人教版初中七年级数学上册《绝对值》例题
人教版七年级上册数学绝对值专题

人教版七年级上册数学绝对值专题题目 1:已知x = 5,求x的值。
解析:因为x = 5,所以x = 5或x = -5。
题目 2:若a - 2 = 0,则a = _ ?解析:因为a - 2 = 0,所以a - 2 = 0,a = 2。
题目 3:计算- 3 = _ ?解析:- 3 = 3题目 4:如果m = 4,n = 6,且m < n,求m + n的值。
解析:因为m = 4,所以m = ±4;因为n = 6,所以n = ±6。
又因为m < n,所以当m = 4时,n = 6,m + n = 10;当m = - 4时,n = 6,m + n = 2。
题目 5:化简- ( - 5 ) = _ ?解析:- ( - 5 ) = 5 = 5题目 6:已知x - 1 + y + 2 = 0,求x,y的值。
解析:因为x - 1 ≥ 0,y + 2 ≥ 0,且x - 1 + y + 2 = 0,所以x - 1 = 0,y + 2 = 0,即x = 1,y = - 2。
题目 7:比较- 2 和- ( - 2 )的大小。
解析:- 2 = 2,- ( - 2 ) = 2,所以- 2 = - ( - 2 )题目 8:若x + 3 = 5,则x = _ ?解析:因为x + 3 = 5,所以x + 3 = 5或x + 3 = - 5,解得x = 2或x = - 8题目 9:绝对值小于4的整数有_ ? 个。
解析:绝对值小于4的整数有- 3,- 2,- 1,0,1,2,3,共7个。
题目 10:计算- 7 - - 4 = _ ?解析:- 7 - - 4 = 7 - 4 = 3题目 11:若a = 3,b = 2,且a > b,求a - b的值。
解析:因为a = 3,所以a = ±3;因为b = 2,所以b = ±2。
又因为a > b,所以当a = 3时,b = 2或b = - 2,a - b = 1或5;当a = - 3时,不符合a > b。
七年级上册数学绝对值应用题

七年级上册数学绝对值应用题一、绝对值应用题。
1. 某工厂生产一批零件,根据零件的质量要求,其长度与标准长度的差值的绝对值不能超过0.05毫米。
已知某零件的实际长度是9.97毫米,标准长度为10毫米,该零件是否合格?- 解析:先求该零件长度与标准长度的差值,10 - 9.97=0.03毫米,然后求这个差值的绝对值|10 - 9.97|=|0.03| = 0.03毫米。
因为0.03<0.05,所以该零件合格。
2. 已知数轴上点A表示的数为a,点B表示的数为b,且a = - 3,b = 5,求A、B两点间的距离。
- 解析:在数轴上两点间的距离等于这两点所表示的数的差的绝对值。
所以AB=| a - b|=| - 3-5|=| - 8| = 8。
3. 某股票第一天上涨了2元,第二天又下跌了3元,若将上涨记为正,下跌记为负,求这两天股价变化的绝对值之和。
- 解析:第一天上涨2元,记为+2,第二天下跌3元,记为-3。
第一天变化的绝对值为|+2| = 2,第二天变化的绝对值为| - 3|=3,它们的绝对值之和为2 + 3=5元。
4. 一个数的绝对值是4,求这个数。
- 解析:设这个数为x,根据绝对值的定义| x| = 4,则x=±4。
5. 若| x - 3|=5,求x的值。
- 解析:根据绝对值的定义,x - 3 = 5或者x - 3=-5。
当x - 3 = 5时,x = 5+3 = 8;当x - 3=-5时,x=-5 + 3=-2,所以x = 8或x=-2。
6. 已知| a| = 3,| b| = 5,且a< b,求a、b的值。
a = 3时,b = 5;当a=-3时,b = 5。
7. 某物体在数轴上的位置向左移动3个单位后对应的数是- 2,求该物体原来对应的数,并用绝对值表示这个移动过程中的距离。
- 解析:设该物体原来对应的数为x,则x-3=-2,解得x = - 2+3 = 1。
移动的距离为|1-(-2)|=|1 + 2|=|3| = 3。
人教版七年级上册数学绝对值应用(习题及答案)

绝对值应用(习题)例题示范例1:已知有理数a,b,c 在数轴上的对应点如图所示,化简:c -c +b +a -c +b +a .b c 0 a思路分析①看整体,定正负:c c +b a -c b +a②根据绝对值法则,去绝对值,留括号:原式= ( )- ( ) + ( ) + ( )③去括号,合并.过程示范解:如图,由题意,c < 0 ,c+b < 0 ,a -c > 0 ,b+a < 0 ,∴原式= (-c) - (-c -b) + (a -c) + (-b -a)=-c +c +b +a -c -b -a=-c巩固练习1. 若a =-a ,-b =b ,则b - 2a =.2.若-ab =-ab ,则必有()A.a < 0 ,b< 0 C.ab ≥0 B.a < 0 ,b> 0 D.ab ≤03.已知有理数a,b 在数轴上的对应点如图所示,化简:a +b -a -1 + 2 +b +-a .a 0b 14.已知 a <0<c , b = -b ,且 b > c > a ,化简: a + c + b + c - a - b .5. 若 x - 2 = 3 , y + 2 = 1,则 x + y 的值为.6.若 a = 2 , b +1 = 3 ,且 a - b = b - a ,则 a +b 的值是多少?7.若ab < 0 ,则a +b 的值为 .a b8. 若mn ? 0 ,则 m + n - 2 ? m ? n 的值为 .n n9.已知 x 为有理数,则 x + 3 + x - 2 的最小值为 .-4 -3 -2 -1 0 1 2 3 4 m m思考小结1.去绝对值:①看整体,定;②依法则,留;③去括号,.在判断m +n 的正负时,考虑;在判断m -n 的正负时,考虑.(填“法则”或“比大小”)2.若ab≠0,则a-b= .a b思路分析①根据目标“a-b”可知,需要去绝对值,由已知条件可a b得a≠0,b≠0,但是a,b 的正负不能确定,所以需要分类讨论.②先考虑化简a :a当a>0 时,a=a;当a<0 时,a= .a同理可得,b= 或.b③通过树状图进行讨论aa1 -1bb1 -1 1 -1a b- 0 2 -2 0a b综上:a-b= .a b【参考答案】例题示范-,-,﹢,--c ,-c -b ,a -c ,-b -a巩固练习1. b -2a2.D3. 1-a4. 05. 2 或46. 0 或47. 08. -4 或0 或29. 5思考小结1. ①正负;②括号;③合并.法则;比大小.2. -2 或0 或2思路分析②1;-1.1,-1.③-2 或0 或 2。
人教版七年级数学上册绝对值测试题

人教版7年级数学考试题测试题人教版初中数学1.2.4 绝对值5分钟训练(预习类训练,可用于课前)1.判断题:(1)数a的绝对值就是数轴上表示数a的点与原点的距离; ()(2)负数没有绝对值; ()(3)绝对值最小的数是0; ()(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大; ()(5)如果数a的绝对值等于a,那么a一定是正数. ()思路解析:(2)负数的绝对值为它的相反数.(4)可举反例如:-100的绝对值比5的绝对值大,但-100小于5.(5)还可能是0.答案:(1)√ 2)×(3)√(4)×(5)×2.填表:答案3.-3的绝对值是在_______上表示-3的点到________的距离,-3的绝对值是_________. 思路解析:根据绝对值的几何意义解题.答案:数轴原点 34.绝对值是3的数有_______个,各是________;绝对值是2.7的数有_______个,各是________;绝对值是0的数有________个,是________;绝对值是-2的数有没有?________.思路解析:根据绝对值的意义来解.答案:两±3 两±2.7 1 0 没有10分钟训练(强化类训练,可用于课中)1. (1)若|a|=0,则a=_______;(2)若|a|=2,则a=________.思路解析:根据绝对值的定义来解.答案:(1)0 (2)±22.如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m思路解析:可通过特例解答,如5>0,-6<0,5<|-6|,则-m=-5,-n=6,它们的大小关系是6>5>-5>-6,即-n>m>-m>n.答案:A3.判断题:(1)两个有理数比较大小,绝对值大的反而小; ()(2)-3.14>4; ()(3)有理数中没有最小的数; ()(4)若|x|>|y|,则x>y; ()(5)若|x|=3,-x>0则x=-3. ()思路解析:(1)若都为负数时,才有绝对值大的反而小;(2)先利用符号判断,若同号,再判断绝对值大小.显然,-3.14<4;(3)如在负数中,没有最小的数,而正数大于零,大于负数;(4)举反例,|-5|>|-4|,而-5<-4;(5)由|x|=3可知,x=±3,又-x>0,则x必为负数,故x=-3.答案:(1)×(2)×(3)√(4)×(5)√4.填空题:(1)|-112|________;(2)-(-7)________;(3)-|-7|________;(4)+|-2|_______;(5)若|x|=3,则x_________;(6)|3-π|=_______. 思路解析:由绝对值定义来解,注意绝对值外面的负号.答案:(1)112(2)7 (3)-7 (4)2 (5)3或-3 (6)π-35.把四个数-2.371,-2.37%,-2.3·7·和-2.37用“<”号连接起来.思路解析:这里都是负数,利用绝对值大的反而小来判别,另外要注意循环小数和百分数的意义.答案:-2.37<-2.371<-2.37<-2.37%快乐时光女老师竭力向孩子们证明,学习好功课的重要性.她说:“牛顿坐在树下,眼睛盯着树在思考,这时,有一个苹果落在他的头上,于是他发明了万有引力定律,你们想想看,做一位伟大的科学家多么好,多么神气啊,要想做到这一点,就必须好好学习.”班上一个调皮鬼对此并不满意.他说:“兴许是这样,可是,假如他坐在学校里,埋头书本,那他就什么也发现不了啦.”30分钟训练(巩固类训练,可用于课后)1.比较大小:(1)-2_______5,|-72|_______|+38|,-0.01________-1;(2)-45和-56(要有过程).思路解析:(1)正数大于负数,则-2<5;|-27|=27=1656,|+38|=38=2156,∴|-72|<|+38|;两个负数,绝对值大的反而小,|-1|=1,|-0.01|=0.01,而0.01<1,∴-0.01>-1(2)-45=-0.8,-56=-0.83,-0.8离原点近,∴-0.8>-0.83即-45>-56.答案:(1)<<>(2)>2.写出绝对值不大于4的所有整数,并把它们表示在数轴上.思路解析:不大于就是小于或等于.答案:±1,±2,±3,±4,0.3.填空:(1)若|a|=6,则a=_______;(2)若|-b|=0.87,则b=_______;(3)若|-1c|=49,则c=_______;(4)若x+|x|=0,则x是数________.思路解析:(1) a=±6;(2)|-b|=|b|=0. 87,∴b=±0.87;(3)|-1c|=49,∴1c=±49,c=±214;(4) x是非正数.答案:(1)±6 (2)±0.87 (3)±214(4)非正4.求下列各数的绝对值:(1)-38; (2)0.15;(3)a(a<0); (4)3b(b>0);(5)a-2(a<2); (6)a-b.思路解析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号(6)题没有给出a与b的大小关系,所以要进行分类讨论.解:(1)|-38|=38(2)|+0.15|=0.15(3)∵a<0,∴|a|=-a(4)∵b>0,∴3b>0,|3b|=3b(5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a(6)(), ||0(),().a b a ba b a bb a a b->⎧⎪-==⎨⎪-<⎩5.判断下列各式是否正确:(1)|-a|=|a|;()(2)||||a aa a=(a≠0); ()(3)若|a|=|b|,则a=b;()(4)若a=b,则|a|=|b|;()(5)若a>b,则|a|>|b|;()(6)若a>b,则|b-a|=a-b. ()思路解析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判断(或证明)一个结论是错误的,只要能举出反例即可.如第(1)小题中取a=1,则|a|=|1|=1,|-a|=|-1|=1,所以-|a|=|-a|.答案:(1)√ (2)√ (3)× (4)√ (5)×(6)√6.有理数m,n在数轴上的位置如图,比较大小:-m______-n,1m_______1n.思路解析:取特殊值验得:由图知,m、n都是小于0而大于-1的数,取m=-23,n=-13∴-m=23>-n=13,而1m=-32,1n=-3,∵-32>-3,∴1m>1n.答案:>>7.若|x-1| =0,则x=_______,若|1-x |=1,则x=_________.思路解析:零的绝对值只有一个零,即x-1=0;一个正数的绝对值有两个数,∴1-x=±1. 答案:-1 0或2附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。
七年级数学绝对值典型例题

七年级数学绝对值典型例题
一、绝对值的基本概念例题
1. 例1:求下列数的绝对值: -5,0,3
解析:
根据绝对值的定义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
对于公式,因为公式是负数,所以公式。
对于公式,根据定义公式。
对于公式,因为3是正数,所以公式。
2. 例2:已知公式,求公式的值。
解析:
因为公式,根据绝对值的定义,公式可能是公式或者公式,即公式或公式。
二、绝对值在数轴上的应用例题
1. 例3:在数轴上表示数公式的点到原点的距离是3,求公式的值。
解析:
由于数公式的点到原点的距离是3,根据绝对值的几何意义(数轴上表示数公式的点与原点的距离叫做数公式的绝对值),可知公式。
所以公式或公式。
2. 例4:数轴上公式点表示的数为公式,公式点表示的数为公式,求公式、公式两点间的距离。
解析:
根据数轴上两点间的距离公式公式(设两点表示的数分别为公式,公式)。
这里公式,公式,则公式、公式两点间的距离公式。
三、绝对值的性质应用例题
1. 例5:若公式,则公式与公式有什么关系?
解析:
由公式,根据绝对值的性质,公式或公式。
例如公式,这里公式。
2. 例6:已知公式,求公式、公式的值。
解析:
因为绝对值是非负数,即公式,公式。
要使公式成立,则公式且公式。
当公式时,公式,解得公式;当公式时,公式,解得公式。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-6专项练习(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.2-等于()A.2 B.-2 C.+2 D.+12.π﹣3的绝对值是()A.3 B.πC.3﹣πD.π﹣33.|x|=l,则x与-3的差为( )A.4 B.4或2 C.-4或-2 D.24.化简|-15|等于()A.15 B.-15 C.±15D.1 155.﹣5的绝对值是()A.﹣5 B.5 C.0.2 D.﹣0.2 6.|﹣3|的相反数是()A.﹣3 B.﹣67C.3 D.3或﹣37.下列式子中,化简结果正确的是()A.﹣(﹣5)=5 B.+(﹣5)=5 C.|﹣0.5|=﹣12D.+(﹣12)=128.下列说法中正确的是().A.一个数的绝对值一定大于这个数的相反数B.若|a|=-a,则a≤0C.绝对值等于3的数是-3D.绝对值不大于2的数是±2,±1,09.在131,1.2,2,0,22---中,负数的个数有()A.1个B.2个C.3个D.4个10.﹣7的绝对值是().A.﹣7 B.7 C.﹣D.11.下列计算结果不等于2013的是()A.-|-2013| B.+|-2013| C.-(-2013)D.|+2013|12.如图,A ,B ,C ,D ,E 分别是数轴上五个连续整数所对应的点,其中有一点是原点,数a 对应的点在B 与C 之间,数b 对应的点在D 与E 之间,若3a b +=则原点可能是( )A .A 或EB .A 或BC .B 或CD .B 或E13.|﹣2|=( ) A .0B .﹣2C .2D .2或-214.下列说法正确的是( ) A .若a a =,则0a > B .若=-a b ,则a b = C .若a b =,则a b =D .若a b >,则a b >15.-2019的绝对值等于( ) A .-2019 B .-12109C .12019+ D .2019二、填空题1.计算:|-12.5|+|-2.5|=________.26的相反数是____ ;32018____. 3.136⎛⎫-- ⎪⎝⎭的倒数是_________; a-3的相反数_________4.若3x =,24y =且x y <,则x y +=_________. 5.化简: 若0a <,则||a =______.6.-23的相反数是_____,绝对值是_____. 7.一个数的绝对值是23,那么这个数为________. 8.﹣7的绝对值是_____. 9.若a 1=,2a 4+=______.10.542-的相反数是___________,542-的绝对值是_________.11.π的相反数是_________; -|-2|的相反数是________ ; 12-的相反数是 _________绝对值是_________.12.-2.5的相反数、倒数、绝对值分别为 _______、______、______. 13.-1.5的绝对值是_______;0的相反数是_______ 14.绝对值是34的数是________. 15.计算:(1)77-+=_____; (2)|4|-=_____. 三、解答题1.一辆出租车从A 站出发,先向东行驶12 km ,接着向西行驶8 km ,然后又向东行驶4 km. (1) 画一条数轴,以A 站为原点,向东为正方向,在数轴上表示出租车行驶的终点位置B ; (2)求各次路程的绝对值的和,并说明这个数据的实际意义是什么?(3)若出租车每行驶1 km 耗油0.05升,出租车由起点A 到终点B 共耗油多少升?2.若5a =,3b =,且0ab <,求-a b 的值.3.列式并计算:求–0.8的绝对值的相反数与265的相反数的差4.先把下列各数在数轴上表示出来,再按从小到大的顺序用“<”号把这些数连接起来:3,()1--,﹣3.5,0,2--5.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.10,3,,|4|2---参考答案一、选择题1.B解析:表示求2的绝对值的相反数.详解:解:-|2|=-2.故选B.点睛:本题考查了求有理数的绝对值,正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.2.D解析:根据实数的性质判断π与3的大小,即可得出答案.详解:解:∵π>3,∴│π-3│=π-3,故选D.点睛:本题考查了实数的性质,解题的关键是熟练的掌握实数的性质.3.B解析:由于|x|=1,所以,x=±1,那么,x与-3的差有两种情况.详解:由|x|=1得:x=1或x=-1,x=1时,x-(-3)=4,x=-1时,x-(-3)=2,综上,x与-3的差为4或2,故选B.点睛:本题主要考查了绝对值:数轴上一个数所对应的点与原点的距离叫做该数绝对值.4.A解析:根据绝对值的定义即可得出答案.详解:根据绝对值的定义可知,|-15|=15,故答案选择A.点睛:本题主要考查是绝对值:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.5.B解析:根据负数的绝对值等于它的相反数解答.详解:﹣5的绝对值是|﹣5|=5.故选B.点睛:本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.A解析:利用相反数、绝对值的性质求解即可.详解:-=,3的相反数是3-.33故选:A.点睛:此题考查了相反数、绝对值的性质,要求掌握相反数、绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.7.A解析:A. −(−5)=5,故本选项正确;B. +(−5)=−5,故本选项错误;C. |−0.5|=12,故本选项错误;D. +(−12)=−12,故本选项错误.故选A.8.B解析:试题分析:0的绝对值是0,0的相反数也是0,因此A 选项一个数的绝对值一定大于这个数的相反数说法错误;根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,所以若|a|=-a ,则a≤0,故B 说法正确;C 选项绝对值等于3的数有两个,是±3,因此C 说法错误;D 选项应是绝对值不大于2的整数是±2,±1,0,故D 说法错误.因此本题选B . 考点:对绝对值的理解. 9.B解析:试题分析:在131,1.2,2,0,22---中,负数有11,2,2--共2个,故答案选B . 考点:负数. 10.B解析:试题分析:根据绝对值的可知,﹣7的绝对值是7. 考点:绝对值. 11.A解析:试题分析:∵-|-2013|=-2013,+|-2013|=2013,-(-2013)=2013,|+2013|=2013;故选A . 考点:有理数的运算. 12.D解析:分别讨论原点的位置,得到a b +的取值范围,即可得出答案. 详解:当A 为原点时,12a <<,3<<4b ,则3+>a b ,不符合题意; 当B 为原点时,01a <<,23b <<,则3a b +=可能成立,符合题意, 当C 为原点时,10a -<<,12b <<,则3a b +<,不符合题意; 当D 为原点时,21a -<<-,01b <<,则3a b +<,不符合题意; 当E 为原点时,32a -<<-,10b -<<,则3a b +=可能成立,符合题意. 故选D . 点睛:本题考查数轴与绝对值,运用分类讨论思想是关键.13.C解析:根据负数的绝对值等于它的相反数去掉绝对值. 详解:()2=2=2---点睛:本题考查去绝对值的方法,负数的绝对值等于它的相反数,正数的绝对值等于它本身,0的绝对值是0. 14.B解析:根据绝对值的意义及其性质对选项进行判断即可得出答案. 详解:解:A.若a a =,则0a ≥,此选项错误; B. 若=-a b ,则a b =,此选项正确; C. 若a b =,则a b =±,此选项错误; D. 若a b >,则a b >或a b <,此选项错误; 故选:B . 点睛:本题考查的知识点是绝对值,掌握绝对值的代数意义及其性质是解此题的关键. 15.D解析:根据绝对值的性质:一个负数的绝对值是它的相反数解答即可. 详解:-2019的绝对值等于2019故选:D 点睛:本题考查了绝对值的性质,掌握“一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0”是关键.二、填空题 1.15解析:分析:先根据一个负数的绝对值等于它的相反数化简绝对值,然后按照加法法则计算即可.详解:|-12.5|+|-2.5|=12.5+2.5=15. 故答案为15.点睛:本题考查了绝对值的意义,一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.2.3)=故答案是:3 3.6193-a 解析:因为136⎛⎫-- ⎪⎝⎭=196,所以136⎛⎫-- ⎪⎝⎭的倒数是619.a-3的相反数-(a-3)=3-a. 故答案是:619,3-a.4.5-或1-解析:分析:根据3x =,24y =,得出x 、y 的值,再分情况讨论,x 和y 的取值且x<y ,得出x+y 的值.解:因为3x =||,24y =, 所以x=3或x=-3,y=2或y=-2, 又因为x<y, 所以x=-3,当x=-3,y=2,则x+y=-1, 当x=-3,y=-2时,x+y=-5; 故答案是-5或-1. 5.-a解析:根据a 的取值范围,化简a 即可. 详解:解:因为0a<,所以a a=-,故答案为-a.点睛:本题考查了绝对值和相反数的意义.解决本题的关键是掌握绝对值的意义.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.6.23;23.解析:根据相反数和绝对值的定义解答即可. 详解:-23的相反数是23,绝对值是2-3=23.故答案为23,23.点睛:本题考查了绝对值和相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.7.2 3±解析:根据绝对值的定义进行计算即可.详解:解:∵一个数的绝对值是23,∴这个数是±23,故答案为23±.点睛:本题考查了绝对值的定义,掌握定义是解题的关键.8.7.解析:试题分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.∵﹣7<0,∴|﹣7|=7.考点: 绝对值.9.6或2解析:直接利用绝对值的性质得出a 的值,进而得出答案. 详解: 解:a 1=,a 1∴=±,2a 4246∴+=±+=或2.故答案为6或2. 点睛:此题主要考查了绝对值,正确得出a 的值是解题关键.10.425425解析:根据相反数和绝对值的概念写出即可. 详解:542-的相反数是425,542-的绝对值是425, 故答案为:425;425. 点睛:本题主要考查了相反数和绝对值,熟练掌握其概念是解题的关键.11.-π; 2; 12; 12; 解析:根据相反数、绝对值的定义来解答即可. 详解:解:π的相反数是-π; ∵ -|-2|=-2, ∴-2的相反数是2 ; ∴-|-2|的相反数是2.12-的相反数是12,绝对值是12. 故答案为:-π,2,12,12 点睛:本题考查了相反数、绝对值,熟练掌握相反数、绝对值的定义是解题的关键.12.2.5;2-5; 2.5;解析:根据相反数的性质,互为相反数的两个数和为0;倒数的性质,互为倒数的两个数积为1;绝对值的定义,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,求解即可;详解:∵互为相反数的两个数和为0,∴-2.5的相反数为2.5;∵互为倒数的两个数积为1,∴-2.5的倒数为2-5;∵一个负数的绝对值是它的相反数,∴-2.5的绝对值为2.5;故答案为2.5;2-5;2.5;点睛:本题主要考查了倒数,相反数,绝对值,掌握倒数,相反数,绝对值的定义是解题的关键.13.1.5 0解析:根据绝对值和相反数的定义求解.详解:|-1.5|=1.50的相反数是0故填:1.5,0.点睛:本题考查了绝对值和相反数的性质,掌握绝对值和相反数的性质及定义,并能熟练运用到实际运算当中是解题的关键.14.±3 4解析:根据绝对值的性质进行解答即可.详解:解:绝对值是34的数是±34.故答案为:±34.点睛:本题考查的是绝对值的性质,解答此题的关键是熟知一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.0 4解析:(1)直接利用相反数的意义即可求出值;(2)直接利用绝对值的意义计算即可求出值.详解:(1)77-+=0;(2)|4|-=4.故答案为:0;4.点睛:本题考查了相反数和绝对值,解题的关键是掌握相反数和绝对值的意义.三、解答题1.(1)详见解析;(2) 24km,它的实际意义是出租车行驶的总路程是24 km;(3)1.2升解析:(1)根据题意画出数轴解答即可;(2)根据绝对值的意义和有理数的加法法则即可求出各次路程的绝对值的和,实际意义是出租车行驶的总路程,据此即可解答;(3)用出租车行驶的总路程×0.05即可求出结果.详解:解:(1)终点B的位置如图所示.(2)|12|+|-8|+|4|=24(km);它的实际意义是出租车行驶的总路程是24 km;(3)0.05×24=1.2(升).即出租车由起点A到终点B共耗油1.2升.点睛:本题考查了数轴、有理数的绝对值和有理数的加法运算,属于基本题型,熟练掌握基本知识是解题的关键.2.8±解析:根据绝对值的意义,得到a 、b 的值,然后结合0ab <,进行分类讨论,即可求出答案. 详解: 解:∵5a =,3b =,∴5a =±,3b =±,∵0ab <,∴若5a =,则3b =-;若5a =-,则3b =,当5a =,3b =-时,5(3)8a b -=--=;当5a =-,3b =时,538a b -=--=-;∴-a b 的值为8±.点睛:本题考查了求代数式的值,绝对值的意义,解题的关键是正确得到a 、b 的值,利用分类讨论的思想进行解题.3.285解析:先求出–0.8的绝对值的相反数,及265的相反数,然后相减即可得出答案. 详解:–0.8的绝对值的相反数为–0.8,265的相反数为-265,–0.8-(-265)=285. 故答案为285. 点睛:此题考查绝对值,相反数,有理数的加法,解题关键在于掌握运算法则.4.数轴见解析,﹣3.5<2--<0<()1--<3解析:根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上原点的右边表示正数,原点的左边表示负数,从而可得答案.详解:解:由()11,22,--=--=-把3,()1--,﹣3.5,0,2--在数轴上表示如图:由数轴上的点表示的数是右边的数总比左边的数大, 得:﹣3.5<2--<0<()1--<3.点睛:本题考查的是利用数轴上的点表示有理数,相反数的含义,求一个数的绝对值,有理数的大小比较,掌握以上的知识是解题的关键.5.在数轴上表示见解析,14302--<-<<解析:先化简|4|--,再根据有理数在数轴上的表示方法即可将已知的各数在数轴上进行表示,然后根据数轴上右边的数总比左边的数大即可将已知的有理数进行比较.详解:解:|4|--=﹣4,则有理数10,3,,|4|2---在数轴上表示如图:按从小到大的顺序连接如下:14302--<-<<.点睛:本题考查了数轴和有理数的大小比较,属于基础题目,熟练掌握基本知识是解题的关键.。
初中七年级数学上册-《绝对值》典型例题1

典型例题一
例题 计算7.10)323(3122.16-⎥⎦
⎤⎢⎣⎡--+-+- 分析 利用绝对值的概念可以去掉式子中的绝对值符号,利用在“相反数”一节学到的知识,可以将3
23-化简,这样,就可以利用小学知识完成本题了. 解 7.10)323(312
2.16-⎥⎦⎤⎢⎣⎡--+-+- .
5.116
5.5)3
23312()7.102.16(7.103
233122.16=+=++-=-++= 说明 本题出现在读者尚未学习有理数的运算之时,式子又比较长,不知读者刚刚见到这个题目时,心中是否有畏难情绪产生.而前面的“分析”是寻找使问题发生转化的途径,经过转化,题目就变容易了.这种情形在数学中极为常见,要特别注意学习怎样对题目特点,使问题由复杂变简单,由不熟悉的变为熟悉的.。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-27专项练习(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.﹣2019的绝对值是( ) A .2019 B .﹣2019 C .0 D .1 2.已知a =-5,|a|=|b|,则b 的值等于( ) A .5B .-5C .0D .±53.已知x x =-,那么x 一定是( ) A .大于零 B .小于零 C .等于零 D .小于或等于零 4.下列四个数的绝对值比2大的是( ). A .-3B .0C .1D .25.3-的绝对值是( ) A .13B .3-C .13-D .36.下列各数中,一定互为相反数的是( ) A .()1--和1 B .2-和2+ C .()3--和3-- D .m 和m - 7.3﹣2的绝对值是( ) A .2-3B .3-2C .3D .- 38.|a|=2,则实数a 的值是( ) A .-2B .12- C .2±D .29.下面各对数中互为相反数的是( ) A .2与()2-- B .2-与2-C .|2|--与2-D .2-与()2+-10.3--的值为 A .3B .-3C .D .-11.3 ) A .3B 3C .3D .312.下列有理数绝对值最小的是( ) A .-1B .0C .1D .0.513.下列各数属于自然数的是( )A.﹣4 B.|﹣4| C.+(﹣4)D.0.4 14.下列各对数互为相反数的是()A.-(-8)与+(+8)B.-(+8)与-︱-8︱C.-(+8) 与-(-8)D.-︱-8︱与+(-8)15.—2的绝对值是()A.2 B.—2 C.12D.无法确定二、填空题1.100的绝对值为________,-100的绝对值为________;2.-7的绝对值是__________.3.绝对值大于2.1而小于5.4的整数的积为________.4.π-的绝对值是_______________;5.计算:﹣|﹣5|=_____;﹣(﹣5)=_____;|﹣5|=_____6.﹣7的绝对值是_____.7.若4x=,则5x-的值是___________.8.﹣6的绝对值的结果为_____.9.若x是2的相反数,︱y︱=3,则x-y的值是_____________.10.74-的绝对值是_______.11.计算:﹣|﹣5|=_____;﹣(﹣5)=_____;|﹣5|=_____12________13.比大小:﹣1_____﹣0.2(填写“>”或“<”)14.-|-67|=_______,-(-67)=_______,- |+13|=_______,-(+13)=_______,+|-(12)| =_______,+(-12)=_______15.如果a是最大的负整数,b是绝对值最小的数,那么-a+b=________.三、解答题1.将有理数213-,112,3,-4,()1--,0,34--按从大到小的顺序,用“>”连接起来.2.已知:﹣4,|﹣2|,﹣2,﹣(﹣3.5),0,112.(1)在如图所示的数轴上表示出以上各数;(2)比较以上各数的大小,用“<”号连接起来; _____<_____<______<______<______<______(3)在以上各数中选择恰当的数填在图中这两个圈的(重叠)部分.3.把下列各数及它们的相反数在数轴上表示出来,并用“<”号把它们连接起来.13,(4),0,| 2.5|,12-----.4.画数轴并表示出以下各数,并用“<”号连接4-,2-,2-,()3.5--,0,112-.5.在数轴上表示下列数,再用“<”号把各数连接起来. +2,()4-+,()1+-,3-,-2.5参考答案一、选择题1.A解析:直接利用绝对值的性质得出答案.详解:﹣2019的绝对值是:|-2019|=2019.故选A.点睛:查了绝对值,正确把握绝对值的定义是解题关键.2.D解析:根据绝对值的性质进行计算即可.详解:解:∵a=-5,|a|=|b|∴|b|=5∴b=5故选D点睛:本题主要考查绝对值的性质,掌握绝对值的性质是解题的关键.3.D解析:一个数的绝对值等于它的相反数,则这个数一定小于或等于0.详解:因为|x|=﹣x,所以x一定小于或等于0.故选D.点睛:理解绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.4.A解析:分别求出选项中四个数的绝对值,再与2比较,从而可得答案. 详解:解:因为:33,00,11,22,-==== 所以:3->2. 故选:A . 点睛:本题考查的是求一个数的绝对值以及有理数的大小比较,掌握以上知识是解题的关键. 5.D解析:利用绝对值的性质求解即可. 详解:解:∵= 故选:D. 点睛:本题主要考察绝对值的性质,正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零. 6.C解析:根据绝对值的性质和相反数的概念分别进行化简,然后可得答案. 详解:A. ()1--=1,()1--和1不是相反数,故此选项错误;B. |−2|=2,|+2|=2,不是相反数,故此选项错误;C. =3()3--,3--=-3,是相反数,故此选项正确;D. |m|与|−m|不是相反数,故此选项错误; 故选:C. 点睛:此题考查绝对值、相反数,解题关键在于确定绝对值的值. 7.A解析:分析:根据差的绝对值是大数减小数,可得答案.的绝对值是 故选A .点睛:本题考查了实数的性质,差的绝对值是大数减小数.8.C解析:根据绝对值的意义进行求解即可得.详解:a 的绝对值是指数轴上表示数a 的点到原点的距离, 因为|a|=2,在数轴上到原点距离为2的点表示的数是2或-2, 所以a 的值为±2, 故选C.点睛:本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键. 9.B解析:根据相反数的定义对各项进行判断即可. 详解:解:A 选项:()22=--,不是互为相反数,故A 错误; B 选项:22-=,2与2-互为相反数,故B 正确; C 选项:22--=-,不是互为相反数,故C 错误; D 选项:()22-=+-,不是互为相反数,故D 错误; 故选B . 点睛:本题考查了相反数的问题,掌握相反数的定义是解题的关键. 10.B解析:试题分析: 负数的绝对值等于其相反数,33-=,所以33--=-;故答案选B. 考点:绝对值. 11.B解析:利用绝对值的性质求解即可. 详解:解:∵=故选B. 点睛:本题主要考察绝对值的性质,正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零. 12.B解析:根据绝对值定义,0是绝对值最小的数即可判断.详解:解:∵正数绝对值得本身,负数绝对值得相反数,0的绝对值是0,∴0是绝对值最小的数,故选:B点睛:本题考查绝对值的定义,对定义的理解是解答此题的关键.13.B解析:把各数化简计算后,表示物体个数的0,1,2,3,4,……叫做自然数, 把各数化简计算后,再判断.0也是自然数.详解:解:﹣4不是自然数,故选项A不合题意;|﹣4|=4,是自然数,故选项B符合题意;+(﹣4)=﹣4,不是自然数,故选项C不合题意;0.4不是自然数,故选项D不合题意;故选B.点睛:本考查了自然数的概念,注意0也是自然数,熟记自然数的概念是解题的关键.14.C解析:先根据绝对值进行化简,再根据相反数的定义判断即可.详解:A、∵-(-8)=8,+(+8)=8,∴-(-8)与+(+8)不是互为相反数,选项错误;B、∵-(+8)=-8,-︱-8︱=-8,∴-(+8)与-︱-8︱不是互为相反数,选项错误;C、∵-(+8) =-8,-(-8)=-8,∴-(+8) 与-(-8)不是互为相反数,选项正确;D、∵-︱-8︱=-8,+(-8)=-8,∴-︱-8︱与+(-8)不是互为相反数,选项错误;故选C.点睛:本题考查相反数和绝对值,关键是熟练掌握相反数的概念和求绝对值.15.A解析:根据绝对值的定义,即可完成解答.详解:解:—2的绝对值是2.点睛:本题考查了绝对值的定义,灵活运用绝对值的定义是解答本题的关键.二、填空题1.100 100解析:利用绝对值的定义解题.详解:|100|=100, |-100|=100;故答案为100, 100.点睛:主要考查绝对值的定义,要求熟记以下规律.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.7解析:试题解析:根据绝对值的定义可得:|-7|=7.故答案为7.3.-3600解析:找出绝对值大于2.1而小于5.4的整数,求出之积即可.详解:绝对值大于2.1而小于5.4的整数有−3,−4,−5,3,4,5,之积为−3600.故答案为−3600点睛:此题考查绝对值,有理数大小比较,有理数的乘法,解题关键在于掌握运算法则.4.π解析:根据绝对值的求法进行计算即可得到答案.详解:-=,故答案为π.由题意可得ππ点睛:本题考查求绝对值,解题的关键是掌握求绝对值的方法.5.﹣5, 5 5解析:直接利用绝对值以及相反数的定义化简得出答案.详解:﹣|﹣5|=﹣5;﹣(﹣5)=5;|﹣5|=5.故答案为﹣5,5,5.点睛:此题主要考查了绝对值以及相反数,正确把握相关定义是解题关键.6.7.解析:试题分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.∵﹣7<0,∴|﹣7|=7.考点:绝对值.7.详解:分析:把x的值代入原式,利用绝对值的代数意义计算即可得到结果.详解:当x=4时,原式=|4﹣5|=|﹣1|=1.故答案为1.点睛:本题考查了绝对值,熟练掌握绝对值的代数意义是解答本题的关键.8.6解析:根据绝对值的定义计算详解:解:∵|﹣6|=6,故答案为6点睛:此题考查了绝对值的定义,难度不大9.-5或1解析:根据相反数和绝对值的定义,确定x和y的值,然后进行计算即可.详解:解:由题意得:x=-2,y=±3所以x-y的值是-5或1.点睛:本题考查了相反数和绝对值的定义,灵活运用相反数和绝对值的定义是解答本题的关键.10.7 4解析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.详解:解:77 44-=.故答案为74.点睛:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.﹣5, 5 5解析:直接利用绝对值以及相反数的定义化简得出答案.详解:﹣|﹣5|=﹣5;﹣(﹣5)=5;|﹣5|=5.故答案为﹣5,5,5.点睛:此题主要考查了绝对值以及相反数,正确把握相关定义是解题关键.12.解析:由绝对值的意义,即可求出答案.详解:解:由绝对值的意义,得故答案为:5±.点睛:本题考查了绝对值的意义,解题的关键是掌握绝对值的意义进行解题.13.〈解析:求出两数的绝对值,再判断即可得到答案.详解:∵|−1|=1,|−0.2|=0.2,∴1>0.2,故答案为<.点睛:本题考查有理数大小比较和绝对值,解题的关键是掌握有理数大小比较方法和求绝对值.14.-67,67, -13, -13,12, _12解析:根据绝对值和相反数的定义求解. 详解:-|-67|=-67,-(-67)=67,- |+13|=-13,-(+13)=-13,+|-(12)| =12,+(-1 2)=_12故答案为-67,67,-13,-13,12,_12点睛:考核知识点:绝对值,相反数.理解定义是关键.15.1解析:根据有理数的分类、绝对值的定义可得到1a=-,0b=,然后把a、b的值代入-a+b 进行计算即可.详解:解:a是最大的负整数,b是绝对值最小的数,1a∴=-,0b=,(1)0101a b∴-+=--+=+=.故答案为:1.点睛:本题主要考查的是有理数的相关知识.最大的负整数是1-,绝对值最小的有理数是0.三、解答题1.13231(1)014 243 >>-->>-->->-解析:先化简各数,然后根据有理数比较大小的法则进行比较.详解:解:∵()1=1--,33=44---,11=1.52,21 1.6673-≈-,∴按从大到小的顺序为:13231(1)014243>>-->>-->->-.点睛:本题考查的是有理数的大小比较,解答此类题目时要先估算出分数的大小,化简绝对值,再根据有理数比较大小的法则进行比较.2.(1)答案见解析;(2)-4<-2<0 <112<∣-2∣<-(-3.5);(3)-4,-2.解析:(1)在数轴上找到各数的位置即可解答;(2)根据(1)题中各数的位置即可解答;(3)根据题目中的数据找出既是负数又是整数的数即可解答. 详解:解:(1)如图所示:(2)-4<-2<0 <112<∣-2∣<-(-3.5);(3)在﹣4,|﹣2|,﹣2,﹣(﹣3.5),0,112这些数中,既是负数又是整数的数是-4,-2,所以这两个圈的重叠部分应填-4,-2,如图.本题考查了有理数的概念、有理数在数轴上的表示和比较有理数大小的方法,熟练掌握有理数的相关知识是解题的关键.3.1143 2.5101| 2.5|3(4)22-<-<-<-<<<-<<--,数轴上表示见解析.解析:先分别求得个数的相反数,再在数轴上表示,把这些数从左到右依次用小于号连接即可. 详解:解:-3的相反数为:3,(4)--的相反数为:-4,0的相反数为:0,| 2.5|-的相反数为:-2.5,112-的相反数为:112, 在数轴上表示如下:所以,1143 2.5101| 2.5|3(4)22-<-<-<-<<<-<<--. 点睛:本题考查了有理数比较大小,数轴上的点表示的数,绝对值和相反数.在数轴上右边总比左边的大.4.详见解析,14210|2|( 3.5)2-<-<-<<-<--解析:先画出标准数轴,再将各数准确标到相应位子上即可. 详解:22-=,()3.5 3.5--=,在数轴表示如图所示:排序:14210|2|( 3.5)2-<-<-<<-<--本题考查了利用数轴比较大小,能够准确在数轴上表示出各个点是解决问题的关键.5.在数轴上表示见解析,()()4 2.5123-+<-<+-<+<- 解析:先化简,再在数轴上表示各个数,然后比较即可. 详解:∵()44-+=-,()11+-=-,33=-, ∴在数轴上表示为:∴()()4 2.5123-+<-<+-<+<-. 点睛:本题考查了相反数、绝对值以及利用数轴比较有理数的大小,能在数轴上正确表示各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中七年级数学上册《绝对值》例题
知识点一:绝对值的概念
例1 判断下列各式是否正确(正确入“T”,错误入“F”):
(1)a a =-;( )
(2)a a -=-;( )
(3)若|a |=|b|,则a =b ;( )
(4)若a =b ,则|a |=|b|;( )
分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数(或证明)一个结论是错误的,只要能举出反例即可.如第(2)小题中取a =1,则-|a |=-|1|=-1,而|-a |=|-1|=1,所以-|a |≠|-a |.在第(3)小题中取a =5,b =-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.
解:其中第(2)(3)小题不正确,(1)(4)小题是正确的.
说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便.
例2 求下列各数的绝对值:
(1)-38;(2)0.15;(3))0(<a a ;(4))0(3>b b ;
(5))2(2<-a a ;(6)b a -.
分析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号,(6)题没有给出a 与b 的大小关系,所以要进行分类讨论.
解:(1)|-38|=38;(2)|+0.15|=0.15;
(3)∵a <0,∴|a |=-a ;
(4)∵b >0,∴3b >0,|3b|=3b ;
(5)∵a <2,∴a -2<0,|a -2|=-(a -2)=2-a ;
(6)()0()().a b a b a b a b b a a b ->⎧⎪-==⎨⎪-<⎩
;;
说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子表示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.
例3 一个数的绝对值是6,求这个数.
分析:根据绝对值的意义我们可以知道,绝对值是6的数应该是6±.
解:这个数是6±.
说明:互为相反数的两个数的绝对值相等.
变式练习:
求下列各数的绝对值:
+5,0.3,13,57
-,-9.563,0.
参考答案:
5,0.3,13,57
,9.563,0. 知识点二:数的大小比较
例4 求下列各数的绝对值,并把它们用“>”连起来.
87-,9
1+,0,-1.2 分析:首先可根据绝对值的意义,即正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0来求出各数的绝对值.在比较大小时可以根据“两个负数比较大小,绝对值大的反而小”比较出2.18
7->-
,其他数的比较就容易了. 解:771100 1.2 1.2.8899-=+==-=,,, .2.18
7091->->>+ 说明:利用绝对值只是比较两个负数.
变式练习:
比较下列各对数的大小:
(1)5和-4;(2)-3和-5;(3)-2.5和-|-2.25|.
参考答案:
(1)5>-4;(2)-3>-5;(3)-2.5<-|-2.25|.。