水电站发电机变压器保护原理及继电保护方式
继电保护(8变压器保护)

1. 纵差动保护起动电流的整定原则
① 在正常运行情况下,防止电流互感器二次断线引 起误动,保护装置应躲过最大负荷电流(二次断 线时,只有一侧有负荷电流)
I act Krel I L.max , Krel 1.3
② 躲开保护范围外部短路时的最大不平衡电流
I act Krel Iunb.max , Krel 1.3
I res I res.min I act I act .min I act I act .min m I res I res.min I res I res.min
微机比率制动特性的纵联差动保护的整定 ① 最小动作电流 Iact.min 躲过变压器额定负载时的不平衡电流 I I act .min K rel Iunb.load K rel Ker f za U N
三、变压器励磁涌流的影响及其对策
1. 励磁涌流的产生原因及其影响 变压器励磁电流 ie 只流过原边一侧,因此反应
到差动回路中引起不平衡电流。正常运行情况下 很小,一般不超过额定电流的2%-5%。外部故 障时因为电压降低,励磁电流就更小。
变压器空载合闸时的励磁涌流
变压器空载合闸时相当于电压瞬时加在一电感上, 稳态时电流滞后电压90o(即电压最大、电流过零; 电压过零、电流最大) ,磁通也滞后电压90o。 (如图a) 在空载合闸瞬间,磁通(电流)不能突变,为反抗 磁通(电流)由零变化到稳态值,因此必产生一个 反电势,其作用抵消外加电压引起的稳态磁通影响, 而维持合闸前磁通不变。
降压变压器
I L.max KMS I NT
灵敏系数校验:应考虑在变压器保护范围末端发生 故障的最小短路电流。
K sen
水电厂发电机变压器保护原理及继电保护措施

水电厂发电机变压器保护原理及继电保护措施1. 引言1.1 水电厂发电机变压器保护原理及继电保护措施水电厂发电机变压器是电力系统中至关重要的设备,其保护十分关键。
水电厂发电机变压器主要由发电机和变压器两部分组成,需要进行全面的保护来确保其稳定运行。
发电机变压器保护原理主要包括过电流保护、绕组温度保护和短路保护等。
过电流保护是指在发生故障时,通过检测电流大小来判断系统是否处于异常状态。
绕组温度保护则是通过监测变压器绕组温度来避免过热造成的损坏。
短路保护则是为了防止短路电流造成的设备损坏,需要及时断开故障电路。
继电保护是水电厂发电机变压器保护系统中不可或缺的一部分,其作用是监测电力系统中的各种参数,当发生故障时,及时采取措施以保护设备和人员安全。
继电保护措施包括了发电机变压器的各种保护功能,如差动保护、电流保护、零序保护等,能够有效地防止电力系统的运行异常。
水电厂发电机变压器保护的重要性不言而喻,只有做好保护工作,才能确保设备的正常运行,减少故障损失。
继电保护在保护系统中的作用举足轻重,其快速、准确地判断故障类型,能够对电力系统进行有效保护。
未来发展趋势是通过引入先进的监控技术和智能化系统,提高变压器保护系统的可靠性和安全性,以适应电力系统的不断发展和变化。
【内容结束】2. 正文2.1 发电机变压器保护原理发电机变压器是水电厂中最重要的设备之一,其正常运行对于水电厂的发电效率和设备寿命至关重要。
发电机变压器的保护工作显得尤为重要。
1. 过电流保护:通过监测发电机变压器的电流大小,一旦发生短路或过载现象,及时切断电路,确保设备和系统的安全运行。
2. 绕组温度保护:监测发电机变压器绕组的温度,一旦温度超过设定值,会对设备进行保护操作,避免由于过热而造成设备损坏。
3. 短路保护:当发生短路故障时,短路保护系统会迅速检测并切断电路,防止短路故障扩大,保护设备和人员的安全。
通过以上保护原理,可以有效保护发电机变压器的安全运行,避免设备损坏和事故发生。
电厂发电机变压器保护原理及继电保护方式研究

电厂发电机变压器保护原理及继电保护方式研究
电厂的发电机变压器保护是电力系统中重要的工作,主要是为了确保设备安全运行和提高电力系统的可靠性。
本文将探讨发电机变压器的保护原理及继电保护方式。
一、保护原理
1.过流保护
发电机变压器过流保护是保护电路中最为常见的一种保护方式,其基本原理是检测电流是否超过设定值,如果超过,则说明电路中有故障发生,继电器将输出信号启动主断路器或切断故障电路。
过流保护装置的主要组成部分是电流互感器、电流比较器和继电器。
2.差动保护
4.欠压保护
二、继电保护方式
1.机械式继电保护
机械式继电保护是最早应用的一种继电保护方式,其主要机构包括触发机构、保护机构和复位机构,通过机械、电磁等方式实现继电器的操作。
机械式继电保护消除了电气型保护所存在的误动、失灵等问题,但其操作可靠性较差,检修难度较高,不利于实现自动化操作和监控。
2.静态继电保护
静态继电保护是电子技术发展后出现的一种保护方式,采用电子元件取代机械部件,大大提高了保护装置的稳定性和可靠性。
静态继电保护具有操作速度快、精度高、稳定性好、易于集成等优点。
3.数字化继电保护
数字化继电保护主要是利用数字技术、计算机技术和通信技术,实现对电力系统的保护、控制和监控。
数字化继电保护采用数字信号处理技术,能够快速、精确地检出系统故障和隐患,具有快速响应、先进性强、功能完善等优点。
总之,发电机变压器的保护是保证电厂安全稳定运行的重要工作,为了提高电厂的可靠性,必须对其进行全面的保护。
在保护方式的选择上,应根据工作环境、工作要求和保护装置的特点进行综合考虑,选择最合适的保护方式。
继电保护的工作原理及应用

继电保护的工作原理及应用一、引言继电保护是电力系统中一项重要的技术手段,其主要作用是监测和保护电力设备,以确保电力系统的安全运行。
本文将介绍继电保护的工作原理及其在电力系统中的应用。
二、继电保护的工作原理继电保护的工作原理主要基于电力设备的电流、电压、频率等参数的监测和判断。
当这些参数超过设定的阈值或发生异常变化时,继电保护将发出信号,触发相应的保护动作。
下面列举了继电保护的几种常见工作原理:•过流保护:监测电流,当电流超过设定值时,保护动作触发,切断电源,以保护电力设备。
•差动保护:通过对电流进行比较,检测电流差异,当差异超过预设阈值时,触发保护动作。
•零序保护:监测电力系统的零序电流,一般用于检测接地故障。
•距离保护:测量故障点与保护装置之间的距离,判断故障类型,并触发相应的保护动作。
•欠频保护:监测电力系统频率,当频率低于设定值时,触发保护动作。
三、继电保护的应用继电保护广泛应用于电力系统的各个环节,下面列举了几个常见的应用场景:1.变电站继电保护:变电站是电力系统中的重要环节,继电保护系统在变电站中起着至关重要的作用。
它能够检测变电站中的各个电力设备,如变压器、断路器等是否正常运行,一旦检测到异常情况,能够及时发出警报并切断电源,防止事故的发生。
2.输电线路继电保护:继电保护系统在输电线路中也起到非常重要的作用。
它能够监测电流和电压的变化,检测并定位线路故障,如短路、断线等。
及时触发保护动作,使故障区间与其余正常区间隔离,确保电力系统的稳定和安全运行。
3.发电机继电保护:发电机是电力系统的核心组件之一,对于发电机的保护尤为重要。
继电保护系统能够监测发电机的电流、电压、频率、温度等参数,一旦检测到故障,能够及时切断电源,防止进一步损坏发电机。
4.用电继电保护:继电保护系统在用电过程中也有重要应用。
它能够监测用户侧的电流和电压,当电流超过额定值时,能够切断电源,防止过载引起的事故。
同时,继电保护系统还能够检测电力系统的电能质量,如电压波动、谐波等,保证用户用电的稳定和可靠。
继电保护的基本原理和保护

二、继电保护装置的组成
三、继电保护装置的类型
1、按被保护的对象分,有
输电线路的保护、发电机的保护、变压器的保护、 母线保护、电动机的保护等;
2、按保护原理分,有 电流保护、电压保护、距离保护、高频保护、差动 保护、方向保护等;
二)电力系统的运行状态
1、定义:电力系统在不同运行条件(如负荷水平、 出力配置、系统接线、故障等)下的系统与设备的工 作状况。 2、类型:有正常运行状态、不正常运行状态、故 障状态三种。 ◆正常运行状态——在此状态下,电力系统的有 功功率和无功功率处于平衡,各发电、输电和用电设 备均在规定的长期安全工作限额内运行,电压、频率 均在规定的范围内变化,电能质量合格。
电力系统继电保护绪
论
第一节 电力系统继电保护的作用
一、电力系统继电保护及自动装置的作用与任务
一)一次设备与二次设备的基本概念
一次设备:是指直接参与生产、输送和分配电能 的生产过程的高压电气设备。 它包括发电机(发电)、变压器(变换)、断 路器、隔离开关、自动开关、接触器、刀开关、母线 (汇集、重新分配电能) 、输电线路(输送电) 、 电力电缆、电抗器、电动机(用电)等。
二)迅速性——指继电保护装置动作尽可能快
凡是作用于断路器跳闸的保护均要求动作要迅 速。 要求快速动作的主要理由和必要性: ①可以提高电力系统并列运行的稳定性。
A B C
k
例:K点发生了三相短路故障时,A母线电压将大大下降到接近 于零,使A厂送不出负荷,发电机转速迅速升高。而B厂母线B 母线,则由于远离短路点,还有较高残压。如果保护动作时间 较长,A、B两厂的发电机转差增大,使系统发生振荡甚至解列。
继电保护原理

变电所
分区所
D
L
1流增量(选配)
30
2.保护整定 ◆阻抗Ⅰ段
可靠系数 线路全长 单位线路电抗
电抗边按线路全长整定:X ZD Kk L X 0 负荷角
电阻边按负荷阻抗整定:RZD
0.9U n Kk IF max
c os F
s in F tg L
典型动作时限0.1s
一列车的启动电流
动作时限=常规保护最长时限+(0.2 -0.4)s
42
3.分区所保护整定 ◆正反向阻抗Ⅰ段
线路全长
单位线路电抗
电抗边按线路全长L整定: X ZD Kk L X 0 负荷角
电阻边按负荷阻抗整定:RZD
0.9U n Kk IF max
c os F
s in F tg L
最大负荷电流 线路阻抗角
1、2处保 护动作
d1
3处保护 动作
d2
d3
4处保护
动作
补充概念
❖后备保护方式
➢远后备:后备保护与主保护处于不同变电站
➢近后备:主保护与后备保护在同一个变电站, 但不共用同一个一次电路。
➢电路近后备:主保护与后备保护在同一个变 电站内,共用同一个互感器或同一个一次电 路。
例:
1
110kV
2
Y
4处过电流保护为电 路近后备保护;
电阻边按负荷阻抗整定 典型动作时限0.2s
40
◆电流速断
电流速断按躲过分区所SP处最大短路电流整定。
I zd 1.2I d.SP.max 典型动作时限0.1s
SP处短路时的最 大短路电流
◆过电流
I zd K k I F max
可靠系数
最大负荷电流
继电保护总结

继电保护总结继电保护是电力系统中的一项核心保护措施,主要用于确保发电机、变压器、线路和其他电力设备的安全运行。
在面对各种故障和异常情况时,继电保护能够快速、可靠地断开故障电路,保护设备和人员的安全。
目前,继电保护技术已经得到了广泛的应用,研究人员不断探索新的技术和方法,为电力系统的安全稳定运行提供更好的保障。
下面将针对继电保护的知识进行总结,以期对读者的学习和工作有所帮助。
一、继电保护的原理及分类继电保护的原理基于检测电力系统中出现的故障和异常情况,并利用现代电子技术和电磁学原理,通过控制断路器等处理设备,快速断开故障电路,保护设备和人员的安全。
按照作用对象的不同,继电保护可以分为发电机保护、变压器保护、线路保护和母线保护等不同类型。
其中,发电机保护主要用于保护发电机本身免受各种故障和异常情况的威胁;变压器保护则主要用于保护变压器免受短路、过流和局部放电等故障的影响;线路保护则主要用于保护电网中的输电线路免受闪络、短路和过载等故障的影响;母线保护主要用于保护电网中的母线免受电弧接地故障和接触不良等影响。
二、继电保护的设备及其功能继电保护涉及到各种设备和器件,其中最重要的是保护继电器。
保护继电器是继电保护的核心控制设备,它可以根据电力系统中的输入信号,对输出信号进行控制,对断路器、过载保护器等设备启动和控制。
此外,继电保护还包括短路电流测量器、转速计、震动传感器、温度计、压力计等监测设备,以及电流互感器、电压互感器、绝缘计、微机保护装置等测量和检测设备。
这些设备能够收集和记录电力系统中的各种数据,并通过算法和逻辑运算,识别电力系统中存在的故障和异常情况,从而实现快速、智能化的保护措施。
三、继电保护的特点和优势1.快速反应:继电保护能够在几毫秒甚至几微秒内做出反应,对电网中的故障进行快速处理,保证供电的连续性和可靠性。
2.智能分析:继电保护采用先进的算法和逻辑运算,能够对不同类型的故障进行智能分析处理,减少误判率和漏判率。
发电机的继电保护

6. 反应100%定子绕组的接地保护 一是零序电压保护,能保护定子绕组的85%以上 二是用来消除零序电压保护不能保护的死区
发电机中性点加固定的工频偏移电压 附加直流或低频电源,将其电流注入定子绕组 利用发电机固有的三次谐波电势
23
发电机三次谐波电势的分布特点
US3
C0 f
1
U N 3 C0 f 2C0S
42
系统振荡时机端测量阻抗
X s 0 Z f gmin jX d / 2
43
4. 失磁保护的构成方式
44
转子低电压判据失磁保护方案
45
1.6 发电机-变压器组继电保护 的特点
1. 发电机-变压器组纵差保护的特点
47
2. 发变组中定子单相接地保护的特点
发变组中,发电机的中性点以不安不接地或经消 弧线圈接地
1. 发电机的故障类型及保护方式
定子绕组
• 定子绕组及引出线相间短路:采用纵差保护 • 定子绕组匝间短路:采用横差保护 • 定子绕组单相接地:采用零序电流和零序电压保护
转子绕组
• 转子绕组一点或两点接地:采用定期检测装置,或采 用一点和两点接地保护
• 转子绕组励磁电流消失:自动灭磁开关断开时连锁断 开发电机的断路器,或采用发电机失磁保护
i22dt
I
2 2*
t
A
发电机 凸级式发电
机或调相机
A
40
空气或氢气表面 冷却的隐极式发 电机
30
导线直接冷却的 100~300MW汽 轮发电机
6~15
发电机组容量越大,承受负序过负荷的能力越小,即A值越小
29
定子负序过电流保护的作用
主保护:对定子绕组电流不平衡而引起转子过热 的一种保护,是发电机的主保护之一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水电站发电机变压器保护原理及继电保护方式
作者:张伟周桂林
来源:《科学与财富》2018年第09期
摘要:在水电站发电机变压器中安装继电保护装置,可以保障变压器的稳定运行,使水电站为用户提供可靠的电力。
基于此,笔者从水电站发电机变压器的保护原理入手,根据继电保护的原则以及变压器常见的多种故障,对变压器的继电保护方式进行了分析,变压器主要包括短路故障的主保护、后备保护以及接地故障的保护这三种继电保护方式,从整体上保障了变压器的稳定运行,有助于水电站的长久运行。
关键词:水电站;变压器;继电保护
前言:在水电站发电机变压器的正常运行中,难免会产生一些故障,对电力系统的稳定运行造成不利影响。
为了解决这一问题,大部分水电站都会采用继电保护方式对变压器进行保护,避免变压器故障的影响范围进一步扩大。
而且继电保护装置可以及时提醒水电站的运维人员排除变压器故障,从而保障电力系统的稳定运行。
因此,对于水电站发电机变压器保护原理及继电保护方式分析具有一定的实践意义。
1.水电站发电机变压器保护原理
1.1定子接地继电保护原理
当水电站发电机变压器内部的定子出现单相接地现象的时候,会导致匝间短路、相间短路以及接地短路,对变压器的正常运行造成不利影响,从而危害到整个电力系统。
因此,水电站需要对变压器进行保护,通常是在变压器定子的中性点配备高阻,对暂态过电压进行控制,为变压器提供全面的保护。
如果在继电保护的过程中,变压器出现了其他故障,则继电保护装置会自动跳闸,从根本上保护变压器。
1.2变压器继电保护装置
对于水电站发电机而言,主要涉及到主变压器以及厂用变压器这两种变压器,主变压器应用的继电保护装置包括差动装置、重瓦斯装置以及零序装置等,在变压器运行时,技术人员需要根据发电机以及变压器的实际运行状况,选择适当的零序过电流加入到继电保护装置中,实现变压器的保护;厂用变压器应用的继电保护装置主要是在开关柜中安装保护装置。
;两种变压器的继电保护装置通过工控机进行连接,使变压器的接线更为简便,有助于继电装置的管理以及维护[1]。
2.水电站发电机变压器的继电保护方式
2.1继电保护的原则
水电站主要是根据水位能、动能和电能的转化,应用发电机与变压器进行发电。
大部分水电站的发电机容量为20WM-100WM。
在进行继电保护时,技术人员需要采用扩大单元接线的方法将一台变压器连接多台发电机,并在母线上安装断路器,实现变压器的继电保护。
继电保护装置能够迅速将变压器中出现故障的元件隔离,将变压器故障的影响降到最低,尽可能地保护变压器的稳定运行,有助于供电可靠性的提升。
2.2变压器常见故障
对于水电站的发电机而言,变压器主要有如下常见故障:其一,定子绕组故障,包括接地故障和相间短路等故障;其二,转子绕组故障,包括转子绕组的匝间短路、一点接地以及二点接地等故障;其三,异常运行状,包括超额定电容引起的三相超负荷、水轮机球阀突然关闭引起的发电机逆功率以及绕组过电流等故障。
变压器的故障不仅会危害变压器的内部元件,严重时还会导致火宅事故。
因此,水电站需要提高对变压器继电保护的重视。
一般来说,水电站发电机的变压器继电保护装置分为短路保护装置、接地保护装置以及异常运行保护装置这三个方面,而且在这三类保护装置均具备独立的直流电源以及跳闸线圈,保障水电站变压器的运行。
2.3继电保护类型
第一,短路故障的主保护。
当水电站发电机的变压器出现定子绕组故障的时候,电力系统中会出现较大的短路电流,短路电流会严重损坏变压器的内部装置,对变压器的安全运行造成危害。
目前常用的主保护方式包括纵差保护方式以及横差保护方式这两种。
纵差保护方式主要用于大型变压器的保护,纵差保护装置由差动速断元件、TA断线信号以及过激磁闭锁等元件组成。
一旦变压器发生故障或者异常运行状况,纵差保护装置可以控制变压器只能流进电流,而不能流出,从而实现变压器的继电保护。
如果这时存在负荷电流,纵差保护装置会采取跳闸措施保护变压器。
第二,短路故障的后备保护。
为了保护变压器的安全运行,水电站还会对短路故障进行后备保护,主要有四种继电保护方式:其一,转子负序电流保护方式,当电力系统因为三相负荷不平衡或者短路现象导致转子零件被损坏时,可以为变压器提供保护;其二,定子绕组过负荷保护方式,当变压器长期处于超负荷运转时,很容易出现过热现象,这种保护方式可以防止变压器的电路元件因为过热而被烧毁;其三,次同步过电流保护方式,当变压器在变频启动时,该保护方式可以避免变压器因为绕组短路故障被损害;其四,低压过电流保护方式,该方式主要用于保护变压器的配套设备。
第三,接地故障的保护。
和普通发电机相比,水电站发电机变压器的定子绕组容量更大。
因此,当变压器出现接地故障的时候,会出现较大的瞬间电流,危害到变压器的稳定运行。
接地故障还会导致弧光过电压,损害变压器的绝缘位置,造成更为严重的短路故障。
目前我国水电站常用的接地故障保护方式有定子绕组接地保护以及转子接地保护这两种。
本文主要对定子绕组接地保护方式进行分析,该方式主要应用基波零序电压保护95%的定子绕组,并应用是三次谐波电压保护中性点周围的定子绕组,以此实现变压器的继电保护。
如果水电站发电机的容量大于100WM,需要对定子绕组进行100%接地保护[2]。
结论:综上所述,水电站发电机变压器的继电保护可以保障发电机以及变压器的稳定运行,需要受到水电站技术人员的重视。
通过对水电站继电保护的分析可知,水电站的技术人员需要严格按照继电保护原则,根据变压器不同的故障状况,选择最佳的继电保护方式,为人们提供更加可靠的电力。
本文的分析仍旧不够全面,仅供参考。
参考文献:
[1]罗文雄.关于水电站发电机变压器继电保护的探讨[J].黑龙江水利科技,2017,45(04):101-102+122.
[2]王喜志.水电站发电机及变压器继电保护的设计原则与配置方案[J].自动化应用,2014(11):69-71+100.。