并行计算机体系结构第三章

合集下载

第三章 计算机系统分层结构

第三章 计算机系统分层结构

PF
CF
奇偶(偶/奇)
进位(是/否)
PE
CY
PO
NC
3.总线
所谓总线是一组能为多个部件分时共享的公共信息传送线路, 它分时接收各部件送来的信息,并发送信息到有关部件。
由于多个部件连接在一组公共总线上,可能会出现多个部件争 用总线,因此需设置总线控制逻辑以解决总线控制权的有关问题。
总线分类:
CPU内部总线用来连接CPU内的各寄存器与ALU ; 系统总线用来连接CPU、主存储器与I/O接口,它通常包括 三组:数据总线、地址总线和控制总线。 按总线传送的方向可将总线分为单向总线和双向总线。
CPU是计算机的核心组成部分
3.1.1
CPU的组成
• 由算术逻辑部件ALU 、控制器、各种寄存器(寄 存器群)和CPU内部总线(连接部件) • 另:Cache

1.ALU部件
ALU的功能是实现数据的算术与逻辑运算 两个输入端口,参加运算的两个操作数,通常 来自CPU中的通用寄存器或ALU总线。 控制信号:ADD,SUB,OR,AND等 输出:运算结果
时序控制方式就是指微操作与时序信号之间采取何种关系,
它不仅直接决定时序信号的产生,也影响到控制器及其他部件的组 成,以及指令的执行速度。
1.同步控制方式
同步控制方式是指各项操作由统一的时序信号进行同步控制。 同步控制的基本特征是将操作时间分为若干长度相同的时钟 周期(也称为节拍),要求在一个或几个时钟周期内完成各个微 操作。在CPU内部通常是采用同步控制方式 。 同步控制方式的优点是时序关系简单,结构上易于集中,相应 的设计和实现比较方便。
计算机系统结构
系统的层次结构
★★
5层
翻译(编译器)

中科大-并行计算讲义-并行计算机系统与结构模型

中科大-并行计算讲义-并行计算机系统与结构模型

Intel Paragon系统框图
I/O部分
SCSI
计算
节点
节点
计算部分
计算 节点
……
服务部分 I/O部分
计算
服务
SCSI
节点
节点
节点
以太网
HIPPI 节点
计算 节点
计算 节点
……
计算 节点
服务 节点
SCSI 节点
FDDI
VME 节点
用户I/O
磁带
HIPPI 节点
计算 节点
计算 节点
……
计算 节点
CU
PE0
PE1

P E n-1
IN
M0
M1

M m-1
(b)共享存储阵列机
中科大-并行计算讲义-并行计算机系统与结构模 型
2021/1/21
6
阵列处理机的特点
• SIMD-单指令多数据流机
• 利用资源重复开拓计算空间的并行
• 同步计算--所有PE执行相同操作
• 适于特定问题(如有限差分、矩阵运算等) 求解
2021/1/21
10
Balance同构对称多处理机系统
80386CPU Weitek1167FPU

80386CPU Weitek1167FPU
存储器 8MB

存储器 8MB
64KB 高速缓存

64KB 高速缓存 系统总线
存储控制器
… 存储控制器
总线适配器 以太局域网
磁盘控制器

磁盘
磁盘
总线适配器 多总线
• 阵列处理机 分布存储 共享存储 流水线
• 向量处理机 并行向量机

计算机组成原理 第三章

计算机组成原理 第三章

1TB=230B
• 存取时间(存储的时间。
• 存储周期:是指连续启动两次读操作所需要间隔的最 小时间。 • 存储器的带宽(数据传输速率):是单位时间里存储 器所存取的信息量。通常以位/秒或字节/秒来表示。
3.2 SRAM存储器
通常使用的半导体存储器分为随机存取存储器 (Random Access Memory,RAM)和只读存储器 (Read-Only Memory,ROM)。它们各自又有许多 不同的类型。
相连。
A15 A14
2:4 译码器
CPU
A0 A13
11 10 01 00 CE 16K×8
CE … 16K×8 WE
CE 16K×8
WE
CE 16K×8
WE
WE
WE
D0~D7 16K×8字扩展法组成64K×8 RAM
• 字位同时扩展:既增加存储单元的数量,也加长
各单元的位数
• 实际的存储器 往往 需要对字和位同时扩展,如
I/O1 ….. I/O4
WE 2114 CS A0 …. A9
CPU
A0 A9
WE 2114 CS A0 …. A9
A10 A11
wE
2:4 译 码 器
用16K×8位的芯片采用字扩展法组成64K×8位 的存储器连接图。 图中4个芯片的数据端与数据总线D0—D7相连, 地址总线低位地址A0—A13与各芯片的14位地址端相 连,而两位高位地址A14 ,A15 经译码器和4个片选端
CPU
A0
A0 A1 A2 A3 A4 A5 A6 A7 A 8 A9
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9
A9 CS
假定使用8K×1的RAM存储器芯片,那么组成 8K×8位的存储器,每一片RAM是8192×1,故其地址

《计算机组成原理》课后习题答案

《计算机组成原理》课后习题答案

第1章计算机组成原理考试大纲第一章计算机体系结构和计算机组成冯。

诺伊曼体系的特点Amdahl定律第二章数制和数制转换各种码制的表示和转换浮点数的表示补码加减法布思算法浮点数的加减法海明码的计算练习:5,6,7,8,101、已知X=19,Y=35,用布思算法计算X×Y和X×(-Y)。

2、使用IEEE 754标准格式表示下列浮点数:-5,-1.5,1/16,-6,384,-1/32。

3、已知X=-0.1000101×2-111,Y=0.0001010×2-100。

试计算X+Y,X-Y,X×Y和X/Y。

4、某浮点数字长12位,其中阶符1位,阶码数值3位,尾符1位,尾数数值7位,阶码和尾数均用补码表示。

它所能表示的最大正数是多少?最小规格化正数是多少?绝对值最大的负数是多少?5、求有效信息位为01101110的海明码校验码。

第三章练习:5解释下列概念:PROM,EPROM,E2PROM,Flash memory,FPGA,SRAM和DRAM。

第四章总线的分类总线操作周期的四个传输阶段总线仲裁的概念及其分类异步通信方式的种类总线的最大传输率第五章存储器的分类存储容量的扩展RAID的概念、特点以及分类Cache的地址映射Cache的写策略Cache的性能分析3C练习:4,5,71.一个容量为16K×32位的存储器,其地址线和数据线的总和是多少?用下列存储芯片时,各需要多少片?1K×4位,2K×8位,4K×4位,16K×l位,4K×8位,8K×8位2.现有1024×l的存储芯片,若用它组成容量为16K×8的存储器。

(1)实现该存储器所需的芯片数量?(2)若将这些芯片分装在若干块板上,每块板的容量为4K×8,该存储器所需的地址线总数是多少?几位用于选片?几位用作片内地址?(3)画出各芯片的连接逻辑图。

计算机体系结构 习题与答案

计算机体系结构 习题与答案

第二章习题(P69-70)一、复习题1.简述冯∙诺依曼原理,冯∙诺依曼结构计算机包含哪几部分部件,其结构以何部件为中心?答:冯∙诺依曼理论的要点包括:指令像数据那样存放在存储器中,并可以像数据那样进行处理;指令格式使用二进制机器码表示;用程序存储控制方式工作。

这3条合称冯∙诺依曼原理冯∙诺依曼计算机由五大部分组成:运算器、控制器、存储器、输入设备、输出设备,整个结构一般以运算器为中心,也可以以控制器为中心。

(P51-P54)2.简述计算机体系结构与组成、实现之间的关系。

答:计算机体系结构通常是指程序设计人员所见到的计算机系统的属性,是硬件子系统的结构概念及其功能特性。

计算机组成(computer organization)是依据计算机体系结构确定并且分配了硬件系统的概念结构和功能特性的基础上,设计计算机各部件的具体组成,它们之间的连接关系,实现机器指令级的各种功能和特性。

同时,为实现指令的控制功能,还需要设计相应的软件系统来构成一个完整的运算系统。

计算机实现,是计算机组成的物理实现, 就是把完成逻辑设计的计算机组成方案转换为真实的计算机。

计算机体系结构、计算机组成和计算机实现是三个不同的概念,各自有不同的含义,但是又有着密切的联系,而且随着时间和技术的进步,这些含意也会有所改变。

在某些情况下,有时也无须特意地去区分计算机体系结构和计算机组成的不同含义。

(P47-P48)3.根据指令系统结构划分,现代计算机包含哪两种主要的体系结构?答:根据指令系统结构划分,现代计算机主要包含:CISC和RISC两种结构。

(P55)4.简述RISC技术的特点?答:从指令系统结构上看,RISC 体系结构一般具有如下特点:(1) 精简指令系统。

可以通过对过去大量的机器语言程序进行指令使用频度的统计,来选取其中常用的基本指令,并根据对操作系统、高级语言和应用环境等的支持增设一些最常用的指令;(2) 减少指令系统可采用的寻址方式种类,一般限制在2或3种;(3) 在指令的功能、格式和编码设计上尽可能地简化和规整,让所有指令尽可能等长;(4) 单机器周期指令,即大多数的指令都可以在一个机器周期内完成,并且允许处理器在同一时间内执行一系列的指令。

计算机体系结构课后答案

计算机体系结构课后答案

计算机体系结构课后答案【篇一:计算机体系结构习题(含答案)】1、尾数用补码、小数表示,阶码用移码、整数表示,尾数字长p=6(不包括符号位),阶码字长q=6(不包括符号位),为数基值rm=16,阶码基值re=2。

对于规格化浮点数,用十进制表达式写出如下数据(对于前11项,还要写出16进值编码)。

(1)最大尾数(8)最小正数(2)最小正尾数(9)最大负数(3)最小尾数(10)最小负数(4)最大负尾数(11)浮点零(5)最大阶码(12)表数精度(6)最小阶码(13)表数效率(7)最大正数(14)能表示的规格化浮点数个数2.一台计算机系统要求浮点数的精度不低于10-7.2,表数范围正数不小于1038,且正、负数对称。

尾数用原码、纯小数表示,阶码用移码、整数表示。

(1) 设计这种浮点数的格式(2) 计算(1)所设计浮点数格式实际上能够表示的最大正数、最大负数、表数精度和表数效率。

3.某处理机要求浮点数在正数区的积累误差不大于2-p-1 ,其中,p是浮点数的尾数长度。

(1) 选择合适的舍入方法。

(2) 确定警戒位位数。

(3) 计算在正数区的误差范围。

4.假设有a和b两种不同类型的处理机,a处理机中的数据不带标志符,其指令字长和数据字长均为32位。

b处理机的数据带有标志符,每个数据的字长增加至36位,其中有4位是标志符,它的指令数由最多256条减少到不到64条。

如果每执行一条指令平均要访问两个操作数,每个存放在存储器中的操作数平均要被访问8次。

对于一个由1000条指令组成的程序,分别计算这个程序在a处理机和b处理机中所占用的存储空间大小(包括指令和数据),从中得到什么启发?5.一台模型机共有7条指令,各指令的使用频率分别为35%,25%,20%,10%,5%,3%和2%,有8个通用数据寄存器,2个变址寄存器。

(1) 要求操作码的平均长度最短,请设计操作码的编码,并计算所设计操作码的平均长度。

6.某处理机的指令字长为16位,有双地址指令、单地址指令和零地址指令3类,并假设每个地址字段的长度均为6位。

高性能计算机体系结构研究综述

高性能计算机体系结构研究综述

高性能计算机体系结构研究综述引言随着计算机技术的不断发展,高性能计算机的应用范围越来越广泛。

高性能计算机是指能够提供高性能计算能力的计算机体系结构,主要用于进行复杂的科学计算、工程仿真等领域。

随着计算机应用场景的不断扩大,如何提高高性能计算机的计算能力和效率成为了计算机领域的核心问题。

本文综述了高性能计算机体系结构相关的研究进展和热点问题。

第一章高性能计算机体系结构概述高性能计算机体系结构是指计算机硬件系统的组成部分和相互连接方式。

高性能计算机与传统计算机系统的差别在于,高性能计算机使用了一种特殊的并行处理技术和高速通信技术。

高性能计算机主要由计算节点、存储节点、网络节点三个部分组成。

其中,计算节点用于执行计算任务,存储节点用于存储数据,网络节点用于实现节点之间的通信。

第二章并行计算体系结构并行计算体系结构是高性能计算机体系结构的重要组成部分,也是高性能计算机计算能力提高的核心。

并行计算体系结构主要有集中式共享存储架构、分布式存储架构、混合存储架构等。

其中,集中式共享存储架构具有计算能力强、资源利用率高等优点,是高性能计算机比较成熟的体系结构之一。

第三章高性能计算机并行计算模型高性能计算机并行计算模型是指对高性能计算机进行并行计算的理论模型和计算模型。

高性能计算机并行计算模型主要包括共享存储模型、分布式存储模型、混合存储模型等。

其中,共享存储模型是高性能计算机并行计算模型中的重要一种模型,具有良好的可扩展性和灵活性。

第四章高性能计算机芯片架构高性能计算机芯片架构是指高性能计算机中的处理器芯片架构。

高性能计算机芯片架构主要采用多核处理器的设计方式,如Intel的Xeon、AMD的Opteron、IBM的PowerPC等。

这些多核处理器的设计方式具有计算能力强、性能高等优点,可以提高高性能计算机的计算能力和效率。

第五章高性能计算机网络架构高性能计算机网络架构是指高性能计算机中节点之间的通信方式和通信协议。

计算机硬件体系结构

计算机硬件体系结构

3.2 微型计算机主机结构
1) 计算机指令系统
指令:是指计算机执行特定操作的命令。是程 序设计的最小语言单位。
指令构成:操作码+地址码 指令系统:是指一台计算机所能执行的全部指 令的集合。不同型号的计算机有不同的指令系统。 它反映了计算机的处理能力。
指令
分 类
操作码
操作数
结构
操作码 要完成的操作类型或性质
5.双核心CPU的二级缓存 双核心CPU的二级缓存比较特殊,和以前的单 核心CPU相比,最重要的就是两个内核的缓存所保 存的数据要保持一致。
3.2 微型计算机主机结构
3.2.3 总线 总线:是一组连接各个部件的公共通信线路,是计 算机内部传输指令、数据和各种控制信息的高速通 道,是计算机硬件的一个重要组成部分。 总线按所传输信号不同可分为: 数据总线 地址总线 控制总线。
(1) 掩膜式 ROM(Mask ROM) (2) 可编程 PROM(Programmable ROM) (3) 可擦除 EPROM (Erasable PROM) (4) 电可擦 EEPROM(Electrically EPROM) (5) 快擦写 ROM(Flash ROM)
3.2 微型计算机主机结构
操作数 操作的内容或所在的地址
数据传送指令 数据处理指令 •程序控制指令 输入输出指令 其它指令
内存
CPU
+ - ×÷ And Or……
If Goto……
主机
I/O设备
对计算机的硬件进行管理等
3.5 计算机指令及执行
2 )指令的执行过程
取指令 分析指令 取操作数 执行 回送结果
通常把CPU从内存 并中取出一条指令 并执行这条指令的 时间总和称为指令 周期。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

采用先行控制方式时一个程序的执行情况:
指令地址 指令执行情况
……
已经执行完成的指令
k-i-1
k-i ……
在后行写数栈中等待把结果写到主存储器中的指令
k-1
k
正在指令执行部件中执行的指令
k+1 ……
已经由指令分析器预处理完成,存放在先行操作栈中的
k+j
RR*型指令,指令所需要的操作数已经读到先行读数栈中
5.存在的主要问题: 各类指令“分析”和“执行”的时间相差很大 数据相关 转移或转子程序指令
先行指令缓冲栈的组成

先行程序计数器PC1


指令缓冲
存储器堆

器 控制逻辑
现行程序计数器PC 指令分析器
指令寄存器IR
指令执行时序 设置了指令缓冲栈,取指令的时间就可以忽略不计。 一条指令的执行可分为2个过程
功能部件的利用率明显提高。
主要缺点:
需要增加一些硬件,
控制过程稍复杂。
3.二次重叠执行方式 如果三个过程的时间相等,执行n条指令的时间为:
T=(2+n)t 在理想情况下,处理机中同时有三条指令在执行。 处理机的结构要作比较大的改变,需要采用先行控制
技术。
取 指 令 k
分 析 k
执 行 k
取 指 令 k+1 分 析 k+1
1.分析指令和执行指令时间不相等时的情况
分 析k
执 行k 分 析k+1
执 行k+1 分 析k+2 执 行k+2
分 析k+3
执 行k+3
采用先行缓冲栈的指令执行过程 先行读数栈,先行操作栈,后行写数栈。
分 析k
执 行k
分 析k+1 执 行k+1
分 析k+2
执 行k+2
分 析k+3
执 行k+3
理想情况下,指令执行部件应该一直忙碌。 连续执行n条指令的时间为:
行写数栈。 3.处理机组成









先行指令缓冲栈 先行读数栈 后行写数栈
指令分析器
先行操作栈


运算控制器


运算器

4.先行指令缓冲栈的组成 作用:只要指令缓冲栈没有充满,就自动发出取指令
的请求。 设置两个程序计数器: 先行程序计数器PC1,用来指示取指令, 现行程序计数器PC,记录指令分析器正在分析的指令 地址。
(3)采用先行控制技术 采用先行控制技术的关键是缓冲技术和预处理技术。
缓冲技术通常用在工作速度不固定的两个功能部件之 间。设置缓冲栈的目的是用以平滑功能部件之间的 工作速度。
在采用了缓冲技术和预处理技术之后,运算器能够专 心于数据的运算,从而大幅度提高程序的执行速度。
先行处理机结构
1.三个独立的控制器: 存储控制器、指令控制器、运算控制器。 2.四个缓冲栈: 先行指令缓冲栈、先行读数缓冲栈、先行操作栈、后
组成。
先行读数栈 处于主存储器与运算器之间 平滑运算器与主存储器的工作 每个缓冲寄存器由地址寄存器、操作数寄存器和标志
三部分组成。也可以把地址寄存器和操作数寄存器 合为一个。 当收到从指令分析器中送来的有效地址时,就向主存 申请读操作数。 读出的操作数存放在操作数寄存器中或覆盖掉地址寄 存器中的地址。
k+j+n+m+1 还 没 有 进 入 处 理 机 的 指 令 ……
缓冲深度的设计方法
以静态分析为主,通过模拟来确定缓冲深度。
1.先行指令缓冲栈的设计
考虑两种极端情况:假设缓冲深度为DI (1)先行指令缓冲栈已经充满
指令流出的速度最快,例如连续分析RR型指令,设这 种指令序列的最大长度为L1,平均分析一条这种指 令的时间为t1;
数栈的寄存器编号替换指令中的主存地址码部分, 形成RR*指令送先行缓冲栈

RI型指令,指令中的立即数送先行读数栈,用该先行 读数栈的寄存器编号替换指令中的立即数部分,形 成RR*指令送先行缓冲栈
转移指令,一般在指令分析器中直接执行。 先行操作栈 处于指令分析器和运算控制器之间 使指令分析器和运算器能够各自独立工作。 采用先进先出方式工作,由指令寄存器堆和控制逻辑
n
n
t t t T 先行 分1 析
执i行
执i行
i 1
i 1
先行缓冲栈
设置先行缓冲栈的目的:使指令分析器和指令执行部 件能够独立工作。
1.先行指令缓冲栈: 处于主存储器与指令分析器之间 用它来平滑主存储器取指令和指令分析器使用指令之
间的速度差异 RR型指令,不必处理,直接送先行缓冲栈 RS型指令,主存有效地址送先行读数栈,用该先行读
2.解决访存冲突的方法: (1)采用低位交叉存取方式:
这种方法不能根本解决冲突问题。 读指令、读操作数、写结果。 (2)两个独立的存储器:独立的指令存储器和数据存 储器。 如果再规定,执行指令的执行结果只写到通用寄存器, 则取指令、分析指令和执行指令就可以同时进行。 在许多高性能处理机中,有独立的指令Cache和数据 Cache。这种结构被称为哈佛结构。
并行计算机体系结构第三章
2.一次重叠执行方式 如果两个过程的时间相等,则执行n条指令的时间为:
T=(1+2n)t
取 指 令 k 分 析 k 执 行 k
取 指 令 k + 1分 析 k + 1执 行 k + 1
主要优点:
取 指 令 分 析 k + 2执 行 k + 2 k + 2
指令的执行时间缩短,
取 指 令 k+2
执 行 k+1 分 析 k+2
执 行 k+2
二 次 重 叠 执 行 方 式
先行控制方式的原理
1.采用二次重叠执行方式必须解决两个问题: (1)有独立的取指令部件、指令分析部件和指令执行
部件 把一个集中的指令控制器,分解成三个独立的控制 器: 存储控制器、指令控制器、运算控制器 (2)要解决访问主存储器的冲突问题 取指令、分析指令、执行指令都可能要访问存储器
后行写数栈 每个后行缓冲寄存器由地址寄存器、数据寄存器和标
志三部分组成。 指令分析器遇到向主存写结果的指令时,把形成的有
效地址送入后行写数栈的地址寄存器中,并用该地 址寄存器的编号替换指令的目的地址部分,形成RR* 指令送入先行操作栈。 当运算器执行这条RR*型写数指令时, 只要把写到主存的数据送到后行写数栈的数据寄存器 中即可。
k+j+1 …… k+j+n
已 经 由 指 令 分 析 器 预 处 理 完 成 ,存 放 在 先 行 操 作 栈 中 ,指 令所需要的操作数还没有读到先行读数栈中
k+j+n+1 正 在 指 令 分 析 器 中 进 行 分 析 和 预 处 理 的 指 令
k+j+n+2 …… k+j+n+m
已经从主存储器中预取到先行指令缓冲栈中的指令
相关文档
最新文档