有理数加减法的八大经典例题及详细解析

合集下载

有理数的加减知识点巩固及参考答案

有理数的加减知识点巩固及参考答案

有理数的加减知识点一、有理数加法法则:①同号相加:取相同符号,两数绝对值相加。

②异号相加:取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;绝对值相等时,和为0。

③一个数同 0 相加等于它本身。

计算步骤:1.判断符号;2.选择法则;3.加减计算。

归纳:一定二求三加减例:8+(-5)解:|+8|>|-5|,取“+”号;异号相加,取法则②;8+(-5)=+(|+8|-|-5|)=+(8-5)=+3=3运算律:加法的交换律:a+b=b+a加法的结合律:(a+b) +c=a+ (b+c)运算技巧:1.同号结合;2.凑零法;3.凑整法;3.同整数(分母/小数)结合法。

二、有理数的减法法则:减去一个数,等于加上这个数的相反数。

即a-b=a+(-b)计算步骤:①化减法运算为加法运算;②按加法法则和加法运算律进行计算。

知识巩固一、填空(1)(+8)+(+10)= (2)(-10)+(-10)=(3)(-6)+(+4)= (4)(+17)+(-13)=(5)19+(-8)= (6)(+5)+(-12)=(7)(+4)+(-6)= (8)-14+(-6)=(9)5-9= (10)20+(-8)=二、选择题11. 如果两个数的和是负数,那么这两个数()A.同是正数 B.同为负数 C.至少有一个为正数 D.至少有一个为负数12. 下列说法正确的是()A.两个有理数相加,和一定大于每一个加数B.异号两数相加,取较大数的符号C.同号两数相加,取相同的符号,并把绝对值相加D.异号两数相加,用绝对值较大的数减去绝对值较小的数13.下列说法正确的是()A.两个负数相减,等于绝对值相减B.两个负数的差一定大于零C.负数减去正数,等于负数加上正数的绝对值D.绝对值等于它的相反数的数不一定是负数14.计算(﹣2)﹣(﹣7)的结果等于()A.-9 B.9 C.5 D.-515.比-2024大2018 的数是()A.-2042 B.2042 C.-6 D.6三、计算(1)(﹣12)+3+10+(﹣6)+8+(﹣4);(2)(+36)+(﹣12)+(﹣16)+(+8)(3)-3.6+1.5+1.4 +(﹣2.7)+3.8;(4)342 25773 -++(-1)+(5)1331130.25 3.750.5244-+---(6)110.7521448+--(7)0.5-0.85+1.2-3+1.05 (8)311 822424 --++(9)-4.2+(-5.78)-(-2.15)+|-10| (10)3111 12 4632 --+(11)22221415315315-+-(-12)-14+(-11)(12)-20+(+11)-19-(-18)(13)3221412332-+-(-2)+(-11)(14)211|1|524---(+4)-(-2.75)知识巩固参考答案一、填空(1)(+8)+(+10)= 18 (2)(-10)+(-10)= -20(3)(-6)+(+4)= -2 (4)(+17)+(-13)= 4(5)19+(-8)= 11 (6)(+5)+(-12)= -7(7)(+4)+(-6)= -2 (8)-14+(-6)= -20(9)5-9= -4 (10)20+(-8)= 12二、选择题11. 如果两个数的和是负数,那么这两个数( D )A.同是正数 B.同为负数 C.至少有一个为正数 D.至少有一个为负数12. 下列说法正确的是( C )A.两个有理数相加,和一定大于每一个加数B.异号两数相加,取较大数的符号C.同号两数相加,取相同的符号,并把绝对值相加D.异号两数相加,用绝对值较大的数减去绝对值较小的数13.下列说法正确的是( D )A.两个负数相减,等于绝对值相减B.两个负数的差一定大于零C.负数减去正数,等于负数加上正数的绝对值D.绝对值等于它的相反数的数不一定是负数14.计算(﹣2)﹣(﹣7)的结果等于( C )A.-9 B.9 C.5 D.-515.比-2024大2018 的数是( C )A.-2042 B.2042 C.-6 D.6三、计算(1)(﹣12)+3+10+(﹣6)+8+(﹣4);(2)(+36)+(﹣12)+(﹣16)+(+8);(1)解:原式=-1 (2)解:原式=16(3)-3.6+1.5+1.4 +(﹣2.7)+3.8;(4)34225773-++(-1)+;(3)解:原式=0.4 (4)解:原式=5 3(5)1331130.25 3.750.5244-+---;(6)110.7521448+--;(5)解:原式=-1 (6)解:原式=17 8 -(7)0.5-0.85+1.2-3+1.05;(8)311 822424--++;(7)解:原式=-1.1 (8)解:原式=-8(9)-4.2+(-5.78)-(-2.15)+|-10|;(10)3111124632 --+;(9)解:原式=2.17 (10)解:原式=9 4 -(11)22221415315315-+-(-12)-14+(-11);(12)-20+(+11)-19-(-18);(11)解:原式=-12 (12)解:原式=-10(13)1221412332-+-(-2)+(-11);(14)211|1|524---(+4)-(-2.75);(13)解:原式=353-(14)解:原式=135-。

有理数的加减法题目

有理数的加减法题目

有理数的加减法题目一、有理数加法题目及解析1. 题目:计算(+3)+(+5)- 解析:- 有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。

- 对于(+3)+(+5),这是两个正数相加,符号为正,|+3| = 3,|+5| = 5,所以结果为+(3 + 5)=+8 = 8。

2. 题目:计算(-2)+(-4)- 解析:- 同样根据有理数加法法则,同号两数相加。

- 这里是两个负数相加,符号为负,| - 2|=2,| - 4| = 4,结果为-(2 + 4)=-6。

3. 题目:计算(+2)+(-5)- 解析:- 有理数加法法则:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

- 对于(+2)+(-5),|+2| = 2,| - 5| = 5,5>2,所以取负号,结果为-(5 - 2)=-3。

二、有理数减法题目及解析1. 题目:计算5-3- 解析:- 在有理数范围内,减法可以转化为加法,即a - b=a+( - b)。

- 所以5-3 = 5+( - 3),这就变成了有理数加法,按照前面的法则,同号两数相加(这里把5看作+5),结果为+(5 - 3)=+2 = 2。

2. 题目:计算3-5- 解析:- 转化为加法为3-5 = 3+( - 5)。

- 异号两数相加,|+3| = 3,| - 5| = 5,5>3,取负号,结果为-(5 - 3)=-2。

3. 题目:计算(-2)-(-3)- 解析:- 根据减法法则转化为加法(-2)-(-3)=(-2)+(+3)。

- 异号两数相加,| - 2| = 2,|+3| = 3,3>2,取正号,结果为+(3 - 2)=+1 = 1。

50道有理数加减法计算题

50道有理数加减法计算题

50道有理数加减法计算题一、简单整数的有理数加减法(1 - 20题)1. 1 + (-2)- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

|1| = 1,| - 2|=2,2>1,所以结果为-(2 - 1)=-1。

2. (-3)+5- 解析:异号两数相加,| - 3| = 3,|5| = 5,5>3,结果为+(5 - 3)=2。

3. 4+(-4)- 解析:互为相反数的两个数相加得0。

4. (-5)+(-3)- 解析:同号两数相加,取相同的符号,并把绝对值相加。

| - 5|=5,| - 3| = 3,结果为-(5 + 3)=-8。

5. 2-3- 解析:2-3可以写成2+(-3),异号两数相加,|2| = 2,| - 3|=3,3>2,结果为-(3 - 2)=-1。

6. (-4)-(-2)- 解析:减去一个数等于加上这个数的相反数,(-4)-(-2)=(-4)+2,异号两数相加,| - 4| = 4,|2| = 2,4>2,结果为-(4 - 2)=-2。

7. 3-(-1)- 解析:3-(-1)=3 + 1=4。

8. (-2)-3- 解析:(-2)-3=(-2)+(-3)=-(2 + 3)=-5。

9. 0+(-5)- 解析:0加任何数等于这个数本身,结果为-5。

10. (-6)+0- 解析:任何数加0等于这个数本身,结果为-6。

11. 5+(-9)- 解析:异号两数相加,|5| = 5,| - 9| = 9,9>5,结果为-(9 - 5)=-4。

12. (-7)+7- 解析:互为相反数的两个数相加得0。

13. 8 - 10- 解析:8-10 = 8+(-10),异号两数相加,|8| = 8,| - 10| = 10,10>8,结果为-(10 - 8)=-2。

14. (-9)-(-9)- 解析:(-9)-(-9)=(-9)+9 = 0。

15. 10+(-3)- 解析:异号两数相加,|10| = 10,| - 3| = 3,10>3,结果为+(10 - 3)=7。

初中数学-有理数的加减乘除法典型例题及答案分析

初中数学-有理数的加减乘除法典型例题及答案分析

《有理数的除法》典型例题一例 计算:(1))3(12 ; (2))611(312 分析:(1)题应选用除法法则(二);(2)题应先把带分数化成假分数,然后运用除法法则(一)进行计算.解:(1))3(12 312 (除法法则(二))4(2))611(312 )67(37 (将带分数化成假分数) 76(37 (除法法则(一)) 2 (乘法法则)说明:要注意负数的倒数仍是负数.《有理数的除法》典型例题二例 计算:(1)(-25.6)÷(-0.064);(2)1411713 . 分析 根据两个数相除确定符号的方法,我们先确定商的符号,再把绝对值相除. 解 (1)(-25.6)÷(-0.064)=+(25.6÷0.064)=400;(2)1411713 1411713( )1114722( 4说明: (1)小学学过的一个数除以一个分数的方法在这里仍然适用,即除以一个数等于乘以这个数的倒数;(2)在小学除法可以转化为乘法进行,这里依然可以进行.这里和小学不同就在于确定商的符号;(3)在除法中零是不能做除数的.《有理数的除法》典型例题三例 化简(1)312 (2)1545 (3)321解:(1)4312312(2)3)15()45(1545 (3)613121321321说明:分数线“-”相当于“÷”的作用,利用有理数除法法则可化简带有分数线的数.有理数的除法》典型例题四例 计算:(1))511()312(313 ;(2))15(94412)81( . 分析 (1)是连除法运算,我们可以按从左到右的顺序依次进行计算,也可以把除法变为乘法来做.(2)是乘除混合运算,但做法和(1)类似.解 (1)方法一511()312(313 )511(312313( 511()73310( 56(710 65710 2141 方法二:511()312(313 )56()37(310 65()73(310 21416573310 (2))15(94412)81(151(944981 )151(949481 .1511 说明:(1)在连除和乘除混合运算中,如果含有分数一般将其变为乘法运算比较方便;(2)在除法和乘除混合运算中,不满足结合律和交换律;(3)连除运算和乘除混合运算也可以像几个有理数相乘一样先确定符号,确定符号的方法和几个数相乘确定符号的方法基本相同.《有理数的除法》典型例题五例 计算(1)1211211611211 (2)733)64(317)64((3)31)4(214211 (4)12291236解:(1) 1211211611211 )12(12136723)12(1213)12(67)12(23 13141819(2)733)64(317)64(724)64(731)64(724731)64( )1()64(64(3)31)4(214211 )3(41)6(214293416(4)122912361229123612129123611229122136 29132913 说明:有理数的加减乘除混合运算中,如果有括号通常先算括号里面的;如果无括号,则按照“先乘除、后加减”的顺序进行,如第(3)题;在将混合运算中的除法转化为乘法后,有时运用乘法运算律会简化计算.如第(1)题;第(2)题是将除法转化乘法后,逆用了乘法分配律;第(4)题是将291236转化成为291236 .达到简化计算的目的. 《有理数的除法》典型例题六例 填空(1)如果0,0 b a ,那么0____ba (2)如果0,0b a ,那么0____b a(3)如果0,0 b a ,那么0____ba (4)如果0,0b a ,那么0____b a 解:(1)< (2)< (3)> (4)=说明:此题是有理数除法法则中符号确定的应用,它将有理数除法,同号得正,异号得负,运用代数的方法表示出来。

第02讲 有理数的加减法 (解析版)

第02讲 有理数的加减法 (解析版)

第2讲有理数的加减法一、知识梳理1.有理数的加法同号相加,符号,;异号相加,符号, .【例1】.(1)计算(﹣3)+(﹣9)结果是()A.﹣6B.﹣12C.6D.12【分析】同号相加,取相同符号,并把绝对值相加,依此计算即可求解.【解答】解:(﹣3)+(﹣9)=﹣12.故选:B.(2)计算:﹣6+4的结果是()A.2B.10C.﹣2D.﹣10【分析】符号不相同的异号加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.【解答】解:﹣6+4=﹣(6﹣4)=﹣2.故选:C.(3)春节假期期间某一天早晨的气温是﹣3℃,中午上升了8℃,则中午的气温是()A.﹣5℃B.5℃C.11℃D.﹣11℃【分析】根据题意可知,中午的气温是﹣3+8,然后计算即可.【解答】解:由题意可得,中午的气温是:﹣3+8=8﹣3=5(℃),故选:B.【变式训练1】.(1)计算:﹣3+(﹣5)=()A.﹣8B.﹣2C.2D.8【分析】根据同号两数相加,取相同的符号,并把绝对值相加进行计算即可.【解答】解:﹣3+(﹣5)=﹣(5+3)=﹣8.故选:A.(2)计算﹣1+5,结果正确的是()A.4B.﹣4C.﹣6D.6【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:﹣1+5=4.故选:A.(3)已知A地的海拔高度为﹣36米,B地比A地高20米,则B地的海拔高度为()A.16米B.20米C.﹣16米D.﹣56米【分析】根据题意可得算式:﹣36+20,再根据有理数的加法法则进行计算即可.【解答】解:﹣36+20=﹣16(米),故选:C.2.有理数的减法减去一个数,等于加上这个数的 .【例2】.(1)计算:﹣(﹣)=.【分析】根据有理数的减法法则计算即可.【解答】解:原式=+=+=,故答案为:.(2)如果|m|=4,|n|=2且|m+n|=m+n,则m﹣n的值是2或6.【分析】根据|m|=4,|n|=2,|m+n|=m+n,确定m、n的值,再代入计算即可.【解答】解:因为|m|=4,|n|=2,所以m=±4,n=±2,又因为|m+n|=m+n,所以m+n≥0,所以m=4,n=2,或m=4,n=﹣2,当m=4,n=2时,m﹣n=4﹣2=2,当m=4,n=﹣2时,m﹣n=4﹣(﹣2)=6,故答案为:2或6.【变式训练2】.(1)计算:=.【分析】根据有理数的减法法则计算即可.【解答】解:=﹣5=﹣2.(2)已知a<b,且|a|=6,|b|=3,则a﹣b的值为﹣9或﹣3.【分析】首先根据|a|=6,|b|=3,求出a、b的值各是多少;然后根据:a<b,确定出a、b的值,再应用代入法,求出a﹣b的值为多少即可.【解答】解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a﹣b=﹣6﹣3=﹣9或a﹣b=﹣6﹣(﹣3)=﹣3.故答案为:﹣9或﹣3.3.有理数的加减混合运算a+b-c=a+b+【例3】.(1)计算:(﹣3)+1﹣5﹣(﹣8).【分析】从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣3)+1﹣5﹣(﹣8)=﹣2﹣5+8=﹣7+8=1.(2)2020年的“新冠肺炎”疫情的蔓延,市场上医用口罩销量大幅增加,某口罩加工厂为满足市场需求,计划每天生产6000个,由于各种原因与实际每天生产量相比有出入,下表是三月份某一周的生产情况(超产为正,减产为负,单位:个).星期一二三四五六日增减+150﹣200+300﹣100﹣50+250+150(1)产量最多的一天比产量最少的一天多生产多少个;(2)与原计划产量比较,这周产量超产或减产多少个?(3)若口罩加工厂实行计件工资制,每生产一个口罩0.2元,则本周口罩加工厂应支付工人的工资总额是多少元?【分析】(1)根据正负数的意义确定星期三产量最多,星期二产量最少,然后用记录相减计算即可得解;(2)求出一周记录的和即可求出这周产量超产或减产多少个;(3)求出一周记录的和,然后根据工资总额的计算方法列式计算即可得解.【解答】解:(1)+300﹣(﹣200)=500(个),(2)+150﹣200+300﹣100﹣50+250+150=500(个),(3)6000×7+(150﹣200+300﹣100﹣50+250+150)=42500(个),42500×0.2=8500(元),答:(1)产量最多的一天比产量最少的一天多生产500个;(2)这周产量超产500个;(3)本周口罩加工厂应支付工人的工资总额是8500元.【变式训练3】.(1)﹣3+(﹣5)﹣(﹣8)﹣4+3.【分析】从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣3+(﹣5)﹣(﹣8)﹣4+3=﹣8+8﹣4+3=0﹣4+3=﹣1.(2)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期一二三四五六日+3﹣5﹣2+11﹣7+13+5柚子销售超过或不足计划量情况(单位:千克)(1)小王第一周销售柚子最多的一天比最少的一天多销售多少千克?(2)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?【分析】(1)将销售量最多的一天与销售量最少的一天相减计算即可;(2)根据第一周实际销售柚子的数量相加计算即可;(3)将总数量乘以价格差解答即可.【解答】解:(1)13﹣(﹣7)=13+7=20(千克).答:小王第一周销售柚子最多的一天比最少的一天多销售20千克.(2)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(3)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.二、课堂训练1.计算15+(﹣22)的值是()A.﹣7B.7C.﹣37D.37【分析】根据有理数的加法法则:异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值即可.【解答】解:15+(−22)=﹣(22−15)=﹣7.故选:A.2.计算|﹣3|+(﹣2)的最后结果是()A.1B.﹣1C.5D.﹣5【分析】先根据绝对值的性质写出﹣3的绝对值为3,再计算3+(﹣2)的值.【解答】解:|﹣3|+(﹣2)=3﹣2=1.故选:A.3.已知a,b是有理数,若a在数轴上的对应点的位置如图所示,且a+b<0,有以下结论:①b<0;②a﹣b<0;③b<﹣a<a<﹣b;④|a|<|b|,其中结论正确的个数是()A.4个B.2个C.3个D.1个【分析】根据图示,可得:a>0,然后根据a+b<0,逐项判断即可.【解答】解:∵a>0,a+b<0,∴b<0,∴①符合题意;∵a>0,a+b<0,∴b<0,∴a﹣b>0,∴②不符合题意;∵a>0,a+b<0,∴b<﹣a<a<﹣b,∴③符合题意;∵a>0,a+b<0,∴|a|<|b|,∴④符合题意,∴结论正确的有3个:①、③、④.故选:C.4.研究表明“距离地面越高,温度越低”,相关数据如表所示:距离地面的高度h/km012345温度t/℃201482﹣4﹣10根据上表,请预测距离地面6km的高空温度是()℃.A.﹣14B.﹣15C.﹣16D.﹣17【分析】察表格发现:距离地面的高度每升高1千米,温度就下降6℃.距离地面5千米的时候温度为﹣10℃,再降低6℃即可得出答案.【解答】解:观察表格发现:距离地面的高度每升高1千米,温度就下降6℃,∴距离地面6千米的高空温度为:﹣10﹣6=﹣16(℃),故选:C.5.下列各式的计算结果为负数的是()A.|﹣2﹣(﹣1)|B.﹣(﹣3﹣2)C.﹣(﹣|﹣3﹣2|)D.﹣2﹣|﹣4|【分析】根据有理数的减法法则逐一计算即可.【解答】解:A.|﹣2﹣(﹣1)|=|﹣1|=1,不符合题意;B.﹣(﹣3﹣2)=﹣(﹣5)=5,不符合题意;C.﹣(﹣|﹣3﹣2|)=﹣(﹣5)=5,不符合题意;D.﹣2﹣|﹣4|=﹣2﹣4=﹣6,符合题意.故选:D.6.小王家的冰箱冷冻室现在的温度是﹣8℃,调高2℃的温度是﹣6℃.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:∵小王家的冰箱冷冻室现在的温度是﹣8℃,∴调高2℃的温度是:﹣8+2=﹣6(℃).故答案为:﹣6.7.若a是最大的负整数,b是最小的正整数,c的相反数是它本身,则a+b+c=0.【分析】直接利用负整数、正整数、相反数的定义得出a,b,c的值,进而得出答案.【解答】解:∵a是最大的负整数,b是最小的正整数,c的相反数是它本身,∴a=﹣1,b=1,c=0,则a+b+c=﹣1+1+0=0.故答案为:0.8.点A的海拔高度是﹣100米,表示点A比海平面低100米,点B比点A高30米,那么点B的海拔是﹣70.【分析】根据题意,用﹣100加上30即可得出点B的海拔高度.【解答】解:点B的海拔高度为:﹣100+30=﹣70(米).故答案为:﹣70.9.计算:21﹣(﹣16)+(﹣13).【分析】从左向右依次计算,求出算式的值是多少即可.【解答】解:21﹣(﹣16)+(﹣13)=37﹣13=24.10.计算:﹣3+4.4﹣2.4+3.【分析】将﹣3+4.4﹣2.4+3变形为(﹣3+3)+(4.4﹣2.4),简便计算即可求解.【解答】解:﹣3+4.4﹣2.4+3=(﹣3+3)+(4.4﹣2.4)=0+2=2.11.出租车司机小王某天下午的一段时间内营运全是在东西走向的“抚顺”路上进行的.如果向东记作“+”,向西记作“﹣”,他这段时间内行车情况如下:﹣2,+5,﹣2,﹣3,﹣6,+6(单位:公里;每次行车都有乘客),请解答下列问题:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小王的出租车每公里耗油0.1升,每升汽油5.7元,不计汽车的损耗的情况下,请你帮小王计算一下这段时间所耗的汽油钱是多少元?【分析】(1)根据题意计算行车情况的和进行判断即可;(2)算出总里程即可求出所耗油的费用.【解答】解:(1)﹣2+5﹣2﹣3﹣6+6=﹣2(公里).故小王在下午出车的出发地的正西方向,距下午出车的出发地2公里远;(2)2+5+2+3+6+6=24(公里),24×0.1×5.7=13.68(元).故这段时间所耗的汽油钱是13.68元.三、课后巩固1.下列各数中,比﹣2大5的数是()A.﹣7B.﹣3C.3D.7【分析】根据有理数的加法法则计算即可.【解答】解:﹣2+5=3,故选:C.2.2021年1月17日遵义的气温为﹣4℃~3℃,这一天遵义的温差是()A.﹣7℃B.﹣4℃C.4℃D.7℃【分析】最高温度与最低温度相减即可.【解答】解:3﹣(﹣4)=7,故选:D.3.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或3【分析】先根据绝对值的性质得出m=±5,n=±2,再结合m、n异号知m=5、n=﹣2或m=﹣5、n=2,继而分别代入计算可得答案.【解答】解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.4.某地区一天三次测量气温如下,早上是﹣6℃,中午上升了7℃,半夜下降了9℃,则半夜的气温是()A.4℃B.﹣8℃C.10℃D.﹣22℃【分析】温度上升用加法,温度下降用减法,列出式子计算即可.【解答】解:﹣6+7﹣9=﹣8(°C).故选:B.5.下列计算正确的是()A.﹣5+(﹣3)=﹣(5﹣3)=﹣2B.2﹣(﹣5)=﹣(5﹣2)=﹣3C.(﹣3)﹣(﹣4)=﹣(3+4)=﹣7D.(﹣3)+(+2)=﹣(3﹣2)=﹣1【分析】根据有理数的加减运算法则逐一计算.【解答】解:A.﹣5+(﹣3)=﹣8,此选项错误;B.2﹣(﹣5)=2+5=7,此选项错误;C.(﹣3)﹣(﹣4)=﹣3+4=1,此选项错误;D.(﹣3)+(+2)=﹣(3﹣2)=﹣1,此选项正确;故选:D.6.|﹣3|+(﹣2)=1.【分析】先利用负数的绝对值等于它的相反数去掉绝对值符号,再由有理数的加法法则进行计算.【解答】解:原式=|﹣3|+(﹣2)=3+(﹣2)=3﹣2=1.故答案为1.7.计算:(1)﹣7+7=0;(2)|﹣4|=4.【分析】(1)利用互为相反数的两数和为零可得答案;(2)利用绝对值的性质可得答案.【解答】解:(1)﹣7+7=0,故答案为:0;(2)|﹣4|=4,故答案为:4.8.一只蜗牛从地面开始爬高为6米的墙,向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为4米.【分析】根据题意列出算式进行有理数的加减混合运算即可.【解答】解:根据题意,得3﹣1+3﹣1=4故答案为4.9.计算:﹣2+(﹣3)﹣(﹣5).【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:原式=﹣2﹣3+5=﹣5+5=0.10.1+(﹣6.5)+3+(﹣1.25)﹣(﹣2).【分析】先将减法转化为加法,再利用加法结合律和交换律简化计算即可.【解答】解:==0+6﹣6.5=﹣0.5.11.一只小昆虫沿一根东西方向放着的木杆爬行,小昆虫从某点A出发在木杆上来回爬行7次,如果向东爬行的路程记为正数,向西爬行的路程记为负数,爬行过的各段路程依次如下(单位:cm):+7,﹣3,+11,﹣10,+12,﹣6,﹣11.(1)小昆虫最后是否回到了出发点A?为什么?(2)小昆虫一共爬行了多少厘米?【分析】(1)只需求出这些正负数的代数和即可.(2)只需要求出这些正负数的绝对值的和.【解答】解:(1)∵+7﹣3+11﹣10+12﹣6﹣11=7+11+12﹣(3+10+6+11)=30﹣30=0,∴小昆虫最后回到了出发点A.(2)∵|+7|+|﹣3|+|+11|+|﹣10|+|+12|+|﹣6|+|﹣11|=7+3+11+10+12+6+11=60(cm).∴小昆虫一共爬行了60厘米.。

七年级数学2.5有理数的加法与减法《有理数的减法》典型例题

七年级数学2.5有理数的加法与减法《有理数的减法》典型例题

《有理数的减法》典型例题例1 计算:(1)5.2-(-3.6);(2)615)312(--. 分析:计算有理数减法问题的关键是根据减法法则把减法变成加法去做.但需注意的是加上的数是原减数的相反数,如5.2-(-3.6),因为-3.6的相反数是3.6,所以原式就变为5.2+3.6.解:(1)5.2-(-3.6)=5.2+3.6=8.8; (2).217)615()312(615)312(-=-+-=-- 注意:(1)当把减法变成加法时,被减数没变,减数变成了原来数的相反数;(2)法则对两个正数相减也是适用的,但当被减数不小于减数时我们就可以和小学学的减法一样做. 例2 计算:(1))35.9(21.7--;(2))5.9()19(+--;(3))437()835(+-+; (4))524()314(---;(5))79.6()79.6(---;(6))743()743(+--; (7))1651347(0+-;(8)1.84.5---. 分析:按减法法则,把减法转化为加法计算.解:(1))35.9(21.7--56.16)35.9(21.7=++=; (2))5.9()19(+--5.28)5.9()19(-=-+-=;(3))437()835(+-+832)437()835(-=-++=;(4))524()314(---151)524()314(=++-=;(5))79.6()79.6(---0)79.6()79.6(=---=;(6))743()743(+--717)743()743(-=-+-=; (7))1651347(0+-)1651347(0-+=1651347-=; (8)1.84.5---7.2)1.8(4.5-=+-=.说明:1.有理数的减法是有理数加法的逆运算,即减法运算可以转化为加法运算.2.减法运算的步骤是:(1)将减法转化为加法:a -b =a +(-b );(2)按有理数的加法法则运算.将减法转化为加法时,既改变了运算符号,又改变了减数本身的符号.例3 判断题:(正确的填T,错误的填F)(1) 两个数相减,就是把绝对值相减. ( )(2) 减去一个数,等于加上这个数. ( )(3) 零减去一个数仍得这个数. ( )(4) 若两数的差为0,则这两数必相等. ( )(5) 两数的差一定小于被减数. ( )(6) 两数的差是正数时,被减数一定大于减数. ( )(7) 两个负数之差一定是负数. ( )(8) 两个数的和一定大于这两个数的差. ( )(9) 任意不同号的两个数的和一定小于它们的差的绝对值. ( )(10) 两个数的差的绝对值一定不小于这两个数的绝对值的差. ( )分析:按减法法则和加法法则判断.解:(1) F.异号两数相减时,绝对值应当相加.(2) F.减去一个数,等于加上这个数的相反数.(3) F.零减去一个数,等于这个数的相反数.(4) T.(5) F.当减数为负数或0时,它们的差大于或等于被减数.(6) T.当a-b>0时,必有a>b.(7) F.由(6)知,若a,b都是负数,只要a>b,就有a-b>0,即a-b是正数.(8) F.异号两数之和就不一定大于这两个数的差.例:(+5)+(-2)=+ 3,(+ 5)-(-2)=+ 7,(+5)+(-2)<(+5)-(-2).(9) T.(10) T.对于任意两个有理数a,b,|a-b|≥|a|-|b|恒成立.例4 矿井下A、B、C三处的标高分别是A(-37.5m)、B(-129.7m)、C(-73.2m),哪处最高?哪处最低?最高处与最低处相差多少?分析:比较A、B、C三处的高低,就是比较这三个负数的大小,并求出最大数与最小数的差.解:∵-37.5>-73.2>-129.7又(-37.5)-(-129.7)=(-37.5)+(+129.7)=92.2∴矿井下A处最高,B处最低,A处与B处相差92.2m.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.雾霾天气时,空气中漂浮着大量的粉尘颗粒,若某种粉尘颗粒的直径约为0.0000065米,则0.0000065用科学计数法表示为( ) A .56.510-⨯B .66.510-⨯C .76.510-⨯D .66510-⨯2.下列能用平方差公式计算的是( )A .(﹣x+y )(x ﹣y )B .(x ﹣1)(﹣1﹣x )C .(2x+y )(2y ﹣x )D .(x ﹣2)(x+1) 3.下列选项中,显示部分在总体中所占百分比的统计图是( ) A .扇形统计图B .条形统计图C .折线统计图D .直方图4.如图,将一副三角板放在两条平行线之间,其中含45︒角的三角板的直角边与含30角的三角板的斜边共线,且45︒角的顶点与角60︒的顶点重合,则1∠的度数是( )A .130︒B .120︒C .135︒D .105︒5.将正整数按下表的规律排列: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 …平移表中涂色部分的方框,方框中的4个数的和可能是 A .2010B .2014C .2018D .20226.如图是北京城镇居民家庭年每百户移动电话拥有量折线统计图,根据图中信息,相邻两年每百户移动电话拥有量变化最大的是A .2010年至2011年B .2011年至2012年C .2014年至2015年D .2016年至2017年 7.已知2x ﹣3y =1,用含x 的代数式表示y 正确的是( ) A .y =23x ﹣1 B .x =312y + C .y =213x - D .y =﹣13﹣23x 8.4的值是( ) A .4B .2C .﹣2D .±29.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为 50°,则这个等腰三角形顶角的度数为( ) A .40° B .70°C .40°或 70°D .40°或 140°10.纳米()是非常小的长度单位,,较小的病毒直径仅为纳米,用科学计数法表示为( ) A .B .C .D .二、填空题题11.如图,已知AB=AC ,∠A=36°,AB 的中垂线MN 交AC 于点D,交AB 于点M ,CE 平分∠ACB ,交BD 于点E.下列结论:①BD 是∠ABC 的角平分线;②ΔBCD 是等腰三角形;③BE=CD ;④ΔAMD ≌ΔBCD ;⑤图中的等腰三角形有5个。

有理数加减混合计算题100道[含答案解析][七年级数学]

有理数加减混合计算题100道[含答案解析][七年级数学]

有理数运算练习(一)【加减混合运算】一、有理数加法•3、【基础题】计算,能简便的要用简便算法:(1) (— 25)+ 34 + 156 +(— 65);(3) (— 42)+ 57+(— 84) + (— 23);(5) (— 301)+ 125+ 301+(— 75);(6) (— 52)+ 24+(— 74)+ 12 ;(7) 41 +(— 23) + (— 31)+ 0 ; (8) (— 26)+ 52 + 16+(— 72)1、【基础题】计算: (1) 2 +(— 3); (2)(-5) + (— 8); (3) 6+(— 4); (4) 5 +(— 5);(5) 0+(— 2); (6) (— 10) + (— 1); (7) 180+(— 10); (8) (— 23)+ 9;(9) (— 25) + (— 7); (10) (— 13)+ 5; (11) (— 23)+ 0; (12) 45+(— 45)2、【基础题】计算: (1) (— 8) + (— 9); (2) (— 17)+ 21; (3) (— 12)+ 25; (4) 45+(— 23);(5) (— 45)+ 23;(6) (— 29) + (— 31); (7) (— 39) + (— 45); ( 8) (— 28)+ 37.(2) (— 64)+ 17+(— 23)+ 68 ;(4) 63 + 72+(— 96) + (— 37);11 1⑺(―56)+ 0 ;(8)笃+(—花)4、【综合I 】计算: 1 3 °)3(一4);(3)(一1.2心】;I 5丿;1 3(4) (-3卫(令);5、【综合I 】计算: (1) 11 45 )(6)(右)9 19(2)(y 八75(3) 1 2 3 18 39(一」(丿(匚)(匚) 2 5 2 5 5 -43 7 7⑷(-3.5)七)(蔦)(亍 0.75 (飞)6、【基础题】计算: (1) 9—(—5); 二、有理数减法• (2) (— 3)— 1; ( 3) 0 — 8; (4) (— 5)— 0; (5) 3— 5; (6) 3 —(— 5);(7) (— 3)— 5 (8) (— 3) — (— 5); (9) (— 6) — (— 6); (10) (— 6)— 6.2 5 (5)(37) —27);2(6)(—石)+0.8;(3) 23 —(— 76)— 36 —(— 105);(4) (— 32) — (— 27) — (— 72)— 87.(5) (— 2 )— 1 —(— 5 ) — (— 1 );3 2 6 3(6) (— 12- )— [ — 6.5 —(— 6.3 )— 61 ].2 5三、有理数加减混合运算9、【综合I 】计算6.1、【综合I 】计算: (2) (— 1)— 1-;22 2 2 ⑶(--)-5 ;(4)幕-(-2.7);(5) 0 —(— 4 ); 7 (6) (— 1)—(—丄);2 2(7) 31 —5? ;(8)— 64—1— 64 丨4 57、【基础题】填空: (1) (— 7) + ( )= 21;(2) 31+()=—85;(3) ( ) — (— 21)= 37 ; (4)( ) —56=— 40&【基础题】计算:(1) (— 72) — (— 37) — (— 22)— 17;(2) (— 16) — ( — 12)— 24—(— 18);1 5 1(5)丄+(—上)一(一丄)3 6 2 10、【综合I】计算,能简便的要用简便算法:(1) 4.7 —3.4 +(—8.3 );(2) (—2.5 )—1+(—1);2 5 (3) - —(—0.25 )—1;2 6(4) (—1)—15+(—-);3 3 (5) - +(—1)—1 + -;3 5 311、【综合I】计算:(2) (—8) — (—15) + (—9) — (—12);(3) 0.5 +(— - ) — (—2.75 )+ -;4 2 (4) (— - ) + (—1) — (—1)3 6 4(1)—7+ 13-6 + 20; (2) —4.2 + 5.7 —8.4 + 10;3 1 (3)(—三)+ 丄5 5(5) 1+(—2) — (— - ) + (—1);2 3 5 2 1146+ (—712(4) (—5) — (—1)+ 7 —7;2 3 (6)(6) (—12) — (— - ) + (—8)5 7 10(1) 33.1 —(—22.9 ) + (—10.5 );(4) 7—(— - )+ 1.5 ;23(5) 49—(— 20.6;58 8(8) (- 9.9 ) + 10- + 9.9 +(- 10)9913、【综合I 】计算:(5)— 0.5 —(— 31)+ 2.75 —(+ 71);4 212、【综合I 】计算: (1) 7+(— 2)- 3.4 ;(2) (- 21.6 )+ 3-7.4 +(-5);5(3) 31+(— _ )+ 0.25 ;4(1) -1 評[一2 3 4 乃广[6 7 8 ;(2) —0.5 + 1.75 + 3.25 +(— 7.5 )(3)54\-6J5 6>(6) (— - )— 7 —(— 3.2 ) + (— 1);556 (7) 12+丨一11 丨1111(―5)+ 丨21 丨7 4 2 (6) 345 1213 -9 5有理数运算练习(一)答案1、【答案】(1)—1;(8)—14; (2)—13;(9)—32;(3) 2 ;(10)-(4)8 ;0; (5)—2; (6)—11;0.(7) 170 ;(11)—23; (12)2、【答案】(1)—17; (2) 4; ( 3) 13; (4) 22 ; (5) -22 ;(6)—60; (7)—84; (8) 9.3、【答案】(1)100;(2)—2; (3)—92; (4) 2 ; (5) 50; (6) —90 ; (7)—13 ; (8)—30.4、【答案】/、5/、54/、2/、1(1)—(2) - ; (3) 0; (4)- -6; (5) (6) (7) - 5-;(8) 1267365115、【答案】(1) 6(2) 4.25(3) 1 2(4) 36、【答案】(1) 14;( 2)—4; (3) —8 ; (4) —5; (5)- 2 ; (6) 8; ( 7)—8 ;(8) 2; ( 9) 0; (10)—126.1、【答案】(1) 1; (2)—-; (3)- 16 . (4) 4.1 ; (5)- ;(6) 0 ;52157(7)—43(8)—128207、【答案】(1) 28; (2)—116 ; (3) 16 ; (4) 168【答案】(1)—30; (2)—10 ; (3) 168 ; (4)—20; (5) 01 (6) —6.1 或一6 —109、【答案】(1) 20; (2) 3.1 ; (3 )— 6 ; 1(4) (5 )—-;(6)35634 10、【答案】(1)—7; (2)—3.2; (3) 7, (4)—16 ; (5) —-;(6)39125211、【答案】(1) 45.5;(2) 10;(3) 7; (4) —13(5)2 ;-- ?(6)521215612、【答案】(1) 1.6 ; (2)- 26.4;(3) 30; (4) 9:(5) 69; (6) —6;(7) 27.1 ; ;(8) 013、【答案】(1) 8; (2)- 31(3) — ; (4) —13; (5) —2; (6) 13空490。

有理数的加减法练习题

有理数的加减法练习题

有理数的加减法练习题有理数的加减法是数学学习中的基础内容,对于我们理解数学运算和解决实际问题都具有重要意义。

为了帮助大家更好地掌握有理数的加减法,下面为大家准备了一系列的练习题。

一、基础练习1、计算:(-5) + 3 =答案:-2解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

|-5| = 5,|3| = 3,5 > 3,所以结果为负,5 3 = 2,故结果为-2。

2、计算:8 +(-10) =答案:-2解析:同号两数相加,取相同的符号,并把绝对值相加。

8 +(-10) =(10 8) =-23、计算:(-7) (-4) =答案:-3解析:减去一个数,等于加上这个数的相反数。

(-7) (-4) =(-7) + 4 =-34、计算:5 8 =答案:-3解析:直接相减,5 8 =-3二、进阶练习1、计算:(-3) + 7 +(-5)解:原式= 4 +(-5) =-12、计算:(-12) + 8 +(-7) + 15解:原式=(-4) +(-7) + 15 =-11 + 15 = 43、计算:18 (-7) 15解:原式= 18 + 7 15 = 25 15 = 104、计算:(-20) 12 (-5) (-8)解:原式=(-20) 12 + 5 + 8 =(-32) + 13 =-19三、综合练习1、某城市一天早晨的气温是-5℃,中午上升了 6℃,夜间又下降了 8℃,则夜间的气温是多少?解:早晨气温-5℃,中午上升 6℃,中午气温为-5 + 6 = 1℃,夜间又下降 8℃,夜间气温为 1 8 =-7℃2、仓库内原存某种原料 4500 千克,一周内存入和领出情况如下(存入为正,单位:千克):1500,-300,-670,400,-1700,-200,-250。

问第七天末仓库内还存有这种原料多少千克?解:一周内存入和领出的总和为:1500 +(-300) +(-670) + 400 +(-1700) +(-200) +(-250)= 1500 300 670 + 400 1700 200 250= 1500 + 400 (300 + 670 + 1700 + 200 + 250)= 1900 3120=-1220(千克)原有原料 4500 千克,第七天末仓库内还存有原料:4500 +(-1220) = 3280(千克)3、计算:(-25) + 325 +(-75) +(-325)解:原式=(-25) +(-75) + 325 +(-325)=-10 + 0=-104、计算:| 12 |(-18) +(-7) 15解:原式= 12 + 18 7 15= 30 7 15= 23 15= 8通过以上这些有理数加减法的练习题,相信大家能够更好地掌握这部分知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.有理数加减法的应用
1 某检修小组乘一辆小汽车沿东西方向检修道路,约定向东走为正,某天从w 地出发到收工时行走记录(单位:km):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6,求:
(1)收工时检修小组在w地的哪一边,距w地多远?
(2)若小汽车耗油2升/每千米,开工时储存160升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?
2若m、n互为相反数,则|m-9+n|= ________.
【答案】
【解析】
解:∵m、n互为相反数,∴m+n=0.
∴|m-9+n|=|-9|=9.
3小明家冰箱冷冻室的温度为-5℃,调高2℃后的温度为多少
【答案】
【解析】
解:-5+2=-3
4 甲潜水员在海平面-56米作业,乙潜水员在海平面-30米作业,哪个离海平面比较近,近多少?
乙潜水员离海平面比较近,近26米.
【解析】
解:乙潜水员离海平面比较近,56-30=26米.
4每袋白面的标准重量为50千克,10袋白面称重记录如下:.
51,51,51.5,49,51.2,51.3,48.7,48.8,51.8,51.1
(1)与标准重量比较,10袋白面总计超过多少千克或不足多少千克?
(2)10袋白面的总重量是多少千克?
【答案】
(1)5.4千克(2)505.4千克
【解析】
【答案】
(1)该图书馆上周共借出520册书,(2)上星期一比上星期三多借出38册.
解:(1)(100+21)+(100+20)+(100-17)+(100+8)+(100-12)=520册.(2)(100+21)-(100-17)=121-83=38册
6今天白天是28℃,夜晚下降了18℃,请问夜间气温是多少度?
解:28℃—18℃=10℃
7 若∣a-3∣+∣b-5=0,则a=(),b=()
8计算
(1)23+(-17)+6+(-22)
(2)1+(--)。

相关文档
最新文档