湿法脱硫效率低的原因分析

合集下载

影响湿法烟气脱硫效率的因素及运行控制措施

影响湿法烟气脱硫效率的因素及运行控制措施

影响湿法烟气脱硫效率的因素及运行控制措施三、影响石灰石一石膏烟气湿法脱硫效率的主要因素分析脱硫效率是指,脱硫系统脱除的二氧化硫含量与原烟气中二氧化硫含量的比值。

影响脱硫效率的主要因素有:1、通过脱硫系统的烟气量及原烟气中S02的含量。

在脱硫系统设备运行方式一定,运行工况稳定,无其它影响因素时,当处理烟气量及原烟气中S02的含量升高时, 脱硫效率将下降。

因为人口S02的增加,能很快的消耗循环浆液中可提供的碱量,造成浆液液滴吸收S02的能力减弱。

2、通过脱硫系统烟气的性质。

1)烟气中所含的灰尘。

因灰尘中带入的A13+与烟气气体中带入的F-形成的络化物到达一定浓度时,会吸附在CaC03 固体颗粒的表面,“封闭”了CaC03的活性,严重减缓了CaC03 的溶解速度,造成脱硫效率的降低。

2)烟气中的HC1。

当烟气通过脱硫吸收塔时,烟气中的HC1几乎全部溶于吸收浆液中,因C1-比S042-的活性高(盐酸比硫酸酸性更强),更易与CaC03发生反应,生成溶于水的CaC12,从而使浆液中Ca2+的浓度增大,由于同离子效应,其将抑制CaC03的溶解速度,会造成脱硫效率的降低。

同时,由于离子强度和溶液黏度的增大,浆液中离子的扩散速度变慢,致使浆液液滴中有较高的S032-,从而降低了S02向循环浆液中的传质速度,也会造成脱硫效率的降低。

3、循环浆液的pH值。

脱硫系统中,循环浆液的pH值是运行人员控制的主要参数之一,浆液的P H值对脱硫效率的影响最明显。

提高浆液的pH 值就是增加循环浆液中未溶解的石灰石的总量,当循环浆液液滴在吸收塔内下落过程中吸收S02碱度降低后, 液滴中有较多的吸收剂可供溶解,保证循环浆液能够随时具有吸收S02的能力。

同时,提高浆液的pH值就意味着增加了可溶性碱物质的浓度,提高了浆液中和吸收S02的后产生的H+的作用。

因此,提高pH值就可直接提高脱硫系统的脱硫效率。

但是,浆液的pH值也不是越高越好,虽然脱硫效率随pH 值的升高而升高,但当pH值到达一定数值后,再提高pH 值对脱硫效率的影响并不大,因为过高的pH值会使浆液中石灰石的溶解速率急剧下降,同时过高的pH值会造成石灰石量的浪费,并且使石膏含CaC03的量增大,严重降低了石膏的品质。

脱硫效率影响因素及运行控制措施

脱硫效率影响因素及运行控制措施

影响湿法烟气脱硫效率的因素及运行控制措施前言目前我厂两台600MW及两台1000MW燃煤发电机组所采用的石灰石——石膏湿法烟气脱硫系统运行情况良好,基本能够保持系统安全稳定运行,并且脱硫效率在95%以上。

但是,有两套脱硫系统也出现了几次烟气脱硫效率大幅波动的现象,脱脱效率由95%逐渐降到72%。

经过对吸收系统的调节,脱硫效率又逐步提高到95%。

脱硫效率的不稳定,会造成我厂烟气SO2排放量增加,不能达到节能环保要求。

本文将从脱硫系统烟气SO2的吸收反应原理出发,找出影响脱硫效率的主要因素,并制定运行控制措施,以保证我厂烟气脱硫系统的稳定、高效运行。

一、脱硫系统整体概述邹县发电厂三、四期工程两台600MW及两台1000MW燃煤发电机组,其烟气脱硫系统共设置四套石灰石——石膏湿法烟气脱硫装置,采用一炉一塔,每套脱硫装置的烟气处理能力为每台锅炉100%BMCR工况时的烟气量,其脱硫效率按不小于95%设计。

石灰石——石膏湿法烟气脱硫,脱硫剂为石灰石与水配置的悬浮浆液,在吸收塔内烟气中的SO2与石灰石反应后生成亚硫酸钙,并就地强制氧化为石膏,石膏经二级脱水处理作为副产品外售。

烟气系统流程:烟气从锅炉烟道引出,温度约126℃,由增压风机升压后,送至烟气换热器与吸收塔出口的净烟气换热,原烟气温度降至约90℃,随即进入吸收塔,与来自脱硫吸收塔上部喷淋层(三期3层、四期4层)的石灰石浆液逆流接触,进行脱硫吸收反应,在此,烟气被冷却、饱和,烟气中的SO2被吸收。

脱硫后的净烟气经吸收塔顶部的两级除雾器除去携带的液滴后至烟气换热器进行加热,温度由43℃上升至约80℃后,通过烟囱排放至大气。

二、脱硫吸收塔内SO2的吸收过程烟气中SO2在吸收塔内的吸收反应过程可分为三个区域,即吸收区、氧化区、中和区。

1、吸收区内的反应过程:烟气从吸收塔下侧进入与喷淋浆液逆流接触,由于吸收塔内充分的气/液接触,在气-液界面上发生了传质过程,烟气中气态的SO2、SO3等溶解并转变为相应的酸性化合物:SO2 + H2O H2SO3SO3 + H2O H2SO4烟气中的SO2溶入吸收浆液的过程几乎全部发生在吸收区内,在该区域内仅有部分HSO3-被烟气中的O2氧化成H2SO4。

石灰石石膏湿法脱硫工艺脱硫效率影响因素

石灰石石膏湿法脱硫工艺脱硫效率影响因素

石灰石石膏湿法脱硫工艺脱硫效率影响因素【摘要】现阶段,我国大气治理市场不断扩大,脱硫脱硝工艺更新迭代,本文阐述石灰石/石膏湿法脱硫工艺的基本原理以及它的应用状况。

本文将以浆液PH值为基准,对影响脱硫效果的因素以及规律进行研究,并从工艺和设备方面简述如何保障湿法脱硫功效,以提升石灰石/石膏湿法脱硫工艺的脱硫效率。

一般地,影响脱硫效率因素包括有石灰石的活性、液气比、钙硫比等。

1 引言燃煤过程中会产生并排放二氧化硫(SO2)造成严重的空气污染,为实现全国SO2的消减目标,就须控制电力行业的SO2排放量。

当前我国燃煤机组广泛地运用了石灰石/石膏湿法脱硫(wet flue gas desulfurization,以下简称FGD)这种烟气脱硫工艺,FGD的流程、形式和原理在国际上都有着异曲同工之妙。

主要运用了包括有石灰石(主要成分是碳酸钙:CaCO3)、石灰(主要成分是氧化钙:CaO)或者碳酸钠(Na2CO3)等浆液作为洗涤剂,烟气通过吸收塔会发生化学反应,进而达到烟气洗涤的效果,从而使烟气中的二氧化硫(SO2)得以去除。

最早的石灰石脱硫工艺,是在1927年英国为保护高层建筑,在泰晤士河岸的电厂得以利用,至今已有87年历史。

经过不断地对技术、工艺革新完善,如今FGD具有以下优点:脱硫效率高,基本保证为90%,最高可达95%,更甚是98%;机组容量大;煤种适应性强;副产品容易回收;运营成本较低等。

本文将从影响脱硫效率的因素参数进行分析,概述其影响的原因,进而为完善FGD系统、提升脱硫效率作理论依据。

2 FGD脱硫原理这种工艺拥有极其丰富的资源作为吸收剂,能广泛地进行商业化开发,拥有成本低,可回收等优点。

当前,作为FGD工艺中应用最为广泛地方法,石灰石/石灰法对高硫煤的脱硫率能保证至少90%,而那些低硫煤则能保证95%的脱硫率。

3 脱硫效率的影响因素烟气换热器会使燃煤过程中产生的烟气降温冷却,进入吸收塔其中的HCl、HF以及灰尘等都会溶入浆液中,浆液中的水分会吸收SO2、SO3生成H2SO3,其能分解H+和HSO3-,与浆液中的CaCO3发生水反应生成二水石膏,使得浆液的PH 值发生变化。

干法、半干法与湿法脱硫技术的性能比较分析

干法、半干法与湿法脱硫技术的性能比较分析

干法、半干法与湿法脱硫技术的性能比较分析概述:脱硫技术是用于去除燃烧尾气中二氧化硫(SO2)的一种方法。

干法脱硫、半干法脱硫和湿法脱硫是常见的脱硫技术,它们在原理和性能方面有所不同。

本文将比较分析这三种脱硫技术的性能。

干法脱硫:干法脱硫是一种将固体吸附剂喷射到燃烧尾气中,通过吸附和反应去除SO2的方法。

其主要原理是固体吸附剂与气相中的SO2发生化学反应,将其转化为硫酸盐物质。

干法脱硫的优点是工艺简单,适用于高温燃烧尾气,但由于吸附剂的成本较高,脱硫效率相对较低。

半干法脱硫:半干法脱硫是干法脱硫和湿法脱硫的结合体,在固体吸附剂中添加一定比例的水分。

这种方法可以克服干法脱硫的脱硫效率低的问题,并能适用于不同尾气温度条件下的脱硫。

半干法脱硫相比于干法脱硫的优点是脱硫效率提高,同时工艺相对简单,但仍存在着固体湿度的控制问题。

湿法脱硫:湿法脱硫是通过喷射液态吸收剂,将燃烧尾气中的SO2吸收起来,形成硫酸盐溶液的方法。

这种方法可以达到较高的脱硫效率,适用于不同的燃烧尾气温度和湿度条件。

湿法脱硫的优点是脱硫效果好,可以将SO2的排放量降至很低水平,但同时也存在着液态吸收剂的消耗和废液处理的问题。

比较分析:在脱硫效率方面,湿法脱硫优于干法脱硫和半干法脱硫。

湿法脱硫可以达到90%以上的脱硫效果,而干法脱硫和半干法脱硫则在70%左右。

然而,湿法脱硫的成本相对较高,液态吸收剂的消耗和废液处理需要较大的投入。

在工艺简单性方面,干法脱硫是最简单的方法,其次是半干法脱硫,湿法脱硫的工艺相对复杂。

干法脱硫适用于高温尾气处理,半干法脱硫适用于不同温度条件下的处理,湿法脱硫适用于不同温度和湿度条件下的处理。

结论:根据对干法脱硫、半干法脱硫和湿法脱硫的性能比较分析,可以得出以下结论:- 干法脱硫适用于高温燃烧尾气,工艺简单但脱硫效率相对较低。

- 半干法脱硫兼具干法脱硫和湿法脱硫的优点,脱硫效率较高且工艺相对简单。

- 湿法脱硫脱硫效率最高,但成本较高,液态吸收剂消耗和废液处理需要考虑。

影响脱硫效率的因素(2020年整理).doc

影响脱硫效率的因素(2020年整理).doc

浅析影响脱硫效率的因素近年来,大气质量变差,随着人们对良好环境的渴望,国家对环保的要求越来越严格。

许多火电厂已建和正建脱硫装置(FGD),进一步净化烟气,使其达到排放标准。

国内大部分采用了石灰石-石膏湿法脱硫。

对2×50MW机组烟气脱硫(FGD)装置脱硫效率的几项参数进行研究分析,查找出影响土力学的几个主要因素,并提出解决措施,使之达到最优的脱硫效率。

石灰石-石膏湿法脱硫的基本原理:烟气经过电除尘后由增压风机送入吸收塔内。

烟气中的SO2与吸收塔喷淋层喷下的石灰石浆液发生反应生成HSO3-,反应如下:SO2+H2O→H2SO3,H2SO3→H++HSO3-。

其中部分HSO3-在喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化,反应如下:HSO3- +1O2→HSO4-,HSO4-→H++SO42-。

吸收塔内浆液被2引入吸收塔内中和氢离子,使浆液保持一定的PH值。

中和后的浆液在吸收塔内循环。

反应如下:Ca2++CO32-+2H++SO42-+H2O→CaSO4·2H2O+CO2↑,2H++CO32-→H2O+CO2↑。

脱硫后的烟气经吸收塔顶部的除雾器去除水分后,被净化的烟气经烟囱排向大气中,生成的石膏副产品留作他用。

从此可以看出,浆液的PH值、烟气的性质、吸收剂的质量、液气比、等是影响脱硫效率的主要因素。

○1吸收塔浆液的PH值。

PH值是影响脱硫效率、脱硫产物成分的关键参数。

PH值太高,说明脱硫剂用量大于反应所需量,造成脱硫剂的利用率降低。

当PH值>6时,虽然SO2的吸收好,但是Ca2+浓度减小,影响Ca2+析出,同时也容易使设备堵塞和结垢。

而PH值太低,则影响脱硫效率,不能使烟气中SO2的含量达到预期的效果。

当PH值<4时,几乎就不吸收SO2。

所以必须在运行中监测好PH值,及时加减脱硫剂,保证脱硫效率的同时,也提高脱硫剂的利用率和脱硫产物的品质。

一般PH值控制在5~6之间。

湿法烟气脱硫效率低原因分析及改进脱硫装置运行效率的措施

湿法烟气脱硫效率低原因分析及改进脱硫装置运行效率的措施

扩散 , 加 快 反 应 速度 , 脱硫 效率随之 提高 ; 但随着 S O 2浓 度 进 一 步 的增 加 , 受液相吸收能力的限制 。 脱硫效率将下降。
3 . 3 烟 气 中烟 尘 浓度 的影 响
塔内的喷淋密度 , 使 液 气 比间 的接 触 面 积 增 大 ; 同时 也 增 大 了 可
用于吸收 S O 2的总 碱 度 , 故脱 硫 效 率 将 增 大 。 设 计 液 气 比 决定 了
烟气 与浆 液 的接 触 面 积 。 代 表 着 气 液 传质 的速 率 。
2 . 1 . 2吸收 塔 内烟 气 流速
原 烟 气 中 的 飞 灰 含 量 过 高 时 ,将 在 一 定 程 度 上 阻 碍 S O 2与
脱硫剂的接触 , 降低石灰石中 C a 2 + 的 溶解 速率 , 同 时 飞 灰 中 不 断
溶 出的 一 些 重 金 属 会抑 制 C a 2 + 与 HS O 3 一 的反 应 。烟 气 中粉 尘 含 量持续超过设计允许量 , 将使脱硫效率大为下降 。 喷 嘴 堵 塞 。 同
其 他 参 数 恒定 的情 况 下 , 保 持 合 理 的 塔 内烟 气 流 速 。 有 助 于
得 到 了显 著 的 发 展 和 改 进 。 在 现 代 的 石 灰 石 湿 法 烟 气 脱 硫 工 艺 中, 烟 气 由含 亚 硫 酸 钙 和硫 酸 钙 的 石 灰 石 浆 液 洗 涤 , S O 2与 浆 液
中 的 碱 性 物 质 发 生 化 学 反 应 生 成 亚硫 酸 盐 和 硫 酸 盐 。浆 液 中 的
保 证脱 硫 系统 的稳 定 和 高 效运 行 。
【 关键词 】 湿法脱硫 ; 脱硫效率 ; 原 因; 措施
1 概 述

浅谈湿法脱硫技术问题及脱硫效率

浅谈湿法脱硫技术问题及脱硫效率

浅谈湿法脱硫技术问题及脱硫效率随着工业化进程的加速,大气污染成为全球环境保护的重要议题之一。

硫氧化物是大气中的主要污染物之一,它们会对人体健康和自然环境造成严重危害。

减少大气中的硫氧化物浓度成为当前环境保护领域的重要任务之一。

湿法脱硫技术是目前脱硫的一种常用方法,它利用化学反应将烟气中的二氧化硫转化成易于处理的固体废物,并减少了对大气和水源的污染。

本文将就湿法脱硫技术中存在的问题及其脱硫效率进行探讨。

一、湿法脱硫技术的问题1. 脱硫效率不高虽然湿法脱硫技术可以将烟气中的二氧化硫转化成易于处理的固体废物,但是其脱硫效率并不高。

由于该技术主要依靠石灰石、草酸和碱性氨溶液等化学试剂,使得脱硫效率受到影响。

在实际操作中,由于烟气中的二氧化硫浓度和湿法脱硫设备的工况等因素的影响,脱硫效率难以保证,并且容易受到外界环境条件的影响。

2. 能耗大湿法脱硫技术的能耗较大是其另一个问题。

由于该技术需要使用大量的化学试剂和水,而且在脱硫的过程中需要进行循环处理和再生,这些操作都需要耗费大量的能源。

在一些地区,由于能源价格的上涨和环保要求的提高,使得湿法脱硫技术的能耗成为了企业发展的一大负担。

3. 产生大量废水湿法脱硫技术在脱硫的过程中会产生大量的废水,这些废水含有大量的化学试剂和重金属离子等有害物质,对环境造成了二次污染。

这些废水的处理成本较高,对企业的环保压力也很大。

4. 设备维护成本高湿法脱硫设备由于长时间处于高温、高湿、腐蚀性气体环境中工作,因此设备的维护成本较高。

湿法脱硫设备容易受到颗粒物和腐蚀气体的侵蚀,导致设备寿命减短,需要频繁更换和维修,增加了企业的运营成本。

针对以上问题,提高湿法脱硫技术的脱硫效率成为当前研究的重点。

在实际生产中,提高脱硫效率可以从以下几个方面入手:1. 优化化学试剂的选择和投入量通过优化化学试剂的选择和投入量,可以提高湿法脱硫技术的脱硫效率。

合理选择化学试剂,提高其完全利用率,降低运行成本。

烟气湿法脱硫效率影响的因素

烟气湿法脱硫效率影响的因素

Q§ .
Chn e T c n lge n rd c ia N w e h oo isa d P o u t
高 新 技 术
烟气湿法脱硫 效率影响的因素
郑 炜 章 拔 群
张 建 立 卓 小玲
、 江 100 (、 1 福建石狮鸿山热电有 限公 司, 福建 石狮 3 2 0 2 东南 大 学 能 源与 环 境 学 院 , 苏 南 京 2 0 0 ) 670 摘 要 : 文根据 烟 气中 s 收过 程机理 , 传质和 化 学反应 的 角度 来解 析浆 液对 S 本 0吸 从 0 的吸收过 程 中各 种参 数 ( 口烟气参 数 、 入 运 行参 数 、 收剂 、 吸 添加 剂和氯 离子 浓度等 ) s 收的影 响 。 对 0吸

— —



= —— + — —
苴 由

Ko
其中
R Z 丁G
() 1
a在气液相界面两侧各存 在一个 很薄的有 效滞 流膜层 , 别为气 膜和液 膜如在相 界面 处 分 .
K; 为气膜传质分系数 ; P s : 0 在气相主体 中的分压 ; 为 P为 S : O 在相界面处的分压 ;
钟。
C O 气体保护焊焊接质量可靠, 它与手工 电 弧焊相 比具有操作简单 、 池容 易控制 、 熔 背面成

l 0一
中e e h oo isa d P o u t hn w T c n lge n rd cs
高 新 技 术
mg S
2 . 2亨利定律 : 互成平衡 的气 、 描述 液两 相 间组成 的关系 。当总压不高时 , 在恒定温 度下 , 稀溶液上方 的气体溶质平衡分压 与其 在液相 中 摩尔分率成正 比。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湿法脱硫效率低的原因分析
作为湿法脱硫中最常见的一种方式,石灰石-石膏湿法烟气脱硫的优点十分突出,但是在工艺流程方面仍存在着很多问题。

烟气入口参数问题、吸收塔内吸收液问题、氧化空气量的多少以及除雾器的工作效率等等都对湿法脱硫的效率有着巨大的影响。

然而这些因素又都环环相扣,因此只有综合考虑各方面因素,总结出完美的方案去解决这些问题,才能提高脱硫效率,为人类社会做出一份贡献。

标签:湿法脱硫;脱硫效率;导致原因
1 概述
二氧化硫是主要的大气污染物之一,而燃煤供电是它的主要来源。

石灰石-石膏湿法烟气脱硫由于其技术成熟,运行稳定且成本相对低廉而占据了世界75%的脱硫市场。

石灰石-石膏湿法烟气脱硫工艺复杂,化学反应步骤较多,对反应条件要求较高,因此协调各方面因素改进脱硫工艺从而提高脱硫效率势在必行。

2 石灰石-石膏湿法烟气脱硫工艺概述
石灰石-石膏湿法烟气脱硫是湿法脱硫最常见的方法。

它的脱硫吸收剂以石灰或石灰石为原料,将石灰石仔细研磨成粉后与水混合搅拌制成吸收剂浆液,当使用石灰作为吸收剂原料时,石灰粉经过消化处理后与水混合制成吸收劑浆液。

吸收浆液与烟气在吸收塔中接触混合,烟气中的二氧化硫在有空气参与的状态下借助氧气的氧化作用与吸收浆液中的碳酸钙进行化学反应从而被脱除,最终得到石膏。

来自于锅炉等燃煤设备的烟气经过除尘作用后在引风机的推动下进入吸收塔,吸收塔是一个空间喷淋结构,为了保证反应的充分进行,让烟气与吸收浆液有更大的接触面积,在这一部分烟气与吸收浆液逆向接触,如此一来吸收塔既有吸收功能又有氧化功能,上半部分为吸收区,下半部分为氧化区。

系统一般装有3-5台循环泵保证吸收浆液的流动,每台循环泵对应一层喷淋层。

当系统负荷较小的时候,为了保持较高的液气比可以停运1-2层喷淋层,从而达到最理想的脱硫效果。

吸收区上部设置有二级除雾器,除雾器出口烟气中的小液珠不超过75毫克每标准立方米。

浆液吸收二氧化硫后进入循环氧化区,在这一区域内,亚硫酸钙被空气中的氧气氧化成石膏晶体。

与此同时,由吸收剂制备系统向吸收氧化系统提供新鲜的石灰石浆液,填补所需要的碳酸钙成分,使吸收浆液保持一定的pH值。

含有石膏晶体的浆液达到一定密度后排放到副产品收集系统,经过脱水得到石膏。

3 吸收塔内的化学反应
4 影响石灰石-石膏湿法脱硫效率低的因素分析
4.1 烟气入口参数问题
脱硫效率是指脱硫系统脱除的二氧化硫含量与原烟气中二氧化硫含量的比值。

在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫和浆液中的碳酸钙以及鼓入的氧化空气发生一系列化学反应从而被脱除,最终得到石膏。

从控制变量法的角度进行分析,在脱硫系统设备运行方式、运行条件等其他因素不变的情况下,当处理烟气量和原烟气中二氧化硫的含量升高时,脱硫效率将下降。

因为入口二氧化硫的增加,循环浆液中的碱量迅速降低,造成浆液液滴吸收二氧化硫能力下降;烟气流速同样是影响脱硫效率的因素之一,烟气流速越快,浆液液滴下降过程中被扰动的频率越高,从而烟气中的二氧化硫与浆液的反应速度提高,脱硫效率降低;此外循环浆液的密度对脱硫效率也有一定影响。

4.2 吸收塔内吸收液问题
由湿法脱硫系统作用原理可得,影响脱硫效果的吸收塔浆液成分主要包括碳酸钙、盐酸不溶物和亚硫酸钙。

在一定范围内,碳酸钙含量越高,脱硫效果越好。

但碳酸钙含量如果过高,便会导致石灰石屏蔽,阻碍二氧化硫与吸收液中碳酸钙的接触,从而降低脱硫效率。

另一方面碳酸钙含量高会导致系统污垢过多甚至堵塞系统,因此一般要求碳酸钙质量分数在3%左右;烟尘是吸收塔浆液中盐酸不溶物的主要组成部分,盐酸不溶物含量高,同样也会造成石灰石屏蔽,明显影响脱硫效率,因而一般要求盐酸不溶物质量分数在5%以下;亚硫酸钙含量高则说明系统的氧化效果不好,会对脱硫效率有不利影响,而且亚硫酸钙含量高也容易造成系统的结垢和堵塞,一般要求亚硫酸钙质量分数在0.3%以下。

除了以上几点之外,作为制作吸收浆液的主要成分,石灰石品质同样会影响吸收浆液的质量。

石灰石的质量主要受到颗粒直径、碳酸钙含量、碳酸镁含量以及盐酸不溶物含量等因素影响,由已有的研究经验可知石灰石越细,反应效果就越好;碳酸钙含量越高,石灰石中的活性成分含量也就越高,石灰石的品质就越好,所以通常要求石灰石中的碳酸钙质量分数高于90%。

4.3 氧化空气量的多少
在吸收区内,烟气中的二氧化硫与吸收浆液发生反应。

然而在这一步骤中只有一部分亚硫酸氢根与氧气反应生成硫酸。

因为烟气和浆液的接触时间过短,浆液中的碳酸钙只能中和部分已经氧化了的亚硫酸氢根和硫酸。

在这一区域内,只有很少一部分碳酸钙发挥了作用,所以液滴的pH值会随着不断下落而降低,pH 值减小的浆液无法中和亚硫酸氢根和硫酸,它的吸收能力也因此而降低。

浆液的pH值在上半部分时处于较高状态,此时浆液中易产生水合亚硫酸钙。

在浆液下落过程中,接触的二氧化硫浓度越来越高,浆液pH值下降加快,这时候水合亚硫酸钙就会转化成亚硫酸氢钙。

因此氧气含量的多少对脱硫效率有重要影响,只有在氧气充足的状态下才能保证碳酸钙的利用率,即二氧化硫的吸收效率。

如果系统中的氧化空气量不能维持反应正常进行,或氧化空气进入吸收塔是与液面之间距离过短,浆液中将会含有大量亚硫酸盐,即亚硫酸氢根浓度增大,当亚硫酸氢根相对饱和度较高时,将会对化学反应产生抑制作用。

因此在系统运行中必须保证进入脱硫吸收塔的氧气含量能满足系统需求。

4.4 除雾器效率
除雾器是石灰石-石膏湿法脱硫系统的主要部件之一,作为下游设备的“保护神”,除雾器的除雾效果的好坏在整个流程中起着至关重要的作用,一旦排出的烟气中所含的小雾滴没有被有效的处理干净,会导致烟气散热器腐蚀、散热元件堵塞等一系列问题。

除雾器一般包含除雾器本体和冲洗系统这两部分,依靠重力和惯性撞击这两种作用捕集极小的雾滴,从而避免酸性液体对设备造成影响。

除雾器从叶片上区分有折流和波纹两种,这两种结构会增加雾沫被捕集的机率,从而大大提高除雾效率。

脱硫除雾器的设计和选型主要考虑因素包括:烟气流速、烟气温度、材质、除雾器叶片形式及其间距和冲洗水系统等,所以要提高除雾器效率不仅要保证除雾器的品质,也要与整体设备协调配合。

5 结束语
我国是硫资源缺乏而煤含硫高的地区,大力发展湿法脱硫技术,不仅能解决煤电产业脱硫的现实难题,还保护了环境,真正做到了节能环保,适合中国的国情。

所以当脱硫效率降低时,应首先对装置进行细致排查,在此基础上找到诱发原因,提出相应的合理高效的解决办法,保证脱硫效率达到有关标准规定的要求,对大型火力电厂的脱硫工作的平稳高效运行具有一定指导意义。

参考文献:
[1]李兴华,何育东.燃煤火电机组SO2超低排放改造方案研究[J].中国电力,2015,48(10):148-151.
[2]魏宏鸽,叶伟平,柴磊,等.湿法脱硫系统除尘效果分析与提效措施[J].中国电力,2015,48(8):33-35.
[3]陈世玉,李学栋.湿法脱硫系统水量平衡及节水方案[J].中国电力,2014(1):151-154.
[4]田伟强.燃煤电站湿法脱硫添加剂实验研究[D].华北电力大学,2015,3.
[5]翟尚鹏,黄丽娜,曾艳.湿法脱硫净烟气再热技术的应用[J].环境工程,2015(8):52-55.。

相关文档
最新文档