(完整版)圆柱体积练习课教案
《圆柱的体积》教案(优秀9篇)

《圆柱的体积》教案(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《圆柱的体积》教案(优秀9篇)作为一位无私奉献的人·民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。
圆柱的体积 教案【优秀3篇】

圆柱的体积教案【优秀3篇】圆柱的体积教案篇一课题圆柱的体积教学课时第5课时教学目标知识目标经历圆柱体积计算公式的推导过程,理解并掌握圆柱体积计算的方法,并能正确计算圆柱的体积。
技能目标能运用圆柱体积计算方法,解决有关的实际问题,发展学生的实践能力。
情感态度与价值观进一步丰富对圆柱的认识,提高空间观念。
教学重点圆柱体积计算教学难点1、圆柱体积计算方法的推导。
2、借助教具演示,弄清圆柱与长方体的关系。
课前准备圆柱体积公式推导教具教学过程与方法个性修改预习检测出示图片:师:同学们,你们知道什么叫物体的体积吗?这些图形中,哪些图形的体积你会计算呢?学生展开交流,明确体积的含义,复习有关长方体和正方体体积的计算公式。
自学探究1、探究例5:(1)猜一猜①圆柱的体积可能怎样计算?②计算圆柱的体积需要哪几个条件?在猜想交流活动中,学生很可能会借助长方体、正方体体积的计算方法,推断出圆柱的体积计算方法。
得出:圆柱的体积等于底面积乘高。
(2)演示教具①取出圆柱体模型②将圆柱切成两半③分别将两半均分成多个小块④将两半模型拼成一个近似的长方体(为什么是近似的长方体?怎样可以更接近长方体?)(3)归纳公式①拼成的长方体的体积与圆柱的体积有什么关系?②长方体的底面积与高分别与圆柱的底面积、高有什么关系?③长方体的体积等于什么?圆柱呢?学生回答,教师板书:圆柱的体积=长方体的体积=底面积高圆柱的体积=底面积高④如果用v表示圆柱的体积,s表示底面积,h表示高,那么圆柱的体积计算公司应该是怎样表示?板书:v=sh师生互动指导学生完成做一做1、先让学生说说题意,明确求圆柱的体积需要具备什么条件。
2、学生独立完成并反馈。
3、拓展延伸:如果知道圆柱底面的半径r和高h,圆柱的体积公式还可以怎样表示呢?①同桌互相交流,然后全班反馈。
②教师根据学生的回答,板书:v=pi;r2h双基练习指导学生完成练习三的第1~2题1、第1题:先让学生独立将表格填写完整,然后全班反馈。
《圆柱的体积》数学教学设计(优秀4篇)

《圆柱的体积》数学教学设计(优秀4篇)《圆柱的体积》数学教案篇一教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。
也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个圆柱的体积。
三、布置作业完成一课三练的相关练习。
《圆柱的体积》数学教案篇二一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
数学圆柱的体积教案【优秀6篇】

数学圆柱的体积教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学圆柱的体积教案【优秀6篇】作为一名人·民教师,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。
小学数学圆柱的体积教案6篇

小学数学圆柱的体积教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、培训计划、心得体会、条据文书、活动方案、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, training plans, experiences, document documents, activity plans, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!小学数学圆柱的体积教案6篇教案是教师评估学生的学习成果和教学效果,为学生的个性化发展提供指导,有了教案教师对教学问题进行解决和处理,这有助于提高教师的问题管理能力,下面是本店铺为您分享的小学数学圆柱的体积教案6篇,感谢您的参阅。
六年级下册数学教案-2圆柱的体积练习(练习课)-苏教版

六年级下册数学教案2圆柱的体积练习(练习课)苏教版今天我要为大家带来的是六年级下册数学教案,具体是苏教版教材中关于圆柱的体积练习的练习课。
一、教学内容我们今天的主要内容是圆柱的体积计算。
我们将通过例题和练习来加深对圆柱体积计算方法的理解和应用。
二、教学目标通过本节课的学习,我希望学生们能够掌握圆柱体积的计算方法,并能够灵活运用到实际问题中。
三、教学难点与重点重点是圆柱体积的计算方法,难点是如何将实际问题转化为圆柱体积的计算问题。
四、教具与学具准备我已经准备好了相关的教具和学具,包括圆柱体积的计算公式,以及一些实际的圆柱形状的物品。
五、教学过程我会通过一个实践情景引入,比如一个圆柱形状的水杯,让学生们直观地感受到圆柱的体积。
接着,我会带领学生们学习圆柱体积的计算公式,并通过例题来讲解如何运用这个公式。
然后,我会让学生们进行随堂练习,运用所学的知识来解决实际问题。
我会对学生们的问题进行讲解和解答。
六、板书设计我会在黑板上写出圆柱体积的计算公式,并在旁边附上一些实际的圆柱形状的图示,以便学生们理解和记忆。
七、作业设计作业题目:计算下面圆柱的体积。
答案:1. 圆柱的体积= 3.14 × r^2 × h2. 圆柱的体积=3.14 × (5)^2 × 103. 圆柱的体积= 3.14 × (7)^2 × 12八、课后反思及拓展延伸通过本节课的学习,我发现学生们对圆柱体积的计算方法掌握得比较好,但在将实际问题转化为圆柱体积的计算问题时,还有一些学生存在困惑。
在今后的教学中,我将继续强调实际问题的转化,并通过更多的练习来加强学生的应用能力。
我还可以引导学生进一步探索圆柱体积的其他相关性质和计算方法,以提高他们的数学思维能力。
重点和难点解析一、实践情景引入在教学过程中,我通过一个实践情景引入,比如一个圆柱形状的水杯,让学生们直观地感受到圆柱的体积。
这个实践情景的引入非常重要,因为它能够帮助学生们建立起对圆柱体积的直观认识。
《圆柱的体积》教案【优秀7篇】

《圆柱的体积》教案【优秀7篇】作为一名优秀的教育工作者,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。
来参考自己需要的教案吧!为您精心收集了7篇《《圆柱的体积》教案》,在大家参考的同时,也可以分享一下给您的好友哦。
《圆柱的体积》数学教案篇一教学目标:1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:圆柱切割组合模具、小黑板。
教学过程:一、创设情境,生成问题1、什么是体积?(物体所占空间的大小叫做物体的体积。
)2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?二、探索交流,解决问题1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?(启发学生思考。
)2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:(1)圆柱切开后可以拼成一个什么形体?(长方体)(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
近似长方形的高就是圆柱的高,没有变化。
)4、推导圆柱体积公式小组讨论:怎样计算圆柱的体积?学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:V=Sh5、算一算:已知一根柱子的底面半径为0.4米,高为5米。
六年级数学教案圆柱的体积练习课

六年级数学教案圆柱的体积练习课
六年级数学教案——圆柱的体积练习课
教学目标:
1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:
一、复习
1、复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题
1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱的体积练习课
学习目标:
1.能够运用公式正确地计算圆柱的体积和容积。
2.初步学会用转化的数学思想和方法,解决实际问题的能力。
3.渗透转化思想,培养自主探索意识。
学习重点:掌握圆柱体积的计算公式。
学习难点:灵活应用圆柱的体积公式解决实际问题。
学习过程:
一、复习
1.复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。
2.复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、基本练习
1.把圆柱切开、再拼起来,能得到一个()。
长方体的底面积等于圆柱的(),长方体的高等于圆柱的(),因为长方体的体积=底面积×高,所以圆柱的体积=(),用字母表示是()。
2.求一个圆柱形水池的占地面积,是求这个水池的();求
一个圆柱形水池能装多少水,是求这个水池的()。
3.将一段棱长是20厘米的正方体木材,加工成一个最大的圆柱,削去的木材的体积是()立方厘米。
4. 一个圆柱的底面积是25平方厘米,高4厘米,体积是()立方厘米。
5. 圆柱体的侧面积是25.12平方米,底面直径是2米,它的高是()米。
6.一个圆柱的侧面展开是边长6.28厘米的正方形。
这个圆柱的体积是()立方厘米。
7.一个圆柱的体积是5.4立方分米,已知高是3.6分米,它的底面积是()。
三、综合练习
1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=V÷S。
也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
(3)在充分理解题意后学生独立完成,集体订正。
(4)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个
圆柱的体积。
四、拓展练习
1.一个圆柱的底面直径是6厘米,高是10厘米,体积是多少?2.一个圆柱的底面周长是25.12分米,高是2分米,体积是多少?3.一个圆柱的底面周长是37.68厘米,体积是565.2立方厘米,高是多少厘米?
4.一个圆柱形水池的侧面积是94.2平方米,底面半径是3米,这个水池能装水多少立方米?
5.一个圆柱形油桶,从里面量,底面周长是62.8厘米,高是30厘米。
如果1升柴油重0.85千克,这个油桶可以装柴油多少千克?
6.一段钢管长60厘米,内直径是8厘米,外直径是10厘米。
这段钢管的体积是多少立方厘米?
7.一根圆柱形钢管,长3米,横截面的外直径是20厘米,管壁厚2厘米。
如果每立方厘米钢重7.8克,这根钢管重多少千克?
五、提高练习
1.把一根长5分米的圆柱形木料沿着与底面平行的方向锯成两段后,表面积增加了200 平方分米。
这根木料的体积是多少立方分米?2.把一根长5分米的圆柱形木料沿底面直径锯成两半后,表面积增加了200平方分米。
这根木料的体积是多少立方分米?
六、回顾总结
1.通过本节课的学习你有哪些收获?(学生汇报收获)
2.这节课你认为该给自己打多少分?你对自己满意吗?。