新课标高一数学对数与对数函数练习题及答案
高一数学对数函数综合练习题答案doc

高一数学--对数函数综合练习题(答案).doc高一数学--对数函数综合练习题(答案)1.求以下函数的定义域:(1) y=log2(x-1) 对数函数的定义域为x-1>0,即x>1。
(2) y=log(x^2-4) 对数函数的定义域为x^2-4>0,即(x+2)(x-2)>0。
解这个不等式得到x<-2或x>2。
(3) y=log(3x+4)-log(x-1) 对数函数的定义域为3x+4>0且x-1>0,即x>-4/3且x>1。
综合得到x>1。
2.求以下函数的值域:(1) y=log2(x-1) 对数函数的值域为(-∞, +∞)。
(2) y=log(x^2-4) 对数函数的值域为(-∞, +∞)。
(3) y=log(3x+4)-log(x-1) 首先,对数函数的定义域为x>-4/3且x>1。
当x>1时,3x+4>0,x-1>0。
所以对数函数的值域为(-∞, +∞)。
3.已知函数y=log2(x-1),求以下方程的解:(1) log2(x-1)=2 根据对数的定义,2=log2(x-1)可以转化为2^2=x-1,即4=x-1。
解方程得到x=5。
(2) log2(x-1)=-2 根据对数的定义,-2=log2(x-1)可以转化为2^-2=x-1,即1/4=x-1。
解方程得到x=5/4。
4.已知函数y=log(x^2-4),求以下方程的解:(1) log(x^2-4)=1 根据对数的定义,1=log(x^2-4)可以转化为10^(1)=x^2-4,即10=x^2-4。
解方程得到x=±√14。
(2) log(x^2-4)=-1 根据对数的定义,-1=log(x^2-4)可以转化为10^(-1)=x^2-4,即1/10=x^2-4。
解方程得到x=±√(41/10)。
5.求以下不等式的解集:(1) log2(x-1)>3 根据对数的定义,log2(x-1)>3可以转化为2^3>x-1,即8>x-1。
高中数学对数与对数运算训练题(含答案)

高中数学对数与对数运算训练题(含答案)1.2-3=18化为对数式为()A.log182=-3 B.log18(-3)=2C.log218=-3 D.log2(-3)=18解析:选C.根据对数的定义可知选C.2.在b=log(a-2)(5-a)中,实数a的取值范围是() A.a>5或a B.2<a<3或3<a<5C.25 D.3<a<4解析:选B.5-a>0a-2>0且a-21,2<a<3或3<a<5. 3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中正确的是()A.①③ B.②④C.①② D.③④解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.4.方程log3(2x-1)=1的解为x=________.解析:2x-1=3,x=2.答案:21.logab=1成立的条件是()A.a=b B.a=b,且b0C.a0,且a D.a0,a=b1解析:选D.a0且a1,b0,a1=b.2.若loga7b=c,则a、b、c之间满足()A.b7=ac B.b=a7cC.b=7ac D.b=c7a解析:选B.loga7b=cac=7b,b=a7c.3.如果f(ex)=x,则f(e)=()A.1 B.eeC.2e D.0解析:选A.令ex=t(t0),则x=lnt,f(t)=lnt.f(e)=lne=1.4.方程2log3x=14的解是()A.x=19 B.x=x3C.x=3 D.x=9解析:选A.2log3x=2-2,log3x=-2,x=3-2=19. 5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x +y+z的值为()A.9 B.8C.7 D.6解析:选A.∵log2(log3x)=0,log3x=1,x=3.同理y=4,z=2.x+y+z=9.6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且1),则logx(abc)=()A.47B.27C.72D.74解析:选D.x=a2=b=c4,所以(abc)4=x7,所以abc=x74.即logx(abc)=74.7.若a0,a2=49,则log23a=________.解析:由a0,a2=(23)2,可知a=23,log23a=log2323=1.答案:18.若lg(lnx)=0,则x=________.解析:lnx=1,x=e.答案:e9.方程9x-63x-7=0的解是________.解析:设3x=t(t0),则原方程可化为t2-6t-7=0,解得t=7或t=-1(舍去),t=7,即3x=7. x=log37.答案:x=log3710.将下列指数式与对数式互化:(1)log216=4;(2)log1327=-3;(3)log3x=6(x>0); (4)43=64;(5)3-2=19; (6)(14)-2=16.解:(1)24=16.(2)(13)-3=27.(3)(3)6=x.(4)log464=3.(5)log319=-2.(6)log1416=-2.11.计算:23+log23+35-log39.解:原式=232log23+353log39=233+359=24+27=51. 12.已知logab=logba(a0,且a1;b0,且b1).求证:a=b或a=1b.证明:设logab=logba=k,则b=ak,a=bk,b=(bk)k=bk2.∵b0,且b1,k2=1,即k=1.当k=-1时,a=1b;当k=1时,a=b.a=b或a=1b,命题得证.。
高一对数与对数函数练习题及答案

《对数与对数函数》测试 12.21一、选择题:1.已知3+5= A,且+= 2,则A的值是( ).(A).15(B).(C).±(D).2252.已知a>0,且10= lg(10x)+lg,则x的值是( ).(A).-1(B).0(C).1(D).23.若x,x是方程lgx +(lg3+lg2)+lg3·lg2 = 0的两根,则xx的值是( ).(A).lg3·lg2(B).lg6(C).6(D).4.若log(a+1)<log2a<0,那么a的取值范围是( ).(A).(0,1)(B).(0,)(C).(,1)(D).(1,+∞)5.已知x =+,则x的值属于区间( ).(A).(-2,-1)(B).(1,2)(C).(-3,-2) (D).(2,3) 6.已知lga,lgb是方程2x-4x+1 = 0的两个根,则(lg)的值是( ).(A).4(B).3(C).2(D).17.设a,b,c∈R,且3= 4= 6,则( ).(A).=+(B).=+(C).=+(D).=+8.已知函数y = log(ax+2x+1)的值域为R,则实数a的取值范围是( ).(A).0≤a≤1(B).0<a≤1(C).a≥1(D).a>19.已知lg2≈0.3010,且a = 2×8×5的位数是M,则M为( ).(A).20(B).19(C).21(D).2210.若log[ log( logx)] = 0,则x为( ).(A).(B).(C).(D).11.若0<a<1,函数y = log[1-()]在定义域上是( ).(A).增函数且y>0(B).增函数且y<0(C).减函数且y>0(D).减函数且y<012.已知不等式log(1-)>0的解集是(-∞,-2),则a的取值范围是( ).(A).0<a<(B).<a<1(C).0<a<1(D).a>1二、填空题13.若lg2 = a,lg3 = b,则lg=_____________.14.已知a = log0.8,b = log0.9,c = 1.1,则a,b,c的大小关系是_______________.15.log(3+2) = ____________.16.设函数= 2(x≤0)的反函数为y =,则函数y =的定义域为________.三、解答题17.已知lgx = a,lgy = b,lgz = c,且有a+b+c = 0,求x·y·x的值.18.要使方程x+px+q = 0的两根a、b满足lg(a+b) = lga +lgb,试确定p和q应满足的关系.19.设a,b为正数,且a-2ab-9b= 0,求lg(a+ab-6b)-lg(a+4ab+15b)的值.20.已知log[ log( logx)] = log[ log( logy)] = log[ log( logz)] = 0,试比较x、y、z的大小.21.已知a>1,= log(a-a).⑴ 求的定义域、值域;⑵判断函数的单调性,并证明;⑶解不等式:>.22.已知= log[a+2(ab)-b+1],其中a>0,b>0,求使<0的x的取值范围.参考答案:一、选择题:1.(B).2.(B). 3.(D).4.(C).5.(D).6.(C).7.(B).8.(A). 9.(A).10.(D).11.(C).12.(D).提示:1.∵3+5= A,∴a = logA,b = logA,∴+= log3+log5 = log15 = 2,∴A =,故选(B).2.10= lg(10x)+lg= lg(10x·) = lg10 = 1,所以 x = 0,故选(B).3.由lg x+lg x=-(lg3+lg2),即lg xx= lg,所以xx=,故选(D).4.∵当a≠1时,a+1>2a,所以0<a<1,又log2a<0,∴2a >1,即a>,综合得<a<1,所以选(C).5.x = log+log= log(×) = log= log10,∵9<10<27,∴ 2<log10<3,故选(D).6.由已知lga+lgb = 2,lga·lgb =,又(lg)= (lga-lgb)= (lga +lgb)-4lga·lgb = 2,故选(C).7.设3= 4= 6= k,则a = logk,b= logk,c = logk,从而= log6 = log3+log4 =+,故=+,所以选(B).8.由函数y = log(ax+2x+1)的值域为R,则函数u(x) = ax+2x+1应取遍所有正实数,当a = 0时,u(x) = 2x+1在x>-时能取遍所有正实数;当a≠0时,必有0<a≤1.所以0≤a≤1,故选(A).9.∵lga = lg(2×8×5) = 7lg2+11lg8+10lg5 = 7 lg2+11×3lg2+10(lg10-lg2) = 30lg2+10≈19.03,∴a = 10,即a有20位,也就是M= 20,故选(A).10.由于log( logx) = 1,则logx = 3,所以x = 8,因此 x=8===,故选(D).11.根据u(x) = ()为减函数,而()>0,即1-()<1,所以y = log[1-()]在定义域上是减函数且y>0,故选(C).12.由-∞<x<-2知,1->1,所以a>1,故选(D).二、填空题13.a+b14.b<a<c.15.-2.16.<x≤1提示:13.lg=lg(2×3) =( lg2+3lg3) =a+b.14.0<a = log0.8<log0.7 = 1,b = log0.9<0,c = 1.1>1.1= 1,故b<a<c.15.∵3+2= (+1),而(-1)(+1) = 1,即+1= (-1),∴log(3+2) =log(-1)=-2.16.= logx (0<x≤1=,y =的定义域为0<2x-1≤1,即<x≤1为所求函数的定义域.二、解答题17.由lgx = a,lgy = b,lgz = c,得x = 10,y = 10,z = 10,所以x·y·x=10=10= 10=.18.由已知得,又lg(a+b) = lga+lgb,即a+b = ab,再注意到a>0,b>0,可得-p = q>0,所以p和q满足的关系式为p+q = 0且q>0.19.由a-2ab-9b= 0,得()-2()-9 = 0,令= x>0,∴x-2x-9 = 0,解得x =1+,(舍去负根),且x= 2x+9,∴lg(a+ab-6b)-lg(a+4ab+15b) = lg= lg= lg = lg= lg= lg= lg=-.20.由log[ log( logx)] = 0得,log( logx)= 1,logx =,即x = 2;由log[ log( logy)] = 0得,log( logy) = 1,logy =,即y =3;由log[ log( logz)] = 0得,log( logz) = 1,logz =,即z = 5.∵y =3= 3= 9,∴x = 2= 2= 8,∴y>x,又∵x = 2= 2= 32,z = 5= 5= 25,∴x>z.故y>x>z.21.为使函数有意义,需满足a-a>0,即a<a,当注意到a >1时,所求函数的定义域为(-∞,1),又log(a-a)<loga = 1,故所求函数的值域为(-∞,1).⑵设x<x<1,则a-a>a-a,所以-= log(a-a)-log(a-a)>0,即>.所以函数为减函数.⑶易求得的反函数为= log(a-a) (x<1),由>,得log(a-a)>log(a-a),∴a<a,即x-2<x,解此不等式,得-1<x<2,再注意到函数的定义域时,故原不等式的解为-1<x<1.22.要使<0,因为对数函数y = logx是减函数,须使a+2(ab)-b+1>1,即a+2(ab)-b>0,即a+2(ab)+b>2b,∴(a+b)>2b,又a>0,b>0,∴a+b>b,即a>(-1)b,∴()>-1.当a>b>0时,x>log(-1);当a = b>0时,x∈R;当b>a>0时,x<log(-1).综上所述,使<0的x的取值范围是:当a>b>0时,x>log(-1);当a = b>0时,x∈R;当b>a>0时,x<log(-1).。
高中数学-对数与对数函数测试题及答案

高中数学-对数与对数函数测试题及答案高中数学-对数与对数函数测试题满分150分,时间120分钟)班级:__________ 姓名:__________ 成绩:__________ 第Ⅰ卷(选择题,共60分)一、选择题(共12小题,60分)1.对数式loga 25a)b中,实数a的取值范围是()A。
(∞,5) B。
(2,5) C。
(2,+∞) D。
(2,3)∪(3,5)2.如果lgx lga3lgb5lgc,那么()A。
x=a+3b-c B。
x=ab/33 C。
x=a+b/3-c/3 D。
x=a-b/3+c/53.设函数y=lg(x^2-5x)的定义域为M,函数y=XXX(x-5)+lgx的定义域为N,则()A。
M∪N=R B。
M=N C。
M⊊N D。
M⊆N4.已知a = log0.70.8,b = log1.10.9,c = 1.1^9,则a,b,c的大小关系是()A。
a<c<b B。
b<a<c C。
a<b<XXX<c<a5.若函数y=log2kx^2+4kx+3)的定义域为R,则k的取值范围是()A。
(3/4,2) B。
(3/4,3/2) C。
(3/4,∞) D。
(-∞,3/4]∪[2,∞)6.设a,b,c∈R,且3a= 4b= 6c,则()。
A。
a=b+c B。
b=a+c C。
c=a+b D。
a+b+c=0 7.下列函数中,在(0,2)上为增函数的是()A。
y=log1x+1) B。
y=log2x^2-1) C。
y=log21/x D。
y=log1x^2-4x+5)8.已知函数f(x)=log3x+1),若f(a)=1,则a=()A。
2 B。
1 C。
-1 D。
-29.已知loga21,则a的取值范围是()A。
(0,2/3) B。
(2/3,1) C。
(1,2) D。
(2,∞)10.函数y=34x-3)log0.5的定义域为()A。
(0,1) B。
高一 对数与对数函数知识点+例题+练习 含答案

1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a,推广log a b ·log b c ·log c d =log a d . 3.对数函数的图象与性质a >10<a <1图象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0当0<x <1时,y <0 (4)当x >1时,y >0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ )1.(2015·湖南改编)设函数f (x )=ln(1+x )-ln(1-x ),则有关f (x )的性质判断正确的是________(填序号).①奇函数,且在(0,1)上是增函数; ②奇函数,且在(0,1)上是减函数; ③偶函数,且在(0,1)上是增函数; ④偶函数,且在(0,1)上是减函数. 答案 ①解析 易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x=ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数.2.设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是________.答案 c <b <a解析 ∵a =log 1312=log 32,b =log 1323=log 332,c =log 343.log 3x 是定义域上的增函数,2>32>43,∴c <b <a .3.函数f (x )=lg(|x |-1)的大致图象是________.(填图象序号)答案 ②解析 由函数f (x )=lg(|x |-1)的定义域为(-∞,-1)∪(1,+∞),值域为R .又当x >1时,函数单调递增,所以只有②正确.4.(2015·浙江)若a =log 43,则2a +2-a =________. 答案4 33解析 2a+2-a =4log 32+4log 32-=3log log 322+=3+33=4 33. 5.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是________________.答案 ⎝⎛⎭⎫0,34∪(1,+∞) 解析 当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,34∪(1,+∞).题型一 对数式的运算例1 (1)设2a =5b =m ,且1a +1b =2,则m =________.(2)lg 5+lg 20的值是________. 答案 (1)10 (2)1解析 (1)∵2a =5b =m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.(2)原式=lg 100=lg 10=1.思维升华 在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1)计算:(1-log 63)2+log 62·log 618log 64=________.(2)已知log a 2=m ,log a 3=n ,则a 2m +n =________. 答案 (1)1 (2)12 解析 (1)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =(a m )2·a n =22×3=12.题型二 对数函数的图象及应用例2 (1)函数y =2log 4(1-x )的图象大致是________.(填序号)(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是____________.答案 (1)③ (2)(22,1) 解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除①、②; 又函数y =2log 4(1-x )在定义域内单调递减,排除④.故③正确.(2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象, 可知f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1. 思维升华 应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图象可能是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是____________. 答案 (1)② (2)(10,12)解析 (1)∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除①. 若a >1,则0<b <1,此时f (x )=a x 是增函数,g (x )=-log b x 是增函数,②符合,排除④.若0<a <1,则b >1,g (x )=-log b x 是减函数,排除③,故填②.(2)作出f (x )的大致图象(图略).由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6,∴lg a +lg b =0,∴ab =1,∴abc =c .由图知10<c <12,∴abc ∈(10,12).题型三 对数函数的性质及应用命题点1 比较对数值的大小例3 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为__________. 答案 a >b >c解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c . 命题点2 解对数不等式例4 若log a (a 2+1)<log a 2a <0,则a 的取值范围是__________. 答案 (12,1)解析 由题意得a >0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈(12,1).命题点3 和对数函数有关的复合函数 例5 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.思维升华 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(1)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为____________.(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为__________. (3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是__________________.答案 (1)c >a >b (2)[1,2) (3)(-1,0)∪(1,+∞) 解析 (1)∵3<2<3,1<2<5,3>2,∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22, ∴12<a <1,0<b <12,c >1,∴c >a >b . (2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)由题意可得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0.2.比较指数式、对数式的大小典例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是__________. (2)设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系为____________.(3)已知324log 0.3log 3.4log 3.6155()5,=,=,=a b c 则a ,b ,c 大小关系为__________.思维点拨 (1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大小.(2)a ,b 均为对数式,可化为同底,再利用中间变量和c 比较.(3)化为同底的指数式.解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1.所以b <a <c . (2)∵a =log 2π>log 22=1,b =log 12π=log 21π<log 21=0,0<c =1π2<1,∴b <c <a .(3)c =(15)3log 0.3=53log 0.3-=5310log 3.方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示.由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数, ∴52log 3.4>5310log 3>54log 3.6.即52log 3.4>(15)3log 0.3 >54log 3.6,故a >c >b . 答案 (1)b <a <c (2)a >c >b (3)a >c >b温馨提醒 (1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[方法与技巧]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0. 2.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [失误与防范]1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.A 组 专项基础训练 (时间:40分钟)1.已知log 7[log 3(log 2x )]=0,那么x 12-=________.答案24解析 由条件知,log 3(log 2x )=1,∴log 2x =3, ∴x =8,∴x12-=24. 2.已知x =ln π,y =log 52,z =e 12-,则x ,y ,z 的大小关系为____________.答案 y <z <x解析 ∵x =ln π>ln e ,∴x >1. ∵y =log 52<log 55,∴0<y <12.∵z =e12-=1e >14=12,∴12<z <1.综上可得,y <z <x .3.已知函数f (x )=⎩⎪⎨⎪⎧3x +1, x ≤0,log 2x , x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是__________.答案 (-1,0]∪(2,+∞)解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,综上所述:-1<x ≤0或x >2.4.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是__________. 答案 (-1,0)解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________.答案 -1解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=-(224log 5+15)=-1. 6.(2015·安徽)lg 52+2lg 2-⎝⎛⎭⎫12-1=________. 答案 -1解析 lg 52+2lg 2-⎝⎛⎭⎫12-1=lg 52+lg 22-2 =lg ⎝⎛⎭⎫52×4-2=1-2=-1.7.设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=_____________________. 答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32.8.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是_____________________________________.答案 (1,2]解析 由题意f (x )的图象如右图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2. 9.已知函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 12(x 2-ax +a )是由函数y =log 12t 和t =x 2-ax +a 复合而成.因为函数y =log 12t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减,又因为函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎪⎨⎪⎧ a ≥22,a ≤2(2+1),即22≤a ≤2(2+1).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧ 1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2. B 组 专项能力提升(时间:20分钟)11.(2015·陕西改编)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则p 、q 、r 的大小关系是____________.答案 p =r <q解析 ∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫12,f (2)的大小关系是______________.答案 f (12)<f (13)<f (2) 解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2). 13.若函数f (x )=lg(-x 2+8x -7)在区间(m ,m +1)上是增函数,则m 的取值范围是__________. 答案 [1,3]解析 由题意得⎩⎪⎨⎪⎧m +1≤4,-m 2+8m -7≥0,解得1≤m ≤3, 所以答案应填[1,3].14.已知函数f (x )=ln x 1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 答案 ⎝⎛⎭⎫0,14 解析 由题意可知ln a 1-a +ln b 1-b =0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b=1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14. 15.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13, 此时f (x )取得最小值时,x =1332(2)=--2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值时,x=(12)32=22∈[2,8],符合题意,∴a=12.。
高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.已知函数是定义在上的奇函数,且当时,,则= .【答案】.【解析】,且函数是定义在上的奇函数,且当时,,.【考点】函数的奇偶性.2.对于任意实数x,符号表示不超过x的最大整数,例如,;,那么的值为.【答案】857.【解析】由题意可设,则,;为增函数,当时,,则,时,;当时,同理,时,;时,;时,;时,;时,;【考点】对数的性质、归纳推理.3..【答案】【解析】.【考点】指数式与对数式的运算.4.已知函数是定义在R上的偶函数,且在区间单调递增. 若实数满足, 则的取值范围是( )A.B.C.D.【答案】D【解析】因为函数是定义在R上的偶函数,又因为.所以由可得.区间单调递增且为偶函数.所以.故选D.【考点】1.对数的运算.2.函数的奇偶性、单调性.3.数形结合的数学思想.5.已知函数(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为-4,求a的值.【答案】(1)函数的定义域为;(2的零点是;(3).【解析】(1)函数的定义域是使函数有意义的取值范围,而对数有意义则真数大于0,即;(2)函数的零点等价于方程的根,可先利用对数运算性质进行化简,即,要注意定义域的范围,检验解得的根是否在定义域内;(3)可利用函数的单调性求最值来解参数,由(2)可知,令,在单调递减,则在取最大值时函数的最小值取-4,而,当时,则,.试题解析:21.(普通班)(1)要使函数有意义,则有解之得,所以函数的定义域为.(2)函数可化为由,得,即,,,的零点是.21.(联办班)(1)要使函数有意义:则有,解之得:,所以函数的定义域为:.(2)函数可化为由,得,即,,,的零点是.(3).,,.由,得,.【考点】1、对数函数的定义域;2对数的运算性质;3、函数的零点;4、对数方程的解法;5、复合函数的最值问题;6、二次函数的最值.6.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式7.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算8. .【答案】1【解析】对数的运算性质,故.【考点】对数的运算性质.9.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算10.设,则使函数的定义域为R且为奇函数的所有的值为()A.-1,3B.-1,1C.1,3D.-1,1,3【答案】C【解析】根据题意定义域为R得,时,函数定义域为[0,+∞)所以不可能是奇函数,所以排除A,B,D选项.所以的值为1,3.故选C.【考点】本题考查幂函数的知识点,当指数为正,负时的函数图像走向.11.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算12.已知函数(1)判断函数的奇偶性,并说明理由。
新课标高一数学对数与对数函数练习题及答案

对数与对数函数练习一、选择题:1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()12m n -4、如果方程lg 2x +(lg5+lg7)lgx+(lg5•lg7)=0的两根是,αβ,则βα•的值是( ) A 、lg5•lg7 B 、lg 35 C 、35 D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -=的定义域是( ) A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a<,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题:13、若2log 2,log 3,m n a a m n a +=== 。
高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.已知函数,且,则使成立的的取值范围是().A.B.C.D.【答案】C【解析】,且,,即,,则,即.【考点】对数不等式.2.定义在上的函数满足,则的值为_____.【答案】.【解析】由题意,得,,,,;即是周期函数,且,所以.【考点】函数的周期性.3.已知()A.B.C.D.【答案】【解析】根据对数的运算法则,有.【考点】对数的运算法则.4.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.5.函数的零点所在区间是()A.B.C.D.【答案】C【解析】解:根据函数的零点存在性定理可以判断,函数在区间内存在零点.【考点】1、对数的运算性质;2、函数的零点存在性定理.6.函数的定义域为A.B.C.D.【答案】A【解析】要使函数有意义,必须:解得:所以函数的定义域是所以,应选A.【考点】1、函数定义域的求法;2、对数函数.7.函数的定义域为___________.【答案】【解析】因为依题意可得,解得.所以填.本小题的关键是考察了两个知识点.一是偶次方根的被开方数要大于或等于零,另一个就是对数函数的真数要大于零.取这两个的解集的公共部分即可得结论.【考点】1.对数知识.2.根式的知识.8.函数y =2+(x-1)的图象必过定点, 点的坐标为_________.【答案】【解析】令,则,此时,故原函数过定点.【考点】对数函数的图像性质,对数函数横过定点(1,0).9.若函数是幂函数,且满足,则的值等于 .【答案】【解析】可设,则有,即,解得,所以函数的解析式为,故,所以所求的值为.【考点】1.幂函数;2.对数的运算.10.已知函数若函数有3个零点,则实数的取值范围是_______________.【解析】将函数的图像向左移动一个单位,可得函数在区间上为单调递增函数且,因为二次函数在上单调递增且,在上单调递减且,故若函数有3个零点,即函数与函数的图像有3个交点,所以所求的取值范围为.【考点】1.对数函数;2.二次函数;3.分段函数;4.函数的零点.11.设,用二分法求方程在,内近似解的过程中得则方程的根落在区间()A.B.C.D.不能确定【答案】C.【解析】由题意得,因为f(1.25)<0.f(1.5)>0.所以f(1.25)f(1.5)<0,即有零点定理得在的落在.故选B.【考点】1.函数的零点的判定.2.指数函数值的计算.3.估算的思想.12.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.13.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)f(x2),②f(x1x2)=f(x1)+f(x2),③,④,当f(x)=lnx时,上述结论中正确结论的序号是_____________.【答案】②④.【解析】把函数代入结论①②:,,结合对数的运算法则,知②正确,①错误;③说明时,,从而为减函数,但函数是增函数,故③错误;④等价于,当且时,上式显然成立.故④也是正确的.【考点】1、对数的运算法则;2、对数函数的性质;3、基本不等式.14.计算:= .【答案】【解析】解.【考点】对数的运算.15.如果,那么的最小值是()A.4B.C.9D.18【解析】∵,∴mn=81,∴,当且仅当m=n=9时“=”成立,故选D【考点】本题考查了对数的运算及基本不等式的运用点评:熟练掌握对数的运算法则及基本不等式的运用是解决此类问题的关键,属基础题16.求(lg2)2+lg2·lg50+lg25的值.【答案】2【解析】原式=(lg2)2+lg2·(lg2+2lg5)+2lg5 2分=2(lg2)2+2lg2·lg5+2lg5 4分=2lg2(lg2+lg5)+2lg5 6分=2lg2+2lg5 8分=2(lg2+lg5) 10分=2. 12分【考点】本题考查了对数的运算点评:熟练掌握对数的运算法则是解决此类问题的关键,属基础题17.(本小题满分12分)设关于x的方程=0.(Ⅰ) 如果b=1,求实数x的值;(Ⅱ) 如果且,求实数b的取值范围.【答案】(Ⅰ) . (Ⅱ) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数与对数函数同步练习
一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1、已知32a =,那么33log 82log 6-用a 表示是( )
A 、2a -
B 、52a -
C 、2
3(1)a a -+ D 、 2
3a a -
2、2log (2)log log a a a M N M N -=+,则
N
M
的值为( ) A 、4
1
B 、4
C 、1
D 、4或1
3、已知221,0,0x y x y +=>>,且1
log (1),log ,log 1y a a a x m n x
+==-则等于
( )
A 、m n +
B 、m n -
C 、()12m n +
D 、()1
2
m n -
4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( )
A 、lg5lg7
B 、lg35
C 、35
D 、35
1 5、已知732log [log (log )]0x =,那么12
x -等于( )
A 、1
3 B 23 C 22 D 336、函数2lg 11y x ⎛⎫
=-
⎪+⎝⎭
的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称 7、函数(21)log 32x y x -=- )
A 、()2,11,3⎛⎫+∞ ⎪
⎝⎭
B 、()1,11,2⎛⎫
+∞ ⎪
⎝⎭
C 、2,3⎛⎫+∞ ⎪⎝⎭
D 、1,2⎛⎫+∞ ⎪⎝⎭
8、函数212
log (617)y x x =-+的值域是( )
A 、R
B 、[)8,+∞
C 、(),3-∞-
D 、[)3,+∞
9、若log 9log 90m n <<,那么,m n 满足的条件是( )
A 、 1 m n >>
B 、1n m >>
C 、01n m <<<
D 、01m n <<<
10、2
log 13
a <,则a 的取值范围是( )
A 、()20,1,3⎛⎫+∞ ⎪
⎝⎭
B 、2,3⎛⎫+∞
⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫
+∞ ⎪ ⎪⎝⎭⎝⎭
11、下列函数中,在()0,2上为增函数的是( ) A 、12
log (1)y x =+ B 、22log 1y x =-C 、2
1log y x = D 、2
2
log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1
()x f x a +=是
( )
A 、在(),0-∞上是增加的
B 、在(),0-∞上是减少的
C 、在(),1-∞-上是增加的
D 、在(),0-∞上是减少的
二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m n a a m n a +=== 。
14、函数(-1)log (3-)x y x =的定义域是 。
15、2lg 25lg 2lg 50(lg 2)++= 。
16、函数(
)
2()lg 1f x x x =+是 (奇、偶)函数。
对数与对数函数同步练习答题卷
班级姓名学号成绩题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
13、14、15、16、
三、解答题:(本题共3小题,共36分,解答应写出文字说明,证明过程或演算
步骤.)
17、已知函数
1010
()
1010
x x
x x
f x
-
-
-
=
+
,判断()
f x的奇偶性和单调性。
18、已知函数
2
2
2 (3)lg
6
x
f x
x
-=
-
,
(1)求()
f x的定义域;
(2)判断()
f x的奇偶性。
19、已知函数
2
32
8
()log
1
mx x n
f x
x
++
=
+
的定义域为R,值域为[]
0,2,求,m n的值。
对数与对数函数同步练习参考答案
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
A
B
D
D
C
C
A
C
C
A
D
C
13、12 14、{}132x x x <<≠且 由301011x x x ->⎧⎪
->⎨⎪-≠⎩
解得132x x <<≠且 15、2
16、
奇,
)
(),()1lg(11lg )1lg()(222x f x f x x x
x x x x f R x ∴-=-+-=-+=++=-∈且 为奇函数。
三、解答题 17
、
(
1
)
221010101(),1010101
x x x x x
x f x x R ----==∈++,
221010101
()(),1010101
x x x x x x f x f x x R -----==-=-∈++
∴()f x 是奇函数
(2)2122101
(),.,(,)101
x x f x x R x x -=∈∈-∞+∞+设,且12x x <,
则12121
212
22221222221011012(1010)
()()0101101(101)(101)
x x x x x x x x f x f x ----=-=<++++,1222(10 10)x x < ∴()f x 为增函数。
18、(1)∵()()222
2233(3)lg lg 633
x x f x x x -+-==---,∴3()lg 3x f x x +=-,又由062
2>-x x 得233x ->, ∴ ()f x 的定义域为()3,+∞。
(2)∵()f x 的定义域不关于原点对称,∴()f x 为非奇非偶函数。
19、由2
32
8()log 1
mx x n f x x ++=+,得22831y
mx x n
x ++=
+,即()23830y y m x x n --+-= ∵,644(3)(3)0y y x R m n ∈∴∆=---≥,即23()3160 y y m n mn -++-≤
由02y ≤≤,得139y
≤≤,由根与系数的关系得19
1619m n mn +=+⎧⎨-=⎩
,解得
5m n ==。