组合图形的面积周长计算
六年级数学上册组合图形的周长和面积讲解

六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
圆的组合图形的面积

假设有一个半径为5cm的圆 和一个底边长为8cm、高为 6cm的三角形,相交部分面
积为18.84cm^2。
05 圆的组合图形面积计算的 扩展应用
Байду номын сангаас
在几何图形设计中的应用
图案设计
圆的组合图形可以用于各种图案 设计,如地板、墙纸、纺织品等,
为设计提供丰富的视觉效果和创 意灵感。
建筑设计
在建筑设计中,圆的组合图形可以 用于外观设计、室内装饰和景观规 划,增加建筑的艺术感和美感。
微积分是通过微积分学中的定 积分概念,将不规则图形的面 积转化为求曲线下面积的问题 进行求解。
03 圆的组合图形面积计算
圆与圆的重叠
总结词
计算重叠部分的面积
详细描述
当两个或多个圆重叠时,需要分别计算各个圆的面积,并从总面积中减去重叠 部分的面积。重叠部分的面积可以通过计算重叠部分的弧长和半径来得出。
04 圆的组合图形面积计算实 例
实例一:圆与圆的重叠面积计算
总结词
计算重叠部分的面积
详细描述
当两个圆部分重叠时,需要计算重叠部分的面积。可以通 过计算两个圆的面积,然后减去两个圆不相交部分的面积 来实现。
公式
重叠部分的面积 = 两个圆的面积 - 不相交部分的面积
示例
假设有两个半径分别为3cm和5cm的圆,重叠部分面积为 12.56cm^2。
实例二:圆与矩形的组合面积计算
计算圆与矩形相交部分的面积
输入 标题
详细描述
当圆与矩形相交时,需要计算相交部分的面积。可以 通过计算矩形和圆的面积,然后减去矩形与圆不相交 部分的面积来实现。
总结词
公式
假设有一个半径为4cm的圆和一个长为8cm、宽为 6cm的矩形,相交部分面积为25.12cm^2。
(完整版)六年级数学上册组合图形的周长和面积

六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
【新版】小升初组合图形面积计算

组合图形1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,①比阴影②面积少3cm2,求EC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白 ⒀阴影部分比空白部分大6cm 2,求S 阴。
部分少12平方厘米,求阴影部分面积。
一、求出阴影部分面积:(6分)。
4、下图中大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积(10分)16、下图中阴影部分的面积是( )平方厘米。
8 4m 48m25、如图(3),有两个边长是2厘米的正方形,其中一个正方形的一个顶点在另一个的中心2、右图中阴影部分的面积为(单位:厘米)。
如图,等腰直角三角形ABC 的面积是8平方厘米。
求阴影部分的面积。
(8分)图(3)5 5 4 422. 求阴影部分的面积。
(单位:厘米)1、求右图中阴影部分面积(单位:厘米)。
1. 下图是由正方形和半圆形组成的图形,其中P 点为半圆周的中点,Q 点为正方形一边的中点,求阴影部分面积。
(单位:厘米)631、下图中三角形的面积等于梯形的面积,求五边形的面积。
(单位:厘米)16、下图中阴影部分的面积是()平方厘米。
666 611、如图:阴影三角形的面积是 。
12、用一块面积为36平方厘米的圆形铝板下料,如图,裁出7个同样大小的圆铝板,则余下的边角料的总面积是 平方厘米。
组合图形练习题五年级

组合图形练习题五年级一、组合图形概述组合图形是指由两个或多个基本图形通过连接、重叠等方式形成的新图形。
在数学学科中,组合图形的概念及操作方法是五年级学生需要掌握的内容之一。
通过组合图形的练习题,不仅可以提高学生的观察力和逻辑思维能力,还可以加深他们对图形、面积、周长等概念的理解。
二、组合图形练习题示例1. 组合图形1:小熊糖果盒小熊糖果盒由一个正方形和一个三角形组成。
正方形的边长为4厘米,三角形的底边长为4厘米,高为6厘米。
请计算小熊糖果盒的面积和周长。
解题思路:首先计算正方形的面积和周长,正方形的边长为4厘米,因此面积为4×4=16平方厘米,周长为4×4=16厘米。
然后计算三角形的面积和周长,三角形的底边长为4厘米,高为6厘米,因此面积为1/2×4×6=12平方厘米,周长为4+4+6=14厘米。
最后将正方形的面积和周长,以及三角形的面积和周长相加,得到小熊糖果盒的面积和周长。
面积为:16+12=28平方厘米,周长为:16+14=30厘米。
2. 组合图形2:水族箱水族箱由一个矩形和一个半圆组成。
矩形的长为15厘米,宽为10厘米。
半圆的半径为5厘米。
请计算水族箱的面积和周长。
解题思路:首先计算矩形的面积和周长,矩形的长为15厘米,宽为10厘米,因此面积为15×10=150平方厘米,周长为2×(15+10)=50厘米。
然后计算半圆的面积和周长,半圆的半径为5厘米,因此面积为1/2×π×5×5=25π平方厘米(结果保留π),周长为π×5+2×5=15π厘米(结果保留π)。
最后将矩形的面积和周长,以及半圆的面积和周长相加,得到水族箱的面积和周长。
面积为:150+25π平方厘米,周长为:50+15π厘米。
三、总结通过以上两个组合图形的练习题示例,我们可以看到,组合图形的求解需要将各个基本图形的面积和周长进行逐一计算,并最终求和得到组合图形的面积和周长。
组合图形中圆的周长与面积

组合图形中圆的周长与面积一、学习目标:1.巩固加深对圆的周长与面积的理解与计算,掌握在组合图形中求圆的周长及面积的方法。
2.提高自己思维的灵活性。
二、知识基础:1.什么叫圆的周长?围成圆的曲线的长叫圆的周长。
什么叫圆的面积?圆所占平面的大小叫圆的面积?2.怎样求圆的周长和面积?圆的周长:c=πd 或c=2πr 。
圆的面积:2r S π=3.一个边长2分米的正方形剪下一个最大的圆,圆的周长为(6.28)分米。
面积为(3.14)平方分米。
4.在一个正方形内做一个最大的圆,圆的面积是正方形面积的(4π) 正方形的边长就是圆的直径,设圆的直径为2r ,半径为r ,圆面积为2r π正方形边长就为2r ,正方形面积为24)2()2(r r r =⨯ 所以4422ππ==÷r r 正方形面积圆面积三、方法例谈例1:将半径分别为3厘米和2厘米的两个半圆如图放置,求阴影部分周长。
请认真看图:阴影部分周长是由哪些组合起来的?怎样分别求出这几部分的长度?厘米31=B O厘米1231212=-=-=O O A O A OAC=2—1=1厘米112r C O π=; 1121r C O π= 2221r C O π= cm r r C C O O 7.15214.3314.321212121=⨯+⨯=+=+ππ 阴影部分周长:厘米两个半圆7.197.15131=++=++AC B O答:阴影部分周长为19.7厘米例2:如图:从点A 到点B 沿大圆周长和沿着中、小圆的周长走,路程相同吗?①认真看图:大圆周是由哪几部分组成?中、小圆周是由哪几部分组成?②这题是要我们求什么?求大圆的半周长,求中、小圆的半周长,然后进行比较大小③怎样进行计算呢?设中圆直径为D ,小圆直径为d ,则:大圆直径为D+d ,所以d D d D C πππ2121)(21+=+=大 D C π21=中 d C π21=小 d D C C ππ2121+=+小中 所以:小中大C C C +=这就是说两种求法经过的路程是相同的。
六年级数学思维:组合图形的面积计算,例题解析!

六年级数学思维:组合图形的面积计算,例题解析!主要题型:一、求不规则图形面积(阴影部分面积);二、求不能直接利用公式计算的图形面积;三、求规则图形的面积,但条件比较隐蔽,用常规思路无法解答。
基本解题思路:解题的基本思路是,先通过分割、切拼、旋转、平移、翻折、缩放、等积替换等方法,把不规则图形转化为规则图形(或规则图形面积的和差),让隐蔽条件明朗化,再合理运用面积公式,巧求不规则图形面积。
解题技巧:这一块分六讲,以后会陆续更新,每一块各有侧重地介绍了六种求面积的计算方法,但每一种解题方法并不是孤立存在的,在实际解题时一道题常常需要综合运用多种方法,才能巧妙解题。
例如加减法求面积常需要对图形进行割补,而用割补法求面积常需要添加辅助线、平移、旋转、进行加减运算等。
在解答图形面积问题时,关键就是要注意寻找不同图形或同一个图形的各个部分之间的内在联系,可以变换角度或适当添加辅助线帮助观察,特别要注意观察图形边角的形状、长度和角度,及是否隐藏有等底等高之类的条件。
从而根据图形的形状特征,合理地进行分割重组,化不规则为规则,巧妙地运用题目给出的各种条件。
小学阶段常见的面积公式:长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a=a2三角形的面积=底×高÷2S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2圆的面积=圆周率×半径×半径S=πr2今天我们讲第一块内容:加减法求面积方法介绍:根据组合图形的形状特征,从整体上观察,将不规则图形分解转化成几个基本规则图形,分别计算它们的面积。
再变化角度思考,通过相加或相减求出所求图形的面积。
例题1:求下图中阴影部分的面积(最后结果保留一位小数)。
(单位:厘米)【解析】:上图阴影部分可以分割成3个完全相同的弓形,先求出其中一个弓形的面积,再求出3个弓形的总面积就是所求阴影部分的面积。
苏教版六年级下册数学总复习 组合图形的周长和面积(课件)

2.5Байду номын сангаас组合图形的周长和面积
知识梳理
1. S圆环=
2.想一想:怎样求不规则图形 周长与面积?
典型例题
例1:计算下面各图形中阴影部分 的周长与面积。(单位:分米) 通过计算,你发现了什么?
4
4
4
试题精粹
1.在一块长10米,宽8米的长方形地 里,有纵、横两条小路(如图)。路 宽1米,其余地上都种草。种草部分 的面积是多少平方米?
请你们描述这幅装饰画有多大。
总结反思
今天这节课我们复习了哪些方面 的知识?
你有什么收获和体会?
试题精粹
2.如图,长方形的面积是70平方厘米, 甲与乙的面积比是2:3,乙的面积是 多少平方厘米?
试题精粹
3.图中阴影部分的面积是30平方厘 米。求圆环的面积。
试题精粹
4.下图是一块长方形草地,长方形 长为16米,宽为12米,中间有一条 宽为2米的道路。求草地(阴影部 分)的面积。
试题精粹
5.如图所示,甲三角形的面积比乙三 角形的面积大6平方厘米,求CE的长 度。
试题精粹
6.求下面图形阴影部分的周长。 (单位:厘米)
试题精粹
7.如图,一个长方形被一条直线分成 两个小长方形,这两个小长方形的宽 的比为1:3,阴影三角形面积为3平 方厘米。原来长方形面积是多少平方 厘米?
试题精粹
8.有一块墙面装饰画的底板是 三夹板。它是从长1.2米、宽0.6 米的长方形三夹板上切割下来 的一个最大的圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合图形的面积周长计算 Prepared on 24 November 2020
组合图形
1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的
面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)
部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。