电子束焊接发展优势

合集下载

航空发动机制造的电子束焊接技术分析

航空发动机制造的电子束焊接技术分析

航空发动机制造的电子束焊接技术分析
电子束焊接技术是利用电子束和工件产生的热量将工件加热至熔化状态,并通过热流实现工件的焊接。

其工作原理可分为两个关键步骤:电子束的发射和工件的加热。

通过电子枪将高速电子束聚焦成为一束高能电子束,形成电子束束流;然后,该束流瞄准工件焊接点,电子束在工件表面形成一个热源区,使工件局部区域加热至熔化,从而实现焊接。

与传统焊接技术相比,电子束焊接技术具有以下几个优势:
1. 焊缝质量高:电子束焊接过程中,电子束的能量调节精确,能够实现精密焊接。

焊缝深度可以通过调节电子束的能量来控制,同时也可以控制焊缝的宽度和形状,保证焊接质量。

2. 焊接速度快:由于电子束焊接过程是在真空环境中进行的,没有传热和传质的问题,焊接速度较快。

在航空发动机制造中,焊接速度的提高可以提高生产效率和降低生产成本。

3. 热影响区小:电子束焊接过程中,焊接区域的热输入非常短暂,并且只发生在局部区域,因此热影响区较小。

这使得电子束焊接适用于焊接高温合金等对热敏性要求较高的材料。

电子束焊接技术也存在一些挑战和限制:
1. 设备成本高:电子束焊接设备的制造和维护成本较高,对于中小型企业来说,投资电子束焊接设备可能会造成较大的经济压力。

2. 针对不同材料需要调整参数:不同材料的焊接特性不同,需要调整焊接参数以达到最佳焊接效果。

这需要对材料性质的了解和实验室测试,增加了工艺开发的难度和复杂性。

3. 操作技术要求高:电子束焊接技术需要专业的操作人员进行控制和调试,操作技术要求较高。

对于一些小型企业来说,招聘并培训符合要求的操作人员可能会面临困难。

电子束焊接的工作原理与焊缝性能研究

电子束焊接的工作原理与焊缝性能研究

电子束焊接的工作原理与焊缝性能研究电子束焊接是一种高能束焊接技术,通过将电子束聚焦到焊缝上,利用电子束的高能量将工件加热至熔化温度,从而实现焊接的目的。

与传统的焊接方法相比,电子束焊接具有焊接速度快、热影响区小、焊缝质量高等优点,在航空航天、核工业等领域被广泛应用。

电子束焊接的工作原理非常讲究。

首先,电子束是由加速电子所组成的高能束流,可以通过电子枪产生。

电子枪中的阴极会释放出大量的自由电子,这些自由电子会经过加速电场的作用加快速度。

接着,电子束通过一系列的聚焦装置,使其能量更加集中并聚焦到一个小点上。

最后,电子束束流进入焊接区域,在焊接区域内产生高热,并将工件加热至熔化温度,形成焊缝。

在焊接过程中,电子束的高能量对焊接区域的影响是非常显著的。

首先,电子束的高能密度可以使焊接区域的温度迅速升高,达到熔点以上的温度,从而实现焊接。

其次,电子束的高能量可以提供足够的热量,使得金属在短时间内熔化并形成稳定的焊接池。

同时,电子束焊接还能够有效地抑制热影响区的扩散,减少对材料性能的影响。

电子束焊接的焊缝性能研究也是非常重要的。

焊缝性能的好坏直接影响到焊接件的质量和可靠性。

在焊接过程中,电子束焊接产生的焊缝通常具有较小的宽度和较少的缺陷,如气孔、夹杂物等。

焊缝的熔深度和熔宽度可以通过控制电子束的能量和焦距来调节。

此外,焊接区域的温度分布、凝固过程和晶粒尺寸等也会对焊缝性能产生影响。

因此,研究焊接参数对焊缝性能的影响,可以进一步改进电子束焊接工艺,提高焊接质量。

此外,电子束焊接还可以实现材料的高速熔化和快速凝固,从而改变材料的组织结构和性能。

通过电子束焊接,可以实现材料的晶粒细化、晶界清晰化、共晶相平衡等效果,从而提高材料的力学性能、疲劳性能和耐腐蚀性能。

总之,电子束焊接是一种高能束焊接技术,具有焊接速度快、热影响区小、焊缝质量高等优点。

电子束焊接的工作原理是通过将电子束聚焦到焊缝上,利用电子束的高能量将工件加热至熔化温度,实现焊接。

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用高能束焊接技术(EBW)是一种先进的焊接方法,它利用高速电子束来熔化和连接金属材料。

这种焊接技术具有高能量密度、高焊接速度、优质的焊接效果和适用于各种金属材料等优点,因此在航空航天、汽车制造、核工业和电子行业等领域得到了广泛的应用。

本文将从高能束焊接技术的发展历程和原理、应用领域、优势和挑战等方面进行介绍。

一、高能束焊接技术的发展历程和原理高能束焊接技术最早是在20世纪50年代发展起来的,最初是用于核工业和航天航空领域。

1958年,美国杜邦公司开发出了第一台商用的电子束焊接机,这标志着电子束焊接技术开始走向工业化生产。

高能束焊接技术通过电子枪产生高速电子束,电子束击中工件表面时,产生的能量将工件表面瞬间加热到熔化温度,然后通过电子束辐照区域产生高温熔池,从而实现熔化和连接金属材料的目的。

高能束焊接技术的原理是利用高速电子束的能量瞬间加热金属材料,使其熔化并形成熔池,然后利用合适的焊接工艺来实现金属材料的连接。

与传统的焊接方法相比,高能束焊接技术具有能量密度高、焊接速度快、热影响区小、热输入低等优点,因此可以实现高质量的焊接效果。

二、高能束焊接技术的应用领域高能束焊接技术在航空航天、汽车制造、核工业和电子行业等领域得到了广泛的应用。

在航空航天领域,高能束焊接技术被广泛应用于飞机结构件、发动机零部件、航天器壳体等关键部件的焊接,以提高焊接质量和生产效率。

在汽车制造领域,高能束焊接技术通常应用于汽车车身焊接、汽车零部件焊接等工艺环节,以提高焊接强度和减少成本。

在核工业领域,高能束焊接技术被用于核反应堆压力容器、核燃料元件等核设备的焊接,以保证核设备的安全可靠性。

在电子行业领域,高能束焊接技术通常应用于电子器件的微细焊接和包装,以提高器件的性能和可靠性。

高能束焊接技术相对传统焊接方法有很多优势,主要包括以下几点:1. 高能量密度:高能束焊接技术的能量密度很高,可以实现瞬间加热和快速熔化金属材料,从而提高焊接速度和效率。

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用

高能束焊接技术的发展和应用高能束焊接技术是一种现代焊接技术,它采用高能束作为焊接热源,利用高能束的集中能量和高能流密度,将焊接接头迅速加热至熔化温度并实现焊接。

高能束焊接技术包括激光焊接、电子束焊接和等离子焊接等多种形式。

这些焊接技术具有高能量浓度、热输入集中、加热速度快、熔深大、焊接变形小等优点,被广泛应用于航空航天、汽车制造、电子设备等领域。

高能束焊接技术的发展可追溯到20世纪40年代。

当时,电子束焊接技术首次应用于军事工业领域。

随着激光技术和等离子技术的发展,高能束焊接技术的应用范围逐渐扩大。

高能束焊接技术在航空航天领域中的应用十分广泛。

航空航天器的结构件往往需要具备高强度和高精度的特点,而高能束焊接技术能够满足这些要求。

激光焊接技术被应用于喷气发动机涡轮叶片的制造,能够提高制品的性能并保证焊接接头的质量。

电子束焊接技术被广泛应用于轻型航空航天器的生产,能够实现高效率、高质量的焊接,提高产品的可靠性。

在汽车制造领域,高能束焊接技术也发挥了重要作用。

汽车的表面涂层和涂漆往往会影响到其外观和耐腐蚀性能,而高能束焊接技术能够在不破坏基材的情况下,有效地去除涂层。

高能束焊接技术还可以用于汽车零部件的焊接,提高产品的质量和可靠性。

电子设备制造领域也是高能束焊接技术的主要应用领域之一。

电子器件往往需要高精度和高可靠性的连接,而高能束焊接技术能够实现精确的焊接和微小尺寸的焊接接头。

激光焊接技术被广泛应用于集成电路的封装和电子组装的焊接。

高能束焊接技术的发展和应用为现代工业生产带来了许多优势。

它能够实现高效率、高质量的焊接,提高产品的性能和可靠性。

随着科技的不断进步和创新,高能束焊接技术还将继续发展,并在更多领域得到应用。

电子束焊接技术研究与应用

电子束焊接技术研究与应用

电子束焊接技术研究与应用随着工业的发展,焊接技术已经成为各行各业中不可或缺的一项技术。

而电子束焊接技术作为现代高新技术的代表之一,因其高效、高质、高稳定性等优点,已被广泛应用于飞航航空、船舶、化工、医疗器械、精密仪器等高科技行业。

本文将探讨电子束焊接技术的研究和应用。

一、电子束焊接技术的基本原理电子束焊接技术是一种将电子束在低压和真空的情况下进行的高速能量材料处理。

在电子束的作用下,焊材在极短时间内被快速加热并熔化,形成一道焊缝。

基本原理是通过高能电子束的能量转化为焊接材料内部的热能,使其熔化,并通过流动的铁水消除焊接材料中的气孔,从而实现焊接。

二、电子束焊接技术的优点与其他传统的焊接方式相比,电子束焊接技术具有以下几个优点:1. 焊接区域不受热影响区的影响,能够焊接极薄的材料。

2. 焊缝的孔洞率较低,焊接质量高。

3. 电子束焊接过程中,不需要添加任何助焊剂,无需后续清洗和处理焊渣等。

4. 可以实现对不同材料不同厚度的焊接并达到很高的焊接效率。

5. 由于焊接时使用的是真空环境,所以焊接零件表面的污染和氧化问题得到很好的解决,从而减少了热裂问题的产生。

三、电子束焊接技术的应用电子束焊接技术在精密结构的制造、高精度零件的加工等领域有了广泛的应用。

下面将从飞航航空、船舶、医疗器械等方面来介绍其应用:1. 飞航航空电子束焊接技术在飞航航空领域具有重要的应用价值。

早在上世纪60年代初,美国就已成功实现了航空发动机涡轮叶片的电子束焊接,并将其广泛应用。

目前,国内外的航空航天领域中,电子束焊接技术已经为创新提供了新的技术保障。

2. 船舶电子束焊接技术在造船领域有着广泛的应用。

船体结构件是船用焊接加工中最困难的焊接部位之一,特别是在船体的局部加强部位,常常需要进行多角度的焊接。

电子束焊接通过其高度的控制能力,可以有效保证焊接质量,并且减轻了焊接环境和操作者的安全风险。

3. 医疗器械电子束焊接技术在医疗器械领域中的应用,主要用于制造一些耐高压、耐高温、各种特殊环境下使用的设备。

电子行业电子束焊接

电子行业电子束焊接

电子行业电子束焊接简介电子束焊接是一种常用于电子行业的高精度焊接技术。

它利用电子束的高能量特性,将焊接材料加热至高温,快速融化并连接在一起。

电子束焊接具有精度高、焊接速度快和热影响区小等优点,广泛应用于半导体、电子元件和电路板的制造过程中。

工艺流程电子束焊接的工艺流程包括以下几个步骤:1.准备工作:对焊接材料进行清洁处理,确保表面不含杂质和氧化物。

同时,需要根据焊接要求确定焊接参数,包括电子束功率、聚焦电压和聚焦电流等。

2.对焊接材料进行定位和夹持:将待焊接的材料放置在焊接台上,并使用夹具进行固定,以确保焊接过程中的稳定性和准确性。

3.开始焊接:启动电子束装置,将电子束聚焦并瞄准焊接位置。

电子束穿过电子枪并聚焦在工件上,加热焊接材料达到融化温度并实现焊接。

4.焊接结束:完成焊接后,关闭电子束装置,等待焊接区域冷却。

同时,对焊接区域进行检查,确保焊接质量符合要求。

特点和优势电子束焊接在电子行业中得到广泛应用,主要受益于以下几个特点和优势:•高精度:电子束焊接能够提供非常精确的焊接结果,焊接位置和焊缝的尺寸控制非常准确,有助于保证电子产品的稳定性和可靠性。

•焊接速度快:电子束焊接的加热速度非常快,因为电子束本身具有高能量,能够迅速将焊接材料加热至融化温度。

相比传统焊接方法,电子束焊接能够大大缩短焊接时间,提高生产效率。

•热影响区小:电子束焊接时,焊接区域受热的时间非常短,因此在焊接过程中产生的热量对材料周围的影响非常小。

这意味着电子束焊接可以避免或减少由于热应力引起的变形和损坏,提高焊接质量。

•适用范围广:电子束焊接可以应用于各种材料的焊接,包括金属、陶瓷和非金属材料。

它在不同类型的电子元件、半导体和电路板的制造过程中都有重要的应用价值。

•自动化程度高:电子束焊接可以与自动化设备相结合,实现工艺的自动化和智能化。

通过编程和机器控制,可以实现焊接参数的精确控制和焊接过程的自动化控制。

应用案例LED封装在LED封装过程中,电子束焊接被广泛应用于焊接LED芯片和良好导热性能的基座之间的连接。

电子束焊接发展及优势

电子束焊接发展及优势【摘要】电子束焊接经过几十年的发展,已经在实验室研究和工业生产中得到了广泛研究与应用,能够很好的解决不锈钢、钛合金和铜合金等的焊接问题。

相对于其他几种焊接方式,电子束焊接具有焊接变形小;聚焦透镜焦长大利于实现焊接过程;适用于较大厚度范围工件的焊接;异种金属焊接和更大的穿透深度等优点。

特别是在厚度较大工件以及绝缘材料焊接方面具有较大的优势和广阔的应用前景,需对其进行较为系统的研究以指导生产及应用。

【关键词】电子束焊接;焊接变形;厚板焊接;异种焊接;穿透深度一、电子束焊接的发展电子束的发现距今已有100多年的历史,由于电子具有获得容易并自身带有电荷,在电场下能够很容易被加速从而获得很高的能量,所以电子束很早即被研究。

电子束焊接设备与当今一般应用的电子束设备相似,电子束被加速到具有很高的能量并通过电磁透镜聚焦于一点,然后作用于工件表面,电子的动能转变为热能从而进行材料的焊接。

电子枪产生电子束,电子束在电磁透镜的聚焦下作用于工件表面,完成对工件的焊接。

附属设备包括真空室、抽真空设备、水冷系统、光学观察系统以及各种阀门等。

电子束能量密度D由下式决定:D=k·I0.25V3.5式中k为电子枪常数、I为电子束电流、V为加速电压,从式中各参数的指数出发,增大加速电压能够较大的增加电子束的能量密度,所以当前电子束焊接设备已发展到了300kV或更高,再配合电磁透镜的汇聚聚焦作用,以及真空度的提高,使得电子束作用于工件表面的能量密度越来越高,获得较好的焊接和加工效果。

二、电子束焊接的优点电子束焊接在实验室研究以及工业生产方面均得到了广泛的应用,相对于其他焊接方式其具有特点和优势具体如下:1、最小的焊接变形扭曲变形与焊接过程中的热传导过程有关,而且一般是热量越高,焊接扭曲变形越大。

电子束焊接过程热影响区小,焊接过程中收缩应变较小,所以适用于那些运用传统焊接方法焊接易开裂金属的焊接。

I. Magnabosco等[1]系统研究了电子束焊接过程中三种接头(Cu+AISI 304L 不锈钢—接头Ⅰ;Cu+ AISI 304不锈钢—接头Ⅱ和Cu+ AISI 316L不锈钢—接头Ⅲ)热影响区的特性,焊接过程中除电子束电流、电子枪离工件的高度、焊接路径和铜板-钢板的厚度不同外,其他工艺参数均相同。

电子束焊接新工艺介绍

电子束焊接新工艺介绍电子束焊接是一种高能束焊接工艺,利用高速电子束来熔化和连接金属材料。

它具有高效、高精度和无污染等优点,因此在航空航天、能源、电子和汽车制造等领域得到了广泛的应用。

本文将介绍电子束焊接的原理、应用以及其在新工艺中的创新。

1. 电子束焊接原理电子束焊接利用高速电子束的热能将焊件加热到熔点,并通过材料的自身表面张力形成液态金属池,从而实现焊接。

电子束产生器通过热发射电子枪发射高速电子束,通过电子光学系统将电子束聚焦到焊接点上。

在焊接过程中,焊件表面与电子束相互作用,将大部分电子能量转化为热能,使焊接点迅速升温并熔化。

2. 电子束焊接的应用电子束焊接广泛应用于如下领域:2.1 航空航天领域航空航天领域对焊接接头的质量和可靠性要求非常高。

电子束焊接由于其高能量聚焦和熔池稳定性的特点,成为航空航天部件的首选焊接工艺,能够确保接头的强度和密封性。

2.2 能源领域电子束焊接广泛应用于核电站中的管道和容器的焊接,能够保证焊缝的强度和耐高温性能。

同时,在太阳能光伏领域,电子束焊接可以高效地连接光伏电池片和电池组件,提高太阳能电池的转换效率。

2.3 电子领域电子束焊接可以用于连接微电子器件和半导体材料。

其高能量聚焦和熔池稳定性使得焊缝的尺寸控制精度高,适用于微尺寸器件的焊接,如微芯片、集成电路和MEMS。

2.4 汽车制造领域电子束焊接在汽车制造中常用于焊接车身结构和发动机部件。

电子束焊接可以实现高强度焊缝和减少变形,提高汽车的结构强度和安全性能。

3. 电子束焊接新工艺创新近年来,电子束焊接工艺在不断创新发展中引入了一些新的技术和方法。

以下是一些典型的创新应用:3.1 多束电子束焊接多束电子束焊接利用多个电子束同时对焊件进行加热,可以提高焊接速度和效率,同时减少焊接变形。

这种方法广泛应用于大批量零件的快速焊接,如汽车车身焊接和飞行器结构焊接。

3.2 电子束熔覆电子束熔覆是一种利用电子束加热将金属粉末加热到熔点,并喷射到基体表面形成涂层的工艺。

电子束焊是什么焊接方法

电子束焊是什么焊接方法
电子束焊是一种高能量密度的焊接方法,它利用电子束在工件上产生热量,从而实现焊接的目的。

电子束焊具有焊缝深度大、热影响区小、焊接速度快等优点,因此在航空航天、核工业、汽车制造等领域得到了广泛的应用。

首先,让我们来了解一下电子束焊的原理。

电子束焊是利用电子枪发射出的高速电子束对工件表面进行加热,使工件材料局部熔化,然后通过焊接材料的熔化填充焊缝,最终形成坚固的焊接接头。

电子束焊的高能量密度使得焊接过程中热量集中,能够快速加热工件表面并实现高效的焊接。

其次,电子束焊的特点和优势是什么呢?首先,电子束焊焊缝深度大,能够实现较深的焊接,使得焊接接头更加牢固。

其次,电子束焊热影响区小,减少了对工件周围材料的热影响,有利于减少变形和残余应力。

此外,电子束焊焊接速度快,能够提高生产效率,降低生产成本。

因此,电子束焊在一些对焊接质量和效率要求较高的领域得到了广泛的应用。

除此之外,电子束焊还存在一些局限性。

首先,电子束焊设备成本较高,需要专门的设备和技术人员进行操作和维护。

其次,电子束焊对工件的表面质量要求较高,对杂质和气体的敏感度较大,需要在真空或惰性气体环境下进行焊接。

因此,在一些对焊接成本要求较低的领域,电子束焊可能并不适用。

总的来说,电子束焊是一种高能量密度的焊接方法,具有焊缝深度大、热影响区小、焊接速度快等优点,适用于一些对焊接质量和效率要求较高的领域。

然而,电子束焊设备成本较高,对工件表面质量要求较高,因此在实际应用中需要综合考虑其优势和局限性,并选择合适的焊接方法来满足实际生产的需求。

电子束焊是什么焊接方法

电子束焊是什么焊接方法
电子束焊是一种高能焊接方法,利用电子束作为热源进行焊接。

电子束焊具有
焊接速度快、热输入集中、热影响区小等优点,被广泛应用于航空航天、汽车制造、电子设备等领域。

本文将介绍电子束焊的原理、特点以及应用领域。

电子束焊的原理是利用电子枪产生高速电子流,通过电子束聚焦器将电子束聚
焦成细束,然后照射到焊接部位,电子束在焊接部位产生高能量的热量,使焊接材料瞬间熔化,完成焊接过程。

电子束焊具有以下特点,首先,焊接速度快。

由于电子束的高能量和热输入集中,焊接速度可以达到每分钟数米,远远快于传统焊接方法。

其次,热影响区小。

电子束焊的热输入非常集中,热影响区小,可以减少焊接变形和残余应力。

最后,焊接质量高。

电子束焊的焊缝形貌好,焊接质量高,适用于对焊接质量要求较高的领域。

电子束焊被广泛应用于航空航天、汽车制造、电子设备等领域。

在航空航天领域,电子束焊被用于焊接航空发动机、航天器结构件等高强度、高温材料。

在汽车制造领域,电子束焊被用于焊接汽车发动机、变速箱、底盘等部件。

在电子设备领域,电子束焊被用于焊接电子元器件、电子线路板等精密零部件。

总之,电子束焊是一种高能焊接方法,具有焊接速度快、热输入集中、热影响
区小等优点,被广泛应用于航空航天、汽车制造、电子设备等领域。

随着科技的不断进步,电子束焊技术将会得到更广泛的应用和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子束焊接发展及优势
【摘要】电子束焊接经过几十年的发展,已经在实验室研究和工业生产中得到了广泛研究与应用,能够很好的解决不锈钢、钛合金和铜合金等的焊接问题。

相对于其他几种焊接方式,电子束焊接具有焊接变形小;聚焦透镜焦长大利于实现焊接过程;适用于较大厚度范围工件的焊接;异种金属焊接和更大的穿透深度等优点。

特别是在厚度较大工件以及绝缘材料焊接方面具有较大的优势和广阔的应用前景,需对其进行较为系统的研究以指导生产及应用。

【关键词】电子束焊接;焊接变形;厚板焊接;异种焊接;穿透深度
一、电子束焊接的发展
电子束的发现距今已有100多年的历史,由于电子具有获得容易并自身带有电荷,在电场下能够很容易被加速从而获得很高的能量,所以电子束很早即被研究。

电子束焊接设备与当今一般应用的电子束设备相似,电子束被加速到具有很高的能量并通过电磁透镜聚焦于一点,然后作用于工件表面,电子的动能转变为热能从而进行材料的焊接。

电子枪产生电子束,电子束在电磁透镜的聚焦下作用于工件表面,完成对工件的焊接。

附属设备包括真空室、抽真空设备、水冷系统、光学观察系统以及各种阀门等。

电子束能量密度d由下式决定:
d=k·i0.25v3.5
式中k为电子枪常数、i为电子束电流、v为加速电压,从式中各参数的指数出发,增大加速电压能够较大的增加电子束的能量密度,所以当前电子束焊接设备已发展到了300kv或更高,再配合电磁透镜的汇聚聚焦作用,以及真空度的提高,使得电子束作用于工件表面的能量密度越来越高,获得较好的焊接和加工效果。

二、电子束焊接的优点
电子束焊接在实验室研究以及工业生产方面均得到了广泛的应用,相对于其他焊接方式其具有特点和优势具体如下:
1、最小的焊接变形
扭曲变形与焊接过程中的热传导过程有关,而且一般是热量越高,焊接扭曲变形越大。

电子束焊接过程热影响区小,焊接过程中收缩应变较小,所以适用于那些运用传统焊接方法焊接易开裂金属的焊接。

i. magnabosco等[1]系统研究了电子束焊接过程中三种接头(cu+aisi 304l不锈钢—接头ⅰ;cu+ aisi 304不锈钢—接头ⅱ和cu+ aisi 316l不锈钢—接头ⅲ)热影响区的特性,焊接过程中除电子束电流、电子枪离工件的高度、焊接路径和铜板-钢板的厚度不同外,其他工艺参数均相同。

得出以下结论:接头ⅰ的热影响区基本可以忽略,接头ⅱ和接头ⅲ的热影响区仅为几十微米;三种接头热影响区的厚度大小与焊接过程中电子束能量相对应:接头ⅰ焊接过程中电子枪的功率较小,输出能量较低,所以接头处除了发
现一些cu的渗透外,没有观察到其他缺陷;接头ⅱ和接头ⅲ在焊接过程中电子枪的功率较大,cu的大量扩散使得奥氏体不锈钢颗粒变脆,一般情况下,这种现象会促进由于热作用而导致的微观裂纹的产生,使接头性能变差。

2、长焦长使得焊接过程容易实现
电子束作为粒子束而不能通过传统的光学透镜进行聚焦,能够使其聚焦的电磁透镜的具有较大的焦长,当前一般高压设备中电磁透镜的焦长可达180cm,且通过精确控制电子束能够穿透宽度仅为630μm的缝隙。

因此对于那些几何形状较复杂的工件,有些部位不适宜传统焊枪的放置和焊接,但电子束焊接不受工件形状的限制,使得焊接过程更容易实现。

3、电子束焊接能够实现较大厚度范围工件的焊接
通过控制工艺参数,电子束焊接能够实现从千分之一英尺厚的到几英尺厚度金属的焊接。

而且同一设备还能实现厚度差异较大工件之间的焊接,这是传统焊接方法所不能达到的。

因为传统焊接方法是使工件发热然后熔化完成焊接过程,但这一过程中,如果热量恰好使厚件熔化,由于存在热传递,此时薄件承受不了如此之大的热量。

反之,热量不足以使厚件熔化,不能实现焊接。

为了改善接头的抗疲劳性能和韧性,必须获得较好的微观组织,这就需要在不改变工艺参数的前提下,改变接头处的组成,以达到目的。

试验证明在焊接过程中引入纯ti为填充物,对改善接头性能具有一定作
用。

电子束焊接还能实现厚度更薄的工件的焊接,而且焊缝质量良好,所以电子束焊接在薄件焊接方面具有较大优势。

4、电子束焊接能够实现不同金属之间的焊接
为了满足不同的需要,有时需要把不同材料焊接起来,例如承受较大扭矩的轴类件,其传动部分可以用一种材料,但抗疲劳部分需用另一种材料,电子束焊接能够实现这一过程。

这样能够集多种材料的优点于一身,获得更好的实用性能。

随着航空航天、军事、医学等的发展,ti及其合金逐渐走进人们的视野,由于其具有好的力学性能、密度小、良好的生物相容性等优点,使得对其可焊性能的研究也逐渐开展起来。

但传统焊接方法在ti及其合金的焊接过程中,ti极易与气氛中的o、n等气体结合生成化合物,破坏接头的性能。

因此电子束焊接成为对ti及其合金进行焊接的首选方法。

ti合金具有优良的性能使得其与其他金属组合时能够表现出很多复合的优异性能,所以现在越来的越多的金属间焊接技术被研究。

wang ting等[2]运用电子束焊接技术对ti-15-3钛合金和304不锈钢进行了焊接性能研究。

实验发现,在靠近ti合金区域一侧,cu与ti的反应优先控制冶金学过程,生成cu/ti金属间化合物,具有很高的硬度;焊缝中部是cu的固溶体并在其中分散着tife2,tife2不但能够增强焊缝的塑性,而且还能强化较软的cu固溶体;靠近不锈钢一侧是cu与fe的固溶体,其中弥散有tife2。

对焊缝进行抗拉强度试验,抗拉强度可达234mpa。

5、电子束焊接具有更大的穿透深度
电子束具有较高的能量,所以其可以穿透厚板或穿透与厚板厚度相当的多层板,这使得电子束焊接的应用范围更广,可以实现
17mm厚的ti6al4v合金的焊接,像氩弧焊等传统的焊接方法是很难达到性能要求的。

三、结论
电子束焊接自20世纪50年代发展至今,已经在实验室和工业生产中得到了广泛研究与应用。

相对于其他几种焊接方式,电子束焊接具有焊接变形小;聚焦透镜焦长大利于实现焊接过程;适用于较大厚度范围工件的焊接;异种金属焊接和更大的穿透深度等优点。

因此其在不锈钢、钛合金、铜合金等对焊接条件要求较为苛刻的材料体系方面,特别是厚度较大工件以及绝缘材料焊接方面具有独有的优势和广阔的应用前景,正是由于这一系列优势,电子束焊接在研究及工业生产方面均发挥着不可替代的作用。

参考文献:
[1] i. magnabosco, p. ferro, f. bonollo, et al. an investigation of fusion zone micro- structures in electron beam welding of copper-stainless steel. materials science and engineering a 424 (2006) 163-173.
[2] wang ting, zhang bing-gang, chen guo-qing, et al. electron beam welding of ti-15-3 titanium alloy to 304
stainless steel with copper interlayer sheet. trans. nonferrus. met. soc china 20(2010) 1829-1834.。

相关文档
最新文档