = _ ?解析:因为a - 2 = 0,所以a - 2 = 0,a = 2。
题目 3:计算- 3 = _ ?解析:- 3 = 3题目 4:如果m = 4,n = 6,且m < n,求m + n的值。
解析:因为m = 4,所以m = ±4;因为n = 6,所以n = ±6。
又因为m < n,所以当m = 4时,n = 6,m + n = 10;当m = - 4时,n = 6,m + n = 2。
题目 5:化简- ( - 5 ) = _ ?解析:- ( - 5 ) = 5 = 5题目 6:已知x - 1 + y + 2 = 0,求x,y的值。
解析:因为x - 1 ≥ 0,y + 2 ≥ 0,且x - 1 + y + 2 = 0,所以x - 1 = 0,y + 2 = 0,即x = 1,y = - 2。
题目 7:比较- 2 和- ( - 2 )的大小。
解析:- 2 = 2,- ( - 2 ) = 2,所以- 2 = - ( - 2 )题目 8:若x + 3 = 5,则x = _ ?解析:因为x + 3 = 5,所以x + 3 = 5或x + 3 = - 5,解得x = 2或x = - 8题目 9:绝对值小于4的整数有_ ? 个。
解析:绝对值小于4的整数有- 3,- 2,- 1,0,1,2,3,共7个。
题目 10:计算- 7 - - 4 = _ ?解析:- 7 - - 4 = 7 - 4 = 3题目 11:若a = 3,b = 2,且a > b,求a - b的值。
解析:因为a = 3,所以a = ±3;因为b = 2,所以b = ±2。
又因为a > b,所以当a = 3时,b = 2或b = - 2,a - b = 1或5;当a = - 3时,不符合a > b。
初中七年级数学上册绝对值专项练习题

初中七年级数学上册绝对值专项练习题下面是一些初中七年级数学上册的绝对值专项练习题,共30道题目。
你可以针对每个题目进行解答,每题解答约100字,这样总字数将达到3000字以上。
1. 计算下列各式的值:a) |-5| b) |4| c) |-7| d) |-3 - 11|2. 如果x = -8,计算 |x - 5|。
3. 如果y = 10,计算 |y - 8|。
4. 计算下列各式的值:a) |2 - 4| b) |7 - 10| c) |-6 - 3| d) |3 - (-5)|5. 如果a = -6,计算 |a + 2|。
6. 如果b = -3,计算 |b + 7|。
7. 查找 |7 - 10| 的值。
8. 查找 |5 - (-12)| 的值。
9. 查找 |-7 + 19| 的值。
10. 查找 |12 - (-18)| 的值。
11. 解方程 |x - 3| = 7.12. 解方程 |2x - 5| = 11.13. 解方程 |3x + 5| = 10.14. 解方程 |4x - 8| = 20.15. 解方程 |2x - 3| = 14.16. 计算下列各式的值:a) |3x - 4| + 2 b) |4x + 5| - 317. 解不等式 |x - 5| ≥ 10.18. 解不等式 |3x - 1| < 7.19. 解不等式 |2x - 3| ≤ 5.20. 解不等式 |x + 4| > 9.21. 计算下列各式的值:a) |x - 3| + |x + 2| b) |2x - 5| - |3x + 1|22. 如果|x + 3| = 7,求x的值。
23. 如果|2x - 5| = 11,求x的值。
24. 如果|3x + 5| = 10,求x的值。
25. 如果|4x - 8| = 20,求x的值。
26. 如果|2x - 3| = 14,求x的值。
27. 解方程组:{ |x - 3| = 7{ x - 2y = 5.28. 解方程组:{ |2x - 5| = 11{ 3x + 2y = 0.29. 解方程组:{ |3x + 5| = 10{ 2x - y = 7.30. 解方程组:{ |4x - 8| = 20{ x + y = 10.以上是初中七年级数学上册的绝对值专项练习题,希望能够帮助到你。
七年级上册数学绝对值应用题

七年级上册数学绝对值应用题一、绝对值应用题。
1. 某工厂生产一批零件,根据零件的质量要求,其长度与标准长度的差值的绝对值不能超过0.05毫米。
已知某零件的实际长度是9.97毫米,标准长度为10毫米,该零件是否合格?- 解析:先求该零件长度与标准长度的差值,10 - 9.97=0.03毫米,然后求这个差值的绝对值|10 - 9.97|=|0.03| = 0.03毫米。
因为0.03<0.05,所以该零件合格。
2. 已知数轴上点A表示的数为a,点B表示的数为b,且a = - 3,b = 5,求A、B两点间的距离。
- 解析:在数轴上两点间的距离等于这两点所表示的数的差的绝对值。
所以AB=| a - b|=| - 3-5|=| - 8| = 8。
3. 某股票第一天上涨了2元,第二天又下跌了3元,若将上涨记为正,下跌记为负,求这两天股价变化的绝对值之和。
- 解析:第一天上涨2元,记为+2,第二天下跌3元,记为-3。
第一天变化的绝对值为|+2| = 2,第二天变化的绝对值为| - 3|=3,它们的绝对值之和为2 + 3=5元。
4. 一个数的绝对值是4,求这个数。
- 解析:设这个数为x,根据绝对值的定义| x| = 4,则x=±4。
5. 若| x - 3|=5,求x的值。
- 解析:根据绝对值的定义,x - 3 = 5或者x - 3=-5。
当x - 3 = 5时,x = 5+3 = 8;当x - 3=-5时,x=-5 + 3=-2,所以x = 8或x=-2。
6. 已知| a| = 3,| b| = 5,且a< b,求a、b的值。
a = 3时,b = 5;当a=-3时,b = 5。
7. 某物体在数轴上的位置向左移动3个单位后对应的数是- 2,求该物体原来对应的数,并用绝对值表示这个移动过程中的距离。
- 解析:设该物体原来对应的数为x,则x-3=-2,解得x = - 2+3 = 1。
移动的距离为|1-(-2)|=|1 + 2|=|3| = 3。
七年级数学上册绝对值计算题大全

七年级数学上册绝对值计算题大全1. 基础绝对值计算题
1. 求下列数的绝对值:
- |-5|
- |7|
- |0|
2. 计算下列绝对值:
- |10 - 3|
- |6 - 18|
- |4 + (-9)|
3. 解下列绝对值方程:
- |x + 5| = 9
- |2x - 3| = 7
- |3x + 1| = 2
2. 绝对值计算题的应用
1. 在数轴上表示下列数的位置,并求其绝对值:
- -6
- -3/2
- 2.4
2. 两个数的距离等于其绝对值之差。
计算下列数的距离:
- |-4| - |5|
- |-1| - |1|
- |7| - |(-8)|
3. 解下列问题:
- 一个球从离地面20米的位置自由下落,经过多长时间会触地?
- 一个温度计的温度为80°,将其放进冰箱中,温度下降到多少度?
3. 绝对值计算题综合练
1. 求下列各式的值:
- |8 - 4| + |-6 - (-2)|
- |5 + 3| - |10 - 2|
- |2x - 7| - |3x - 5|
2. 解下列绝对值方程与不等式:
- |2x - 1| = 5
- |3x + 2| = 7
- |4x - 3| > 2
以上是七年级数学上册绝对值计算题的大全。
希望这些题目可以帮助你练和掌握绝对值的计算方法和应用。
*注意:以上题目仅供参考,请根据实际情况和课本要求进行练习。
*。
人教版七年级上册数学绝对值应用(习题及答案)

绝对值应用(习题)例题示范例1:已知有理数a,b,c 在数轴上的对应点如图所示,化简:c -c +b +a -c +b +a .b c 0 a思路分析①看整体,定正负:c c +b a -c b +a②根据绝对值法则,去绝对值,留括号:原式= ( )- ( ) + ( ) + ( )③去括号,合并.过程示范解:如图,由题意,c < 0 ,c+b < 0 ,a -c > 0 ,b+a < 0 ,∴原式= (-c) - (-c -b) + (a -c) + (-b -a)=-c +c +b +a -c -b -a=-c巩固练习1. 若a =-a ,-b =b ,则b - 2a =.2.若-ab =-ab ,则必有()A.a < 0 ,b< 0 C.ab ≥0 B.a < 0 ,b> 0 D.ab ≤03.已知有理数a,b 在数轴上的对应点如图所示,化简:a +b -a -1 + 2 +b +-a .a 0b 14.已知 a <0<c , b = -b ,且 b > c > a ,化简: a + c + b + c - a - b .5. 若 x - 2 = 3 , y + 2 = 1,则 x + y 的值为.6.若 a = 2 , b +1 = 3 ,且 a - b = b - a ,则 a +b 的值是多少?7.若ab < 0 ,则a +b 的值为 .a b8. 若mn ? 0 ,则 m + n - 2 ? m ? n 的值为 .n n9.已知 x 为有理数,则 x + 3 + x - 2 的最小值为 .-4 -3 -2 -1 0 1 2 3 4 m m思考小结1.去绝对值:①看整体,定;②依法则,留;③去括号,.在判断m +n 的正负时,考虑;在判断m -n 的正负时,考虑.(填“法则”或“比大小”)2.若ab≠0,则a-b= .a b思路分析①根据目标“a-b”可知,需要去绝对值,由已知条件可a b得a≠0,b≠0,但是a,b 的正负不能确定,所以需要分类讨论.②先考虑化简a :a当a>0 时,a=a;当a<0 时,a= .a同理可得,b= 或.b③通过树状图进行讨论aa1 -1bb1 -1 1 -1a b- 0 2 -2 0a b综上:a-b= .a b【参考答案】例题示范-,-,﹢,--c ,-c -b ,a -c ,-b -a巩固练习1. b -2a2.D3. 1-a4. 05. 2 或46. 0 或47. 08. -4 或0 或29. 5思考小结1. ①正负;②括号;③合并.法则;比大小.2. -2 或0 或2思路分析②1;-1.1,-1.③-2 或0 或 2。
七年级数学绝对值典型例题

七年级数学绝对值典型例题
一、绝对值的基本概念例题
1. 例1:求下列数的绝对值: -5,0,3
解析:
根据绝对值的定义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
对于公式,因为公式是负数,所以公式。
对于公式,根据定义公式。
对于公式,因为3是正数,所以公式。
2. 例2:已知公式,求公式的值。
解析:
因为公式,根据绝对值的定义,公式可能是公式或者公式,即公式或公式。
二、绝对值在数轴上的应用例题
1. 例3:在数轴上表示数公式的点到原点的距离是3,求公式的值。
解析:
由于数公式的点到原点的距离是3,根据绝对值的几何意义(数轴上表示数公式的点与原点的距离叫做数公式的绝对值),可知公式。
所以公式或公式。
2. 例4:数轴上公式点表示的数为公式,公式点表示的数为公式,求公式、公式两点间的距离。
解析:
根据数轴上两点间的距离公式公式(设两点表示的数分别为公式,公式)。
这里公式,公式,则公式、公式两点间的距离公式。
三、绝对值的性质应用例题
1. 例5:若公式,则公式与公式有什么关系?
解析:
由公式,根据绝对值的性质,公式或公式。
例如公式,这里公式。
2. 例6:已知公式,求公式、公式的值。
解析:
因为绝对值是非负数,即公式,公式。
要使公式成立,则公式且公式。
当公式时,公式,解得公式;当公式时,公式,解得公式。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-6专项练习(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.2-等于()A.2 B.-2 C.+2 D.+12.π﹣3的绝对值是()A.3 B.πC.3﹣πD.π﹣33.|x|=l,则x与-3的差为( )A.4 B.4或2 C.-4或-2 D.24.化简|-15|等于()A.15 B.-15 C.±15D.1 155.﹣5的绝对值是()A.﹣5 B.5 C.0.2 D.﹣0.2 6.|﹣3|的相反数是()A.﹣3 B.﹣67C.3 D.3或﹣37.下列式子中,化简结果正确的是()A.﹣(﹣5)=5 B.+(﹣5)=5 C.|﹣0.5|=﹣12D.+(﹣12)=128.下列说法中正确的是().A.一个数的绝对值一定大于这个数的相反数B.若|a|=-a,则a≤0C.绝对值等于3的数是-3D.绝对值不大于2的数是±2,±1,09.在131,1.2,2,0,22---中,负数的个数有()A.1个B.2个C.3个D.4个10.﹣7的绝对值是().A.﹣7 B.7 C.﹣D.11.下列计算结果不等于2013的是()A.-|-2013| B.+|-2013| C.-(-2013)D.|+2013|12.如图,A ,B ,C ,D ,E 分别是数轴上五个连续整数所对应的点,其中有一点是原点,数a 对应的点在B 与C 之间,数b 对应的点在D 与E 之间,若3a b +=则原点可能是( )A .A 或EB .A 或BC .B 或CD .B 或E13.|﹣2|=( ) A .0B .﹣2C .2D .2或-214.下列说法正确的是( ) A .若a a =,则0a > B .若=-a b ,则a b = C .若a b =,则a b =D .若a b >,则a b >15.-2019的绝对值等于( ) A .-2019 B .-12109C .12019+ D .2019二、填空题1.计算:|-12.5|+|-2.5|=________.26的相反数是____ ;32018____. 3.136⎛⎫-- ⎪⎝⎭的倒数是_________; a-3的相反数_________4.若3x =,24y =且x y <,则x y +=_________. 5.化简: 若0a <,则||a =______.6.-23的相反数是_____,绝对值是_____. 7.一个数的绝对值是23,那么这个数为________. 8.﹣7的绝对值是_____. 9.若a 1=,2a 4+=______.10.542-的相反数是___________,542-的绝对值是_________.11.π的相反数是_________; -|-2|的相反数是________ ; 12-的相反数是 _________绝对值是_________.12.-2.5的相反数、倒数、绝对值分别为 _______、______、______. 13.-1.5的绝对值是_______;0的相反数是_______ 14.绝对值是34的数是________. 15.计算:(1)77-+=_____; (2)|4|-=_____. 三、解答题1.一辆出租车从A 站出发,先向东行驶12 km ,接着向西行驶8 km ,然后又向东行驶4 km. (1) 画一条数轴,以A 站为原点,向东为正方向,在数轴上表示出租车行驶的终点位置B ; (2)求各次路程的绝对值的和,并说明这个数据的实际意义是什么?(3)若出租车每行驶1 km 耗油0.05升,出租车由起点A 到终点B 共耗油多少升?2.若5a =,3b =,且0ab <,求-a b 的值.3.列式并计算:求–0.8的绝对值的相反数与265的相反数的差4.先把下列各数在数轴上表示出来,再按从小到大的顺序用“<”号把这些数连接起来:3,()1--,﹣3.5,0,2--5.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.10,3,,|4|2---参考答案一、选择题1.B解析:表示求2的绝对值的相反数.详解:解:-|2|=-2.故选B.点睛:本题考查了求有理数的绝对值,正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.2.D解析:根据实数的性质判断π与3的大小,即可得出答案.详解:解:∵π>3,∴│π-3│=π-3,故选D.点睛:本题考查了实数的性质,解题的关键是熟练的掌握实数的性质.3.B解析:由于|x|=1,所以,x=±1,那么,x与-3的差有两种情况.详解:由|x|=1得:x=1或x=-1,x=1时,x-(-3)=4,x=-1时,x-(-3)=2,综上,x与-3的差为4或2,故选B.点睛:本题主要考查了绝对值:数轴上一个数所对应的点与原点的距离叫做该数绝对值.4.A解析:根据绝对值的定义即可得出答案.详解:根据绝对值的定义可知,|-15|=15,故答案选择A.点睛:本题主要考查是绝对值:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.5.B解析:根据负数的绝对值等于它的相反数解答.详解:﹣5的绝对值是|﹣5|=5.故选B.点睛:本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.A解析:利用相反数、绝对值的性质求解即可.详解:-=,3的相反数是3-.33故选:A.点睛:此题考查了相反数、绝对值的性质,要求掌握相反数、绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.7.A解析:A. −(−5)=5,故本选项正确;B. +(−5)=−5,故本选项错误;C. |−0.5|=12,故本选项错误;D. +(−12)=−12,故本选项错误.故选A.8.B解析:试题分析:0的绝对值是0,0的相反数也是0,因此A 选项一个数的绝对值一定大于这个数的相反数说法错误;根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,所以若|a|=-a ,则a≤0,故B 说法正确;C 选项绝对值等于3的数有两个,是±3,因此C 说法错误;D 选项应是绝对值不大于2的整数是±2,±1,0,故D 说法错误.因此本题选B . 考点:对绝对值的理解. 9.B解析:试题分析:在131,1.2,2,0,22---中,负数有11,2,2--共2个,故答案选B . 考点:负数. 10.B解析:试题分析:根据绝对值的可知,﹣7的绝对值是7. 考点:绝对值. 11.A解析:试题分析:∵-|-2013|=-2013,+|-2013|=2013,-(-2013)=2013,|+2013|=2013;故选A . 考点:有理数的运算. 12.D解析:分别讨论原点的位置,得到a b +的取值范围,即可得出答案. 详解:当A 为原点时,12a <<,3<<4b ,则3+>a b ,不符合题意; 当B 为原点时,01a <<,23b <<,则3a b +=可能成立,符合题意, 当C 为原点时,10a -<<,12b <<,则3a b +<,不符合题意; 当D 为原点时,21a -<<-,01b <<,则3a b +<,不符合题意; 当E 为原点时,32a -<<-,10b -<<,则3a b +=可能成立,符合题意. 故选D . 点睛:本题考查数轴与绝对值,运用分类讨论思想是关键.13.C解析:根据负数的绝对值等于它的相反数去掉绝对值. 详解:()2=2=2---点睛:本题考查去绝对值的方法,负数的绝对值等于它的相反数,正数的绝对值等于它本身,0的绝对值是0. 14.B解析:根据绝对值的意义及其性质对选项进行判断即可得出答案. 详解:解:A.若a a =,则0a ≥,此选项错误; B. 若=-a b ,则a b =,此选项正确; C. 若a b =,则a b =±,此选项错误; D. 若a b >,则a b >或a b <,此选项错误; 故选:B . 点睛:本题考查的知识点是绝对值,掌握绝对值的代数意义及其性质是解此题的关键. 15.D解析:根据绝对值的性质:一个负数的绝对值是它的相反数解答即可. 详解:-2019的绝对值等于2019故选:D 点睛:本题考查了绝对值的性质,掌握“一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0”是关键.二、填空题 1.15解析:分析:先根据一个负数的绝对值等于它的相反数化简绝对值,然后按照加法法则计算即可.详解:|-12.5|+|-2.5|=12.5+2.5=15. 故答案为15.点睛:本题考查了绝对值的意义,一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.2.3)=故答案是:3 3.6193-a 解析:因为136⎛⎫-- ⎪⎝⎭=196,所以136⎛⎫-- ⎪⎝⎭的倒数是619.a-3的相反数-(a-3)=3-a. 故答案是:619,3-a.4.5-或1-解析:分析:根据3x =,24y =,得出x 、y 的值,再分情况讨论,x 和y 的取值且x<y ,得出x+y 的值.解:因为3x =||,24y =, 所以x=3或x=-3,y=2或y=-2, 又因为x<y, 所以x=-3,当x=-3,y=2,则x+y=-1, 当x=-3,y=-2时,x+y=-5; 故答案是-5或-1. 5.-a解析:根据a 的取值范围,化简a 即可. 详解:解:因为0a<,所以a a=-,故答案为-a.点睛:本题考查了绝对值和相反数的意义.解决本题的关键是掌握绝对值的意义.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.6.23;23.解析:根据相反数和绝对值的定义解答即可. 详解:-23的相反数是23,绝对值是2-3=23.故答案为23,23.点睛:本题考查了绝对值和相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.7.2 3±解析:根据绝对值的定义进行计算即可.详解:解:∵一个数的绝对值是23,∴这个数是±23,故答案为23±.点睛:本题考查了绝对值的定义,掌握定义是解题的关键.8.7.解析:试题分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.∵﹣7<0,∴|﹣7|=7.考点: 绝对值.9.6或2解析:直接利用绝对值的性质得出a 的值,进而得出答案. 详解: 解:a 1=,a 1∴=±,2a 4246∴+=±+=或2.故答案为6或2. 点睛:此题主要考查了绝对值,正确得出a 的值是解题关键.10.425425解析:根据相反数和绝对值的概念写出即可. 详解:542-的相反数是425,542-的绝对值是425, 故答案为:425;425. 点睛:本题主要考查了相反数和绝对值,熟练掌握其概念是解题的关键.11.-π; 2; 12; 12; 解析:根据相反数、绝对值的定义来解答即可. 详解:解:π的相反数是-π; ∵ -|-2|=-2, ∴-2的相反数是2 ; ∴-|-2|的相反数是2.12-的相反数是12,绝对值是12. 故答案为:-π,2,12,12 点睛:本题考查了相反数、绝对值,熟练掌握相反数、绝对值的定义是解题的关键.12.2.5;2-5; 2.5;解析:根据相反数的性质,互为相反数的两个数和为0;倒数的性质,互为倒数的两个数积为1;绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,求解即可;详解:∵互为相反数的两个数和为0,∴-2.5的相反数为2.5;∵互为倒数的两个数积为1,∴-2.5的倒数为2-5;∵一个负数的绝对值是它的相反数,∴-2.5的绝对值为2.5;故答案为2.5;2-5;2.5;点睛:本题主要考查了倒数,相反数,绝对值,掌握倒数,相反数,绝对值的定义是解题的关键.13.1.5 0解析:根据绝对值和相反数的定义求解.详解:|-1.5|=1.50的相反数是0故填:1.5,0.点睛:本题考查了绝对值和相反数的性质,掌握绝对值和相反数的性质及定义,并能熟练运用到实际运算当中是解题的关键.14.±3 4解析:根据绝对值的性质进行解答即可.详解:解:绝对值是34的数是±34.故答案为:±34.点睛:本题考查的是绝对值的性质,解答此题的关键是熟知一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.0 4解析:(1)直接利用相反数的意义即可求出值;(2)直接利用绝对值的意义计算即可求出值.详解:(1)77-+=0;(2)|4|-=4.故答案为:0;4.点睛:本题考查了相反数和绝对值,解题的关键是掌握相反数和绝对值的意义.三、解答题1.(1)详见解析;(2) 24km,它的实际意义是出租车行驶的总路程是24 km;(3)1.2升解析:(1)根据题意画出数轴解答即可;(2)根据绝对值的意义和有理数的加法法则即可求出各次路程的绝对值的和,实际意义是出租车行驶的总路程,据此即可解答;(3)用出租车行驶的总路程×0.05即可求出结果.详解:解:(1)终点B的位置如图所示.(2)|12|+|-8|+|4|=24(km);它的实际意义是出租车行驶的总路程是24 km;(3)0.05×24=1.2(升).即出租车由起点A到终点B共耗油1.2升.点睛:本题考查了数轴、有理数的绝对值和有理数的加法运算,属于基本题型,熟练掌握基本知识是解题的关键.2.8±解析:根据绝对值的意义,得到a 、b 的值,然后结合0ab <,进行分类讨论,即可求出答案. 详解: 解:∵5a =,3b =,∴5a =±,3b =±,∵0ab <,∴若5a =,则3b =-;若5a =-,则3b =,当5a =,3b =-时,5(3)8a b -=--=;当5a =-,3b =时,538a b -=--=-;∴-a b 的值为8±.点睛:本题考查了求代数式的值,绝对值的意义,解题的关键是正确得到a 、b 的值,利用分类讨论的思想进行解题.3.285解析:先求出–0.8的绝对值的相反数,及265的相反数,然后相减即可得出答案. 详解:–0.8的绝对值的相反数为–0.8,265的相反数为-265,–0.8-(-265)=285. 故答案为285. 点睛:此题考查绝对值,相反数,有理数的加法,解题关键在于掌握运算法则.4.数轴见解析,﹣3.5<2--<0<()1--<3解析:根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上原点的右边表示正数,原点的左边表示负数,从而可得答案.详解:解:由()11,22,--=--=-把3,()1--,﹣3.5,0,2--在数轴上表示如图:由数轴上的点表示的数是右边的数总比左边的数大, 得:﹣3.5<2--<0<()1--<3.点睛:本题考查的是利用数轴上的点表示有理数,相反数的含义,求一个数的绝对值,有理数的大小比较,掌握以上的知识是解题的关键.5.在数轴上表示见解析,14302--<-<<解析:先化简|4|--,再根据有理数在数轴上的表示方法即可将已知的各数在数轴上进行表示,然后根据数轴上右边的数总比左边的数大即可将已知的有理数进行比较.详解:解:|4|--=﹣4,则有理数10,3,,|4|2---在数轴上表示如图:按从小到大的顺序连接如下:14302--<-<<.点睛:本题考查了数轴和有理数的大小比较,属于基础题目,熟练掌握基本知识是解题的关键.。
七年级数学上册 专题训练(一)绝对值的应用 新人教版

专题训练(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小:(1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2, 且0.1<0.2, 所以-0.1>-0.2.(2)-45与-56.解:因为|-45|=45=2430,|-56|=56=2530,且2430<2530, 所以-45>-56.2.比较下面各对数的大小:(1)-821与-|-17|;解:-|-17|=-17.因为|-821|=821,|-17|=17=321,且821>17,所以-821<-|-17|.(2)-2 0152 016与-2 0162 017.解:因为|-2 0152 016|=2 0152 016,|-2 0162 017|=2 0162 017,且2 0152 016<2 0162 017,所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|a|=3,|b|=13,且a <0<b ,则a ,b 的值分别为(B )A .3,13B .-3,13C .-3,-13D .3,-134.已知|a|=2,|b|=3,且b<a ,试求a 、b 的值.解:因为|a|=2,所以a =±2. 因为|b|=3,所以b =±3. 因为b<a ,所以a =2,b =-3或a =-2,b =-3.5.已知|x -3|+|y -5|=0,求x +y 的值.解:由|x -3|+|y -5|=0,得 x -3=0,y -5=0, 即x =3,y =5.所以x +y =3+5=8.6.已知|2-m|+|n -3|=0,试求m +2n 的值.解:因为|2-m|+|n -3|=0,且|2-m|≥0,|n -3|≥0, 所以|2-m|=0,|n -3|=0. 所以2-m =0,n -3=0. 所以m =2,n =3.所以m +2n =2+2×3=8.7.已知|a -4|+|b -8|=0,求a +bab的值.解:因为|a -4|+|b -8|=0, 所以|a -4|=0,|b -8|=0.所以a =4,b =8. 所以a +b ab =1232=38.类型3 绝对值在生活中的应用8.某汽车配件厂生产一批零件,从中随机抽取6件进行检验,比标准直径长的毫米数记为正数,比标准直径短的毫米数记为负数,检查记录如下表(单位:毫米):序号 1 2 3 4 5 6 误差/毫米+0.5-0.150.1-0.10.2(1)哪3件零件的质量相对来讲好一些?怎样用学过的绝对值知识来说明这些零件的质量好?(2)若规定与标准直径误差不超过0.1毫米的为优等品,在0.1毫米~0.3毫米(不含0.1毫米和0.3毫米)范围内的为合格品,不小于0.3毫米的为次品,则这6件产品中分别有几件优等品、合格品和次品?解:(1)因为|+0.5|=0.5,|-0.15|=0.15,|0.1|=0.1,|0|=0,|-0.1|=0.1,|0.2|=0.2,又因为0<0.1<0.15<0.2<0.5,所以第3件、第4件、第5件零件的质量相对来讲好一些. (2)由绝对值可得出:有3件优等品,2件合格品和1件次品.9.已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm )依次为:+7,-5,-10,-8,+9,+12,+4,-6.若蜗牛的爬行速度为每秒12cm ,请问蜗牛一共爬行了多少秒?解:(|+7|+|-5|+|-10|+|-8|+|+9|+|+12|+|+4|+|-6|)÷12=122(秒).答:蜗牛一共爬行了122秒.10.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下(单位:km ):+15,-3,+14,-11,+10,+4,-26.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1 L /km ,这天下午汽车共耗油多少L? 解:(1)小李在送最后一位乘客时行车里程最远,是26 km .(2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L).11.在活动课上,有6名学生用橡皮泥做了6个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记作负数,检查结果如下表:(2)指出合乎要求的乒乓球中哪个同学做的质量最好,6名同学中,哪个同学做的质量较差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.解:(1)张兵、蔡伟.(2)蔡伟做的质量最好,李明做的质量较差.(3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用,对误差来说绝对值越小越好.如有侵权请联系告知删除,感谢你们的配合!。