实习10-遥感图像分类(二)非监督分类、分类后处理
遥感监督分类实习报告

实习报告:遥感监督分类实习一、实习目的本次遥感监督分类实习的主要目的是通过实际操作,掌握遥感监督分类的基本原理和方法,提高对遥感影像进行分类和解析的能力。
通过实习,我们希望能够学会使用遥感相关软件对遥感影像进行处理和分析,掌握遥感野外调查的方法和注意事项,以及根据土地利用现状分类标准对遥感影像进行目视解译和划分,最终制作出土地利用现状分类专题图。
二、实习内容(一)遥感影像处理1. 遥感影像预处理:我们在envis软件中进行遥感影像的预处理,包括辐射校正和几何校正。
辐射校正主要进行传感器校正、大气校正、太阳高度及地形校正。
几何校正是指纠正由系统或非系统因素引起的图像几何变形。
我们将实习所用到的遥感图像坐标系确定为UTMWGS84坐标系。
2. 遥感影像裁剪:我们使用envis软件中的感兴趣区域选取功能,对预处理过的遥感影像进行裁剪,选取出本次实习的区域范围。
(二)外业建标调查1. 建立目视解译标志:我们根据《土地利用现状分类-GB2007》标准,对所调查区域的遥感影像地物进行初步目视解译、划分,从而建立外业目视解译标志表。
2. 野外调查:我们根据建立的目视解译标志,进行野外调查,验证和解译遥感影像中的地物类别。
(三)遥感影像的监督分类1. 训练样本选择:我们根据野外调查的结果,选择代表性的训练样本,用于遥感影像的监督分类。
2. 监督分类:我们使用ENVI软件中的监督分类功能,对遥感影像进行分类。
在分类过程中,我们根据训练样本的特点,选择合适的分类算法和参数。
3. 分类结果评估:我们使用混淆矩阵和Kappa系数等指标,对监督分类的结果进行评估,以判断分类的精度。
三、实习总结通过本次遥感监督分类实习,我们掌握了遥感影像处理的基本方法,学会了使用envis和ENVI等软件进行遥感影像的预处理、裁剪和监督分类。
同时,我们也学会了如何进行野外调查和目视解译,以及如何选择训练样本和评估分类结果。
通过实习,我们对遥感监督分类的原理和方法有了更深入的了解,提高了实际操作能力。
实习10-遥感图像分类(二)非监督分类、分类后处理

实习十遥感图像分类(二)——非监督分类、分类后处理
一、实习目的和要求
(1)熟悉掌握遥感图像分类及非监督分类的含义;(2)掌握遥感图像非监督分类最基本的处理方法;(3)了解分类后的评价过程;(4)熟悉遥感图像分类后处理的含义;(5)掌握遥感图像处理分类后处理最基本的处理方法
二、实习内容
(1)非监督分类前分类参数的选择;(2)非监督分类的过程与方法;(3)非监督分类初始结果的评价;(4)解决分类图像中的碎斑;(5)分类类别合并;(6)分类结果统计
三、主要实习步骤
(一)非监督分类
1、获取初始分类
2、调整分类结果2、
(二)分类后处理
1、聚类统计
2、过滤分析
3、去除分析
4、分类重编码
(注:可编辑下载,若有不当之处,请指正,谢谢!)。
遥感图像分类后处理

遥感图像分类后处理一、实验目的与要求监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。
因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。
常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。
本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。
二、实验内容与方法1.实验内容1.小斑块去除●Majority和Minority分析●聚类处理(Clump)●过滤处理(Sieve)2.分类统计3.分类叠加4.分类结果转矢量5.ENVI Classic分类后处理●浏览结果●局部修改●更改类别颜色6.精度评价1.实验方法在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;三、实验设备与材料1.实验设备装有ENVI 5.1的计算机2.实验材料以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。
数据位于"...\13数据\"。
其他数据描述:•can_tmr.img ——原始数据•can_tmr_验证.roi ——精度评价时用到的验证ROI四、实验步骤1.小斑块去除应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面积很小的图斑。
无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。
1)Majority和Minority分析Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。
遥感图像解译实习报告

遥感图像解译实习报告中国地质大学目录实习一 (3)一、实习任务: (3)二、实习目标以及用时: (3)三、教学方式: (3)四、使用器材: (3)五、具体实习过程 (4)1. 运用ENVI软件观察影像中不同地物的光谱曲线 (4)2 武汉市TM影像解译实习 (6)3. 运用ERDAS软件提取影像中的植被指数 (10)实习二 (12)一.实习任务: (12)二、实习目标: (12)三、教学方式: (12)四、使用器材: (12)五、具体实习过程 (12)1.ERDAS视窗的基本操作 (12)2. 多项式几何纠正 (14)实习三 (20)一、实习任务: (20)二、实习目标: (20)三、教学方式: (20)四、使用器材: (21)五、具体实习内容 (21)1.影像融合 (21)2. 遥感图像分类(监督分类或者非监督分类) (22)实习体会 (27)实习一一、实习任务:熟悉各种典型地物的光谱曲线;对遥感影像进行判读,建立典型地物的解译标志;运用Erdas软件的空间建模功能提取TM影像中的水体。
二、实习目标以及用时:1 熟悉遥感软件的光谱读取与显示功能2 熟悉人工判读的程序;3 掌握人工判读的工具;4 影像处理之工具使用;5 掌握解译标志的建立过程,并能对影像中的地物进行解译标志的建立6 运用遥感软件提取影像中的植被指数7 运用Erdas软件的空间建模功能提取TM影像中的水体三、教学方式:由老师说明方法并举例,由同学实际执行判读,并完成实习报告。
四、使用器材:1.ENVI系統2.遥感影像3 ERDAS软件系统五、具体实习过程1. 运用ENVI软件观察影像中不同地物的光谱曲线A.提取单个像素的光谱曲线(Z Profiles)1)选择FILE->OPEN打开遥感影像。
出现Available band list对话框图1-1 Available band list对话框2)依据图1中的设置,选择RGB三个通道的数据,并且点击Load RGB,在#1中显示影像。
遥感数据图像处理实验七、图像分类

实验七、图像分类实验内容:1.非监督分类2.监督分类图像分类简介:图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。
常规图像分类主要有两种方法:非监督分类和监督分类。
1. 非监督分类(以c:\program files\ imagine 8.4\examples\germtm.img为例)ERDAS IMAGINE 8.4使用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法来进行非监督分类。
聚类过程始于任意聚类平均值或一个已有分类模板的平均值,聚类每重复一次,聚类的平均值就更新一次,新聚类的均值再用于下次聚类循环。
非监督分类完全按照像元的光谱特性进行统计分类,常常用于对于分类区没有什么了解的情况。
使用该方法时,原始图像的所有波段都参与分类运算,分类结果往往是各类像元数大体等比例。
由于人为干预较少,非监督分类过程的自动化程度较高。
1.1分类过程:第一步:调出非监督分类对话框方法一:在ERDAS IMAGINE 8.4图标面板工具条中单击“Dataprep”图标→打开Data Preparation窗口→单击Unsupervised Classification菜单项→打开Unsupervised Classification对话框方法二:在ERDAS IMAGINE 8.4图标面板工具条中单击“Classifier”图标→打开Classification窗口→单击Unsupervised Classification菜单项→打开Unsupervised Classification对话框(说明:两种方法调出的Unsupervised Classification对话框有一些区别,由于基本的非监督分类属于IMAGINE Essentials级产品,但在IMAGINE Professional级产品中有一定的功能扩展,所以非监督分类命令分别出现在Data Preparation菜单和Classification菜单中。
遥感图像的分类实验报告

一、实验名称遥感图像的监督分类与非监督分类二、实验目的理解遥感图像监督分类及非监督分类的原理;掌握用ENVI对影像进行监督分类和非监督分类的方法,初步掌握图像分类后的相关操作;了解整个实验的过程以及实验过程中要注意的事项;三、实验原理监督分类:又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程;它是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类;非监督分类:也称为聚类分析或点群分类;在多光谱图像中搜寻、定义其自然相似光谱集群的过程;它不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱或纹理信息进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的各个类别的实际属性进行确认;目前比较常见也较为成熟的是ISODATA、K-Mean和链状方法等;四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM 第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:中心经度:;鉴于实验内容及图像大小等问题,故从一景TM影像中裁取一个含有较丰富地物信息区域作为待分类影像;五、实验过程1.监督分类打开并显示影像文件,选择合适的波段组合加载影像打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,为了更好地区分不同地物以及方便训练样本的选取,选择5、4、3波段进行相关操作,点击Load Band 在主窗口加载影像;使用感兴趣区ROI工具来选择训练样区1主影像窗口菜单栏中,选择 Overlay >Region of Interest;出现ROI Tool对话框,2根据不同的地物光谱特征,在图像上画出包含该类地物的若干多边形区域,建立相应的感兴趣区域,输入对应的地物名称,更改感兴趣区对应的显示色彩;由于该地区为山西省北部,地物相对单一,故分为以下几类:裸地、草地、灌木林、农田、水体、人类活动区、云层,阴影;选择分类方法进行分类1主菜单中,选择Classification>Supervised,在对应的选项菜单中选择分类方法,对影像进行分类;以最小距离法Minimum Distance为例进行说明;选择Minimum Distance选项,出现Classification Input File对话框,在该对话框中选择待分类图像;2在出现的Minimum Distance Parameters对话框中,select Ttems选择训练样本,定义相关参数,选择输出路径;点击ok完成分类,结果如图:2.非监督分类非监督分类方法有K-均值分类法及ISOData 重复自组织数据分析技术,本次实验报告以K-均值分类方法为例进行说明;1主菜单中 , 选择 Classincation>Unsupervised>K-Means;在Classification Input File对话框中选择待分类影像文件;2在K-Means Parameters对话框中定义相关参数,其中,可定义参数有:分类类别数,像元变化阈值,用于分类的最多迭代次数以及可选的距离阈值;选择结果输出位置,点击OK完成分类;3.分类后处理我们需要对分类后的影像进行后处理,评价其分类的精度,这里以监督分类结果为例进行说明;更改类别名称及颜色主图像窗口,Overlay->classification,出现Select Input file对话框,选择分类结果,点击OK;在Interactive Class TOOL对话框的option下拉菜单中选择Edit colors/names选项,在弹出的对话框中选择类别更改其名称颜色;分类结果微调包括删除或者合并小斑点;1将要修改的类别置于激活状态,点击Edit下拉菜单,选择Mode :polygon Add to class 将分类错误的点与周围区域点合并;选择Mode :polygon delete from class将错误点剔除;2主菜单classification->Post classification->sieve classes打开sieve parameters对话框,选择训练样本,及最小剔除像素,选择输出位置,完成操作;图为采用八联通域将像素小于5的点删除;混淆矩阵精度验证1选取验证样本,与监督分类操作类似,选择不同的感兴趣区域,保存ROI,作为选择训练样本;2进行精度验证,主菜单classification->Post classification->Using Ground Truth ROI,选择分类图像;对应分类结果和验证样本点击ok得到精度验证结果;分类统计主菜单classification->Post classification->class statistics,在弹出的对话框中输入分类结果,点ok下一个对话框输入原图像ok;在弹出的select classes对话框中选择训练样本;选择输出显示类型,点击ok得到统计结果;分类结果转换为矢量主菜单classification->Post classification-> classification to vector,弹出对话框中选择分类结果影像;选择训练样本及矢量文件输出位置,点击ok完成矢量化;矢量化结果如下:六、实验结果与分析1、监督分类结果分析将分类结果与原图像进行对比可发现分类结果基本符合要求,农田与建筑的分布具有较强的统一性,符合相关常识;2、非监督分类结果分析3、图为经过主次要分析的分类结果与原图对比,可发现去除了一些噪声点,分类结果相对较好;4、分类结果精度评价分析由于监督分类,训练样本及验证样本的选择失误,图像的分类精度为83%基本符合要求,但不是太高,从精度报表中可看出,误差来源主要为灌木林与草地之间的差异,其他地物的分类结果基本上比较精确;七、实验心得与体会本次实为遥感影像的监督分类与非监督分类以及分类后处理,通过本次实验,初步掌握了影像的分类过程,在影像的监督分类中,训练样本的选择是本实验的关键点,如何较为准确的选择感兴趣区域确定正确的训练样本需要在以后的学习中积累相关经验;实验中相近地物信息的不同地物该如何分类需要思考;。
2遥感图像分类的实习指导

2 图像分类的实现指导1、遥感图像计算机分类的理论依据:遥感图像中的同类地物在相同的条件下(纹理、地形等),应具有相同或相似的光谱信息特征和空间信息特征,从而表现出同类地物的某种内在的相似性,即同类地物像元的特征向量将集群在同一特征空间区域;而不同的地物其光谱信息特征或空间信息特征将不同,集群在不同的特征空间区域。
2、传统的分类方法:在遥感图像分类中,按照是否有已知训练样本的分类依据,分类方法又分为两大类:监督分类与非监督分类。
遥感图像的监督分类是在已知类别的训练场地上提取各类别训练样本,通过选择特征变量、确定判别函数或判别式(判别规则),进而把图像中的各个像元点划归到各个给定类的分类。
遥感图像的非监督分类是在没有先验知识(训练场地)的情况下,根据图像本身的统计特征及自然点群的分布情况来划分地物类别的分类处理,事后再对已分出的各类的地物属性进行确认,也称作“边学习边分类法”。
两者的最大区别在于,监督分类首先给定类别,而非监督分类则由图像数据本身的统计特征来决定。
3、影响遥感影像分类精度的因素:遥感图像计算机自动分类在遥感数字图像处理技术中占有非常重要的地位,由于计算机分类的精度和可靠性除了与分类方法本身的优劣有关外,还取决于一些其它的因素:训练场地和训练样本的选择问题地形因素的影响混合像元问题特征变量的选择问题空间信息在分类中的应用问题图像分类的后期处理问题4、ENVI软件提供的监督分类的分类器图像分类的关键问题之一是选择适当的分类规则(或分类器),通过分类器把图像数据划分为尽可能符合实际情况的不同类别。
根据分类的复杂度、精度需求等选择一种分类器。
在主菜单->Classification-> Supervised->分类器类型(如表1),此外还包括应用于高光谱数据的波谱角(Spectral Angle Mapper Classification)、光谱信息散度(Spectral Information Divergence Classification)和二进制编码(Binary Encoding Classification)分类方法。
envi遥感图像监督分类与非监督分类

envi遥感图像监督分类监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。
它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。
使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。
遥感影像的监督分类一般包括以下6个步骤,如下图所示:详细操作步骤第一步:类别定义/特征判别根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。
这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。
启动ENVI5.1,打开待分类数据:can_tmr.img。
以R:TM Band 5,G: TM Band 4,B:TM Band 3波段组合显示。
通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。
第二步:样本选择(1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择"New Region Of Interest",打开Region of Interest (ROI) Tool面板,下面学习利用选择样本。
1)在Region of Interest (ROI) Tool面板上,设置以下参数:ROI Name:林地ROI Color:2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择;3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上;4)这样就为林地选好了训练样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实习十遥感图像分类(二)——非监督分类、分类后处理
一、实习目的和要求
(1)熟悉掌握遥感图像分类及非监督分类的含义;(2)掌握遥感图像非监督分类最基本的处理方法;(3)了解分类后的评价过程;(4)熟悉遥感图像分类后处理的含义;(5)掌握遥感图像处理分类后处理最基本的处理方法
二、实习内容
(1)非监督分类前分类参数的选择;(2)非监督分类的过程与方法;(3)非监督分类初始结果的评价;(4)解决分类图像中的碎斑;(5)分类类别合并;(6)分类结果统计
三、主要实习步骤
(一)非监督分类
1、获取初始分类
2、调整分类结果
2、。