2015-2016学年河北省沧州市七年级(下)期末数学试卷

合集下载

沧州市七年级下学期数学期末考试试卷

沧州市七年级下学期数学期末考试试卷

沧州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·福州) 如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A . 同位角B . 内错角C . 同旁内角D . 对顶角2. (2分)小雷为表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是()A . 折线统计图B . 条形统计图C . 扇形统计图D . 以上均可以3. (2分)已知:如图,下列条件中不能判断直线l1∥l2的是()A . ∠1=∠3B . ∠2=∠3C . ∠4=∠5D . ∠2+∠4=180°4. (2分)已知点P在第三象限,且到x轴的距离为3,到y轴的距离为5,则点P的坐标为()A . (3,5)B . (-5,3)C . (3,-5)D . (-5,-3)5. (2分)下面调查中,适合做全面调查的是()A . 某品牌的大米在市场上的占有率B . 今天班上有几名同学打扫教室C . 某款汽车每百公里的耗油量D . 春节晚会的收视率6. (2分) (2015七下·衢州期中) 如图,下列条件中,不能判断直线l1∥l2的是()A . ∠1=∠3B . ∠2=∠3C . ∠4=∠5D . ∠2+∠4=180°7. (2分)若 3x>-3y,则下列不等式中一定成立的是()A . x+y>0B . x-y>0C . x+y<0D . x-y<08. (2分)小明家上个月支出共计800元,各项支出如图所示,其中用于教育上的支出是()A . 232元B . 200元C . 160元D . 80元9. (2分) (2019七下·余杭期末) 下列各组数中,是二元一次方程3x-2y=12的解的是()A .B .C .D .10. (2分)点M(m+1,m+3)在y轴上,则M点的坐标为()A . (0,﹣4)B . (4,0)C . (﹣2,0)D . (0,2)11. (2分)(2017·南山模拟) 下列说法正确的是()①面积之比为1:2的两个相似三角形的周长之比是1:4;②三视图相同的几何体是正方体;③﹣27没有立方根;④对角线互相垂直的四边形是菱形;⑤某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为 =82分, =82分,S2甲=245,S2乙=190,那么成绩较为整齐的是乙班.A . 1个B . 2个C . 3个D . 4个12. (2分) (2017七下·迁安期末) 一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2017七下·威远期中) 在方程2x - 5y =1中,用含x的代数式表示y为________14. (1分) (2019七下·龙岩期末) 计算: ________.15. (1分)九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是________16. (1分)(2017·滨江模拟) 不等式组的最大整数解为________.17. (1分)(2018·鼓楼模拟) 如图,一次函数y=- x+8的图像与x轴、y轴分别交于A、B两点.P 是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是________.18. (1分)计算:0×(﹣2)﹣7=________ .三、解答题 (共8题;共62分)19. (10分)(2020·上城模拟)(1)先化简÷(1+ ),再从0,﹣1,1这三个数中选一个你喜欢的数代入求值.(2)解不等式组20. (5分)(2011·扬州) 解不等式组,并写出它的所有整数解.21. (11分) (2016七下·青山期中) 如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.22. (9分) (2017九下·江阴期中) 中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25请根据所给信息,解答下列问题:(1) m=________,n=________;(2)请补全频数分布直方图;________(3)这次比赛成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?23. (5分)(2019·广州模拟) 解不等式组:,并把解集在数轴上表示出来.24. (5分)如图所示,在平面内有四个点,它们的坐标分别是A(﹣1,0),B(2+, 0),C(2,1),D (0,1).(1)依次连结A、B、C、D,围成的四边形是一个什么图形?(2)求这个四边形的面积;(3)将这个四边形向左平移个单位长度,四个顶点的坐标分别为多少?25. (10分)(2016·江西模拟) 4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?26. (7分)在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1),(1,0)22秒3秒(2)当点P从点O出发10秒,可得到的整数点的个数是________个。

河北省沧州市七年级下学期末数学试卷

河北省沧州市七年级下学期末数学试卷

河北省沧州市七年级下学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若点P(3a+5,﹣6a﹣2)在第四象限,且到两坐标轴的距离相等,则a的值为()A . 1B . 2C . ﹣1D . ﹣22. (2分)在描述一组数据的集中趋势时,应用最广泛的是()A . 众数B . 中位数C . 平均数D . 全体数据3. (2分)(2016·龙华模拟) 已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A .B .C .D .4. (2分) (2018八下·楚雄期末) 若,则下列不等式不成立的是().A .B .C .D .5. (2分)(2020·黔南) 已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A . 1<a<2B . 2<a<3C . 3<a<4D . 4<a<56. (2分) (2018七下·紫金月考) 如图,直线l1∥l2 ,直线l3与l1 , l2分别交于A,B两点,若∠1=65°,则∠2=()A . 65°B . 75°C . 115°D . 125°7. (2分) (2017七下·蒙阴期末) 在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是()A . (﹣2,3)B . (﹣1,2)C . (0,4)D . (4,4)8. (2分) (2019九上·哈尔滨月考) 若将抛物线先向右平移2个单位,再向下平移3个单位,可得到新的抛物线是()A .B .C .D .9. (2分) (2016七下·槐荫期中) 如图,AB∥CD,下列结论中错误的是()A . ∠2+∠3=180°B . ∠2+∠5=180°C . ∠3+∠4=180°D . ∠1=∠210. (2分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A . 5B . 4C . 3D . 2二、填空题 (共6题;共6分)11. (1分)计算:=________ .12. (1分) (2019八下·青铜峡月考) 已知不等式(a-1)x>a-1的解集是x<1,a的取值范围是________.13. (1分)请写出二元一次方程5x﹣3y=2的一个整数解,这个解可以是:________14. (1分) (2020七下·唐山期中) 如图,AB∥CD,∠B=160°,∠D=120°,则∠E=________15. (1分)如图,将△ABC沿直线AB向右平移到达△BDE的位置,若∠CAB=55°,∠ABC=100°,则∠CBE 的度数为________.16. (1分) (2019八上·黄石港期中) 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC 的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为________.三、计算题 (共3题;共20分)17. (5分)(2018·海丰模拟) 计算:2sin60°+|3﹣ |﹣()﹣1+(π﹣2018)018. (5分) (2020八上·陈仓期末) 解方程组19. (10分)(2017·准格尔旗模拟) 计算题(1)计算:()﹣1﹣(π+3)0﹣cos30°+ +| |(2)先化简,再求值:( +1)÷ ,其中x是满足不等式组的最小整数.四、解答题 (共6题;共41分)20. (10分)按要求画图:(1)如图1,已知P为直线AB外一点.①过点P作PD⊥AB,垂足为D;②过点P作PE∥AB(2)如图2,平移△ABC,使点A移动到点A′处,画出平移后的△A′B′C′.21. (5分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?22. (5分)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?23. (11分) (2017七下·苏州期中) 已知如图,四边形ABCD中∠BAD=α,∠BCD=β, BE、DF分别平分四边形的外角∠MBC和∠NDC(1)如图1,若α+β= ,则∠MBC+∠NDC=________度;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请求出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.24. (5分) (2020七下·北京期末) 列不等式解应用题:倡导健康生活,推进全民健身.某社区要购进A , B两种型号的健身器材共50套,A , B两种型号健身器材的购买价格分别为每套310元,460元,且每种型号健身器材必须整套购买.若购买支出不超过18000元,求A种型号健身器材至少要购买多少套.25. (5分)如图,P为△ABC内的一点.求证:∠BPC> ∠A参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、计算题 (共3题;共20分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:四、解答题 (共6题;共41分)答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:答案:25-1、考点:解析:。

15—16学年下学期七年级期末考试数学试题(附答案)

15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

七年级下册沧州数学期末试卷测试卷(含答案解析)

七年级下册沧州数学期末试卷测试卷(含答案解析)

七年级下册沧州数学期末试卷测试卷(含答案解析)一、选择题1.下列四幅图中,1∠和2∠是同位角的是( )A .①②B .③④C .①②④D .②③④ 2.下列图形中,哪个可以通过图1平移得到( )A .B .C .D . 3.平面直角坐标系中有一点()2021,2022P -,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )A .②③B .②④C .③④D .②③④ 5.如图,//AB CD ,DCE ∠的角平分线CG 的反向延长线和ABE ∠是角平分线BF 交于点F ,48E F ∠-∠=︒,则F ∠等于( )A .42°B .44°C .72°D .76° 6.下列说法不正确的是( ) A .327=3-- B 81=9C .0.04的平方根是0.2±D .9的立方根是3 7.如图,ABCD 为一长方形纸片,AB ∥CD ,将ABCD 沿E 折叠,A 、D 两点分别与A ′、D ′对应,若∠CFE =2∠CFD ′,则∠AEF 的度数是( )A.60°B.80°C.75°D.72°8.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(0,2)C.(﹣1,﹣2)D.(0,1)二、填空题9.36的平方根是______,81的算术平方根是______.10.点(3,0)关于y轴对称的点的坐标是_______11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠BFD=45°;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是______(填序号).12.如图,已知AB∥CD,如果∠1=100°,∠2=120°,那么∠3=_____度.13.将一张长方形纸条ABCD沿EF折叠后,EC′交AD于点G,若∠FGE=62°,则∠GFE的度数是___.14.阅读下列解题过程:计算:232425++++++122222解:设232425S=++++++①122222则232526S=+++++②222222由②-①得,26S=-21运用所学到的方法计算:2330++++⋯⋯+=______________.1555515.如图,直线BC经过原点O,点A在x轴上,AD BC⊥于D.若A(4,0),B(m,3),C(n,-5),则AD BC=______.16.如图,在平面直角坐标系中,边长为1的等边△OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将△OA1A2沿x轴正方向依次向右移动2个单位,依次得到△A3A4A5,△A6A7A8…,则顶点A2021的坐标为 __________________.三、解答题17.计算下列各式的值:(1)|–2|–3–8 + (–1)2021;(2)()2133+3––6⎛⎫ ⎪⎝⎭. 18.求下列各式中x 的值:(1)30.008x =;(2)3338x -=; (3)3(1)64x -=.19.如图//EF AD ,12∠=∠,110AGD ∠=︒,求BAC ∠度数.完成说理过程并注明理由. 解:∵//EF AD ,∴2∠=________( )又∵12∠=∠,∴13∠=∠,∴//AB __________( )∴______180AGD ∠+=︒( )∵110AGD ∠=︒,∴BAC ∠=______度.20.如图,在平面直角坐标系中,已知三角形ABC 三点的坐标分别为()1,4A -,()3,2B -,()1,1C .(1)求三角形ABC 的面积;(2)在x 轴上存在一点N ,使三角形BON 的面积等于三角形ABC 面积,求点N 的坐标. 21.已知:a 173的整数部分,b 173的小数部分.求:(1)a ,b 值(2)()()224a b -++的平方根. 二十二、解答题22.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;24.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a、b的值;(2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达BQ时运动停止,问A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作⊥交PQ于点D,则在转动过程中,BACCD AC∠的数量关系是否发生变化?若不∠与BCD变,请求出其数量关系;若改变,请求出其取值范围.25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由26.模型与应用.(模型)(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)【参考答案】一、选择题1.C解析:C【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可.【详解】解:根据同位角的定义可知:图①②④中,∠1和∠2是同位角;图③中,∠1和∠2不故选C.【点睛】本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键.2.A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.3.D【分析】根据平面直角坐标系内各象限内点的坐标符号特征判定即可.【详解】解:根据平面直角坐标系内各象限内点的坐标符号特征可知:()P-在第四象限2021,2022故选D.【点睛】本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).记住各象限内点的坐标的符号是解决的关键.4.D【分析】根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断.【详解】对顶角相等,所以①正确,不符合题意;过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意;相等的角不一定为对顶角,所以③不正确,符合题意;两直线平行,同位角相等,所以④不正确,符合题意,故选:D.【点睛】本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键.5.B过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E-∠F=48°,即可得到∠E的度数.【详解】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β,∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC,即∠E+2∠BFC=180°,①又∵∠E-∠BFC=48°,∴∠E =∠BFC+48°,②∴由①②可得,∠BFC+48°+2∠BFC=180°,解得∠BFC=44°,故选:B.【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.6.D【分析】利用平方根、算术平方根及立方根的定义分别判断后即可确定正确的选项.【详解】解:A、327=3-,正确,不符合题意;B81=9,正确,不符合题意;C、0.04的平方根是±0.2,正确,不符合题意;D、939,故错误,符合题意;故选:D.【点睛】本题考查了平方根、算术平方根及立方根的定义,属于基础性定义,比较简单.7.D【分析】先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠EFD′,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB∥CD,∴∠CFE=∠AEF,又∵∠DFE=∠EFD′,∠CFE=2∠CFD′,∴∠DFE=∠EFD′=3∠CFD′,∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,∴∠CFD′=36°,∴∠AEF=∠CFE=2∠CFD′=72°.故选:D.【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.8.D【分析】根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解解析:D【分析】根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解】解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2),∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3,∴从A→B→C→D→A一圈的长度为2(AB+BC)=10.2021÷10=202…1,∴细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故选:D.【点睛】本题考查了坐标规律探索,找到规律是解题的关键.二、填空题9.±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.解析:±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.10.(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0).故答案为:(-3,0).【点睛】本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B解析:①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④.【详解】解:∵EG∥BC,且CG⊥EG于G,∴∠BCG+∠G=180°,∵∠G=90°,∴∠BCG=180°﹣∠G=90°,∵GE∥BC,∴∠GEC=∠BCA,∵CD平分∠BCA,∴∠GEC=∠BCA=2∠DCB,∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=1(∠BCA+∠ABC)=45°,2∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.【详解】解:如图:过作平行于,,,,,即,.故答案为:40.【解析:40【分析】过F 作FG 平行于AB ,由AB 与CD 平行,得到FG 与CD 平行,利用两直线平行同位角相等,同旁内角互补,得到1100EFG ∠=∠=︒,2180GFC ∠+∠=︒,即可确定出3∠的度数.【详解】解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.59°【分析】由长方形的性质及折叠的性质可得∠1=∠2,AD ∥BC ,根据平行线的性质可求解∠GEC 的度数,进而可求解∠2的度数,再利用平行线的性质可求解.【详解】解:如图,∵长方形ABCD 沿解析:59°【分析】由长方形的性质及折叠的性质可得∠1=∠2,AD ∥BC ,根据平行线的性质可求解∠GEC 的度数,进而可求解∠2的度数,再利用平行线的性质可求解.【详解】解:如图,∵长方形ABCD 沿EF 折叠,∴∠1=∠2,AD∥BC,∴∠FGE+∠GEC=180°,∵∠FGE=62°,∴∠GEC=180°-62°=118°,∴∠1=∠2=12∠GEC=59°,∵AD∥BC,∴∠GFE=∠2,∴∠GFE=59°.故答案为59°.【点睛】本题主要考查翻折问题,平行线的性质,求解∠GEC的度数是解题的关键.14..【分析】设S=,等号两边都乘以5可解决.【详解】解:设S=①则5S=②②-①得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:3151 4-.【分析】设S=233015555++++⋯⋯+,等号两边都乘以5可解决.【详解】解:设S=233015555++++⋯⋯+①则5S=23303155555+++⋯⋯++②②-①得4S=311-5,所以S=3151 4-.故答案是:3151 4-.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.15.【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A解析:32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S△AOC=12AO•OF=12×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴12BC•AD=16,∴BC•AD=32,故答案为:32.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.16.(1346.5,).【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标.【详解】解:是等边三角形,边长为1,,,,…观察图形可知,3个点一个循解析:(1346.5. 【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A 2021的坐标.【详解】解:12OA A 是等边三角形,边长为11A y ∴==112A ⎛ ⎝⎭,2(1,0)A ,3(2,0)A ,45(2A ,5(3,0)A 6(4,0)A … 观察图形可知,3个点一个循环,每个循环向右移动2个单位2021÷3=673…1,673×2=1346,故顶点A 2021的坐标是(1346.5故答案为:(1346.5 【点睛】本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键. 三、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=()()221--+-,=3.(2)原式= =3+1-6,=–2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键. 18.(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2)32;(3)5 【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x -1的值,进而得出x 的值.【详解】解:(1)x 3=0.008,则x =0.2;(2)x 3-3=38则x3=3+38故x3=27 8解得:x=32;(3)(x-1)3=64则x-1=4,解得:x=5.【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可.【详解】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行).∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补).∵∠AGD=110°,∴∠BAC=70度.故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键.20.(1)的面积为5;(2)或【分析】(1)根据割补法可直接进行求解;(2)由(1)可得,进而△的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解.【详解】解:(1)由图象可解析:(1)ABC 的面积为5;(2)()5,0N -或()5,0N【分析】(1)根据割补法可直接进行求解;(2)由(1)可得5BON S =,进而△BON 的面积以点B 的纵坐标为高,ON 为底,然后可得ON =5,最后问题可求解.【详解】解:(1)由图象可得: 111342223145222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=; (2)设点(),0N a ,由题意得:5BON ABC S S ==,∴△BON 的面积以点B 的纵坐标为高,ON 为底,即1252BON Sa =⨯⨯=, ∴5a =±,∴()5,0N -或()5,0N .【点睛】 本题主要考查图形与坐标,熟练掌握点的坐标表示的几何意义及割补法是解题的关键. 21.(1),.(2).【分析】(1)首先得出接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】,∴整数部分,小数部分.(2)原式,则的平方根为.【点睛】此题解析:(1)1a =,4b =.(2)±【分析】(1接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】 1754<<∴ 132<<,∴整数部分1a =,小数部分314b -=.(2)()()224a b -++原式())22144=-++ 11718=+=,则()()224a b -++的平方根为±【点睛】此题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键. 二十二、解答题22.(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.24.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=,∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.25.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.26.(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF ∥AB ,∴∠1+∠MEF解析:(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.。

2015-2016学年度第二学期期末检测七年级数学试题及答案

2015-2016学年度第二学期期末检测七年级数学试题及答案

abb(1) (2) (3)2015-2016学年度第二学期期末检测七年级数学试题考试时间:90分钟 班级: 姓名: 一、选择题:(每小题3分,共36分。

每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的括号内。

)1.如图,下列条件中不一定能推出a ∥b 的是( ) A.∠1=∠3 B. ∠2=∠4 C. ∠1=∠4 D. ∠2+∠3=180°2.在平面直角坐标系中,若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A.(3,3)B.(3,-3)C.(-3,3)D.(-3,-3) 3.下列各式中计算正确的是( ) A.()532x x= B. 422743x x x =+C. ()()639x x x =-÷- D. ()x x x x x x ---=+--23214.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把这个数值用科学记数法表示为( )A.1×10 9B. 1×1010C. 1×10 -9D. 1×10 -105.已知三角形两边的长分别为2a 、3a ,则第三边的长可以是( ) A. a B. 3 a C. 5 a D. 7 a6.如图,将等边三角形ABC 剪去一个角后,则∠1+∠2的大小为( ) A. 120° B. 180° C. 200° D. 240°7.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A.正三角形 C.正四边形 B.正六边形 D.正八边形 8.以5厘米的长为半径作圆,可以作( ) A. 1个 B. 2个 C. 3个 D. 无数个9.用如图所示的卡片拼成一个长为(2a+3b ),宽为(a+b )的长方形,则需要(1)型卡片、(2)型卡片和(3)型卡片的张数分别是( )A.2,5,3B.2,3,5C.3,5,2D.3,2,510.等腰三角形的周长为13cm ,其中一边的长为3cm ,则该等腰三角形的腰长为( )A.7cmB.3cmC.7cm 或3cmD.5cm11.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ) A.5 B.6 C.7 D.812.下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧中,正确的有( )A.1个B.2个C.3个D.4个 二、填空题(每空3分,共30分)13.已知点A 到x 轴的距离为3,到y 轴的距离为4,且它在第二象限内,则点A 的坐标为 . 14.若2 m=3,,2 n=4,则22m-n= .15.若25-+=+÷+)()()(y x y x y x m ,则m 的值为 . 16.计算:=⨯+--2331(5)2( .17.一个长方形的面积是)(2269ab b a -平方米,其长为3ab 米,则宽为 米(用含a 、b 的式子表示)18.一个多边形的内角和等于108019.如图,已知∠A=20°, ∠B=45° AC ⊥DE 于点则∠D= ,∠BED= . 20.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有 个正三角形和 个正四边形.三、解答题(共54分,解答应写出必要的计算过程、推演步骤或文字说明) 21(15分) (1)223102)2(a a a a ÷-+∙(2))2()12)(2(--++-a a b a b a (3))1)(2(2)3(3)2(2-+++-+x x x x xa b1243c22(6分)解方程组⎩⎨⎧-=+=-22382y x y x23(7分)如图,AD 是△ABC 的中线,BE 是△ABD 的中线 (1) 若∠ABE=15°,∠BAD=30°,求∠BED 的度数; (2) 画出△BED 的BD 边上的高线EF ;(3) 若△ABC 的面积为40,BD=5,求BD 边上的高EF 。

河北省沧州市七年级下学期期末考试数学试题

河北省沧州市七年级下学期期末考试数学试题

河北省沧州市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是()A . 88mmB . 96mmC . 80mmD . 84mm2. (2分) (2019七下·新洲期末) 下列四种调查适合做抽样调查的个数是()①调查某批汽车抗撞击能力;②调查某池塘中现有鱼的数量;③调查春节联欢晚会的收视率;④某校运动队中选出短跑最快的学生参加全市比赛.A . 1个B . 2个C . 3个D . 4个3. (2分) (2019八上·桂林期末) 下列实数中,无理数是()A . -B .C . 0D . 0.20200200024. (2分)下列方程中,变形正确的是()A . 由4+x=8,得x=8+4B . 由6x+5=5x得6x-5x=5C . 由4x-2=3x+8得4x-3x=8+2D . 由-1+2x=3x得2x+1=3x5. (2分) (2020八下·广东月考) 不等式组的解集在数轴上表示正确的是()A .B .C .D .6. (2分) (2017八上·陕西期末) 如图,在平面直角坐标系中,以原点为圆心的同心圆的半径由内向外依次为,,,,…,同心圆与直线和分别交于,,,,…,则的坐标是()A .B .C .D .二、填空题 (共6题;共6分)7. (1分) (2020七下·南宁月考) 观察下列表格:a0.00010.011100100000.010.1110100利用表格中的规律计算:已知,,,则 10a+b 的值(保留一位小数) 是________.8. (1分) (2019九上·朝阳期中) 北京市为了全民健身,举办“健步走”活动;活动路线为玲珑塔→国家体育场→水立方。

(有答案)2015-2016第二学期期末试卷初一数学

初一数学试题(共8页)第1页 初一数学试题(共8页)第2页2015—2016学年第二学期期末考试初一数学试题第I卷(选择题 共30分)一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.)1. 下列图形中∠1与∠2是对顶角的是( )A .B . C.D.2. 下列式子正确的是( )A .4212-=⎪⎭⎫⎝⎛-B .235()x x =C .9)3)(3(2-=--+-a a aD.222)(b a b a -=-3. 如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是( )4. 下列调查中,适宜采用普查方式的是( ) A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状考察 C .人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件5. 如图,∠C=90°,则不正确的是( ) A.在AB ,BC ,CA 中AB 最长 B.线段AC 是点A 到直线BC 的距离 C.线段CB 的长度是表示点C 到点B 的距离 D.线段CB 的长是点B 到AC 的距离6. 如图,一只乌鸦口渴了,到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,聪明的乌鸦沉思一会后,便衔来一个个小石子(大小不一样,即水面上升的速度不一样)放入瓶中,水位上升后,乌鸦喝到了水。

在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为x ,瓶中水位的高度为y.下列图象中最符合故事情景的是( )7. 如图所示,直线a 、b 都与直线c 相交,给出下列条件:①∠1=∠2; ②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°。

其中能判断a ∥b 的条件是( ) A.①②B.②④C.①③④D.①②③④班级 姓名 考场 座号…………………………………………………………密……………………封………………线……………………………………………………………………A B C D初一数学试题(共8页)第1页 初一数学试题(共8页)第2页7题图8. 如图,一个含有45°角的直角三角尺的两个顶点放在直尺的对边上,如果∠1=30°,则∠2的度数为( )A .30°B .15°C .55° D. 25°9.如图OA 、AB 分别表示甲、乙两名同学运动时路程与时间的关系图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB 表示甲的路程与时间的关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④8秒钟后,甲超过了乙,其中正确的说法有( )个。

2015—2016学年度第二学期期末考试七年级数学试题带答案

2015—2016学年度第二学期期末考试七年级数学试题是正确的,请将正确选项的代号填在题后的括号内.) 1.下列实数是无理数的是( ) (A (B )3.14 (C )227(D 分析:考查实数的分类,简单题,选A . 2.下列运算正确的是( )(A )222(3)6mn m n -=- (B )4444426x x x x ++=(C )2()()xy xy xy ÷-=- (D )22()()a b a b a b ---=-分析:考查整式的运算,简单题,选C . 3.不等式组21024x x +>⎧⎨<⎩的整数解的个数是( )(A )1 (B )2 (C )3 (D )4 分析:考查不等式组的解集,简单题,选B . 4.如图,BC ∥DE ,AB ∥CD ,∠B =40°,则∠D 的度数是( )(A )40° (B )100° (C )120° (D )140°分析:考查平行线的性质,简单题,选D . 5.若m n >,下列不等式不一定...成立的是( ) (A )22m n ->- (B )22m n > (C )22m n> (D )22m n > 分析:考查不等式的性质,简单题,选D .6.若2(8)(1)x x x mx n +-=++对任意x 都成立,则m n +=( ) (A )8- (B )1- (C )1 (D )8 分析:考查多项式乘法运算,简单题,选B .EDCBA(第4题图)7.有旅客m 人,若每n 个人住一间客房,还有一个人无房间住,则客房的间数为( ) (A )1m n + (B)1m n + (C )1m n - (D )1m n- 分析:考查分式的知识,简单题,选D . 8.如图,在数轴上标注了四段范围,则表示的点落在( )(A )段① (B )段② (C )段③ (D )段④分析:考查无理数的近似值,简单题,选C .9.如图,直线AC ∥BD , AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( ) (A )互余 (B )相等 (C )互补 (D )不等分析:考查平行线的性质、角平分线、互余的知识,简单题,选A .10.已知3a b -=,2ab =,则22a b +的值为( ) (A )13(B )9 (C )5 (D )4分析:考查完全平方公式的应用,中等题,选A .二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上) 11.64-的立方根是 . 分析:考查立方根,简单题,答案:4-. 12.不等式组12010x x ->⎧⎨+≤⎩的解集为 .分析:考查解不等式组,简单题,答案:1x ≤-. 13.分解因式:282x -= __________.分析:考查因式分解,简单题,答案:2(2)(2)x x -+ .14.规定:[]x 表示不超过x 的最大整数,例如:[3.69]3=,[ 3.69]4-=-,1=. 计算:1-= .分析:考查实数知识,简单题,答案:2.15.如图,将长方形纸片ABCD 折叠,使边AB ,CB 均落(第8题图)(第9题图) FEDCBA在BD 上,得折痕BE 、BF ,则∠EBF = °. 分析:考查角平分线知识的应用,简单题,答案:45.16.从一个边长为2a b +的大正方形中剪出一个边长为b 的小正方形,剩余的正好能剪拼成四个宽为a 的长方形,那么这个长方形的长为 . 分析:考查整式运算的应用,中等题,答案:a b +.17.如图,AB ∥EF ∥CD ,∠ABC=46°,∠CEF=154°,则∠BCE= °.分析:考查角平分线的性质及角的运算,简单题,答案:20°.18.若关于x 的方程2222x mx x++=--的解为正数,则m 的取值范围是 . 分析:考查分式方程及不等式的应用,中等题,答案:6m <且0m ≠. 三、解答题(本大题共6小题,共46分) 19.(本题共6分)计算:(1)2237.512.5- (2)2(2)(2)x a a a x ---解:(1)原式(37.512.5)(37.512.5)=-+………………………2分25501250=⨯=………………………3分(2)原式222442x ax a a ax =-+-+………………………5分 2232x ax a =-+………………………6分分析:(1)考查利用因式分解进行简便运算,简单题;(2)整式乘法的应用,简单题.20.(本题共8分)解不等式:135432y y +--≥,并将其解集在数轴上表示出来.解:去分母,得:2(1)3(35)24y y +--≥………………………4分 去括号,得: 2291524y y +-+≥, 移项、合并同类项,得:77y -≥,系数化为1,得:1y ≤-………………………6分FE DCBA(第17题图)在数轴上表示不等式的解集为:……………………8分分析:考查解一元一次不等式,简单题.21.(本题共8分)先化简,再求值:235(2)236m m m m m -÷+---,其中23m =. 解:原式323(2)(3)(3)m m m m m m --=⋅-+- ……………………3分13(3)m m =+ ………………………6分当23m =时,原式322= ……………………………8分分析:考查分式的化简、求值,简单题.22.(本题共8分)如图,直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G ,若∠EFG =72°,求∠MEG 的度数. 解:因为AB ∥CD所以∠MEB =∠EFG =72°(两直线平行,同位角相等),∠FEB +∠EFG =180°(两直线平行,同旁内角互补),即∠FEB =108°…………………………4分 而EG 平分∠BEF ,所以∠GEB =12∠FEB =54°(角平分线定义)…………………………6分故∠MEG =∠GEB +∠MEB =54°+72°=126°…………………………8分 说明:括号中的理由可以不写.分析:考查平行线的性质、角平分线及角的计算,简单题.23.(本题共8分)某商家预测一种衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.G F EMNDCBA-4 -3 -2 -1 0 1 2 3 4(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,如果两批衬衫全部售完利润率不低于30%(不考虑其它因素),那么每件衬衫的标价至少是多少元?(结果保留整数)解:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件, 由题意可得:2880013200102x x-=,……………………2分 解得120x =,经检验120x =是原方程的根.……………………3分 答:该商家购进的第一批衬衫是120件.…………………………4分(2)设每件衬衫的标价至少是a 元,由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:28800240120÷=(元/件).…………5分由题意可得:120(110)1202(120)30%(2880013200)a a -+⨯-≥⨯+……7分 解得21513a ≥,即每件衬衫的标价至少是152元.………………8分分析:(1)考查列分式方程解应用题,简单题;(2)考查列一元一次不等式解应用题,中等题.24.(本题共8分)如图是用总长为8米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC =EB=x 米. (1)用含x 的代数式表示AB 、BC 的长;(2)用含x 的代数式表示长方形ABCD 的面积(要求化简). 解:(1)由题意得,AE=DF=HG=2x ,DH=HA=GE=FG ,所以AB=23x x x +=(米)……3分 BC=AD=EF=83328833x x x x----=(米)…………6分(2)8833ABCD xS AB BC x -=⨯=⨯………………………7分 2(88)88x x x x =-=-(平方米)………………………8分 分析:考查列代数式,及整式的应用,较难题.x区域③②区域①区域A BCEFHGD。

2015-2016学年七年级第二学期期末考试数学试题带答案

2015-2016学年度初一年下学期期末质量检测数 学 试 题(满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.方程63-=x 的解是( )A .2-=xB .6-=xC .2=xD .12-=x 2.若a >b ,则下列结论正确的是( ).A.55-<-b aB. b a 33>C. b a +<+22D.33ba <3.下列图案既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.现有3cm 、4cm 、5cm 、7cm 长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是( ) A . 1 B . 2 C . 3 D . 4 5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购 其中某一种地砖镶嵌地面,可供选择的地砖共有( ) A .1种 B .2种 C .3种 D .4种6.一副三角板如图方式摆放,且∠1的度数比∠2的度数大50°,设1,2x y ︒︒∠=∠=,则可得方程组为( )50.180x y A x y =-⎧⎨+=⎩ 50.180x y B x y =+⎧⎨+=⎩ 50.90x y C x y =+⎧⎨+=⎩ 50.90x y D x y =-⎧⎨+=⎩7.已知,如图,△ABC 中,∠B =∠DAC ,则∠BAC 和∠ADC 的关系是( )A .∠BAC <∠ADCB .∠BAC =∠ADC C . ∠BAC >∠ADCD . 不能确定 二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若25x y -+=,则________=y (用含x 的式子表示). 9.一个n 边形的内角和是其外角和的2倍,则n = .第6题图第7题图10.不等式93-x <0的最大整数....解是 . 11.三元一次方程组⎪⎩⎪⎨⎧=+=+=+895x z z y y x 的解是 .12.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 .13.如图,在△ABC 中,∠B =90°,AB =10.将△ABC 沿着BC 的方向平移至△DEF ,若平移的距离是3,则图中阴影部分的面积为 .14.如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE = ______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 道题.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB ′C ′D ′的位置,旋转角为α (90<<αo ),若∠1=110°,则α=______°.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)解方程:62221+-=--y y y19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来.20.(9分)解方程组:⎩⎨⎧=+=-16323y x y x第16题图DEA BCB第12题图第13题图第14题图第17题图21.(9分)解不等式组: 338213(1)8x x x-⎧+≥⎪⎨⎪--<-⎩(注:必须通过画数轴求解集)22.(9分)如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =30°,将△ABD沿AD 折叠得到△AED ,AE 与BC 交于点F . (1)填空:∠AFC = 度; (2)求∠EDF 的度数.23.(9分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得||2PC PA -的值最大.24.(9分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图中的图⑴);⑵过一条边的四等分点作这边的垂线段(图⑵)(图⑵中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图⑶、图⑷两个正方形中画出另外两种不同的分割方法.............(正确画图,不写画法)ACDB E F25.(13分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元; 营业员B :月销售件数300件,月总收入2700元; 假设营业员的月基本工资为x 元,销售每件服装奖励y 元. (1)求x 、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件? (3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点D .①当70α=时,∠②BDC ∠α的代数式表示);(2)如图2,若ABC ∠的平分线与ACE ∠角平分线交于点F ,求BFC ∠的度数(用含α的代数式表示).(3)在(2)的条件下,将FBC ∆以直线BC 为对称轴翻折得到GBC ∆,GBC ∠的角平分线与GCB ∠的角平分线交于点M (如图3),求BMC ∠的度数(用含α的代数式表示).BACBAA图1图22015-2016学年度初一年下学期期末质量检测数学试卷参考答案说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面得分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完涉及应得的累计分数.一、选择题(每题3分,共21分)1.A2.B3.D4.C5.C6.C7.B 二、填空题(每题4分,共40分)8.52+x ;9.6;10.2; 11.⎪⎩⎪⎨⎧===632z y x ;12.4;13.30;14.15;15.5;16.20; 17.(1)11;(2)120.三、解答题:(89分) 18.(9分)解: 62221+-=--y y y )2(12)1(36+-=--y y y ………………3分 212336--=+-y y y ………………5分 321236--=+-y y y74=y …………………………8分 47=y …………………………9分 19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来. 解:1335+≤-x x ……………………2分 42≤x ………………………4分 2≤x ………………………6分它在数轴上的表示(略)(数轴正确1分,实心及方向2分)………………9分 20.(9分)解方程组:⎩⎨⎧⋯⋯=+⋯⋯⋯⋯=-)()(2163213y x y x方法一:用代入法解的得分步骤解:由(1)得 3+=y x (3)……3分 把(3)代入(2)得1633(2=++y y ) 解得2=y ………6分把2=y 代入(3) 得5=x ……8分方法二:用加减法解的得分步骤解:由(2)-(1)×2得 105=y …………………4分 2=y ……………6分 把2=y 代入(1)得5=x ……………………8分21.(9分)解:由(1)得13≥x ……………………3分由(2)得2->x ……………………6分在数轴上表示两个解集(略)………7分所以原不等式组的解是:13≥x …………9分 22.(9分)解:(1)110; ………………………………………… 3分(2)解法一:∵∠B=50°,∠BAD=30°,∴∠ADB=180°-50°-30°=100°, ……… 5分 ∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, …………………… 7分 ∴∠EDF=∠EDA+∠BDA-∠BDF=100°+100°-180°=20°. … 9分解法二: ∵∠B=50°,∠BAD=30°, ∴∠ADB=180°-50°-30°=100°, ……………………………………… 5分 ∵△AED 是由△ABD 折叠得到, ∴∠ADE=∠ADB=100°, …………………………………………………… 6分 ∵∠ADF 是△ABD 的外角, ∴∠ADF=∠BAD+∠B=50°+30°=80°,…………………………………… 7分 ∴∠EDF=∠ADE-∠ADF=100°-180°=20°. ……………………………… 9分(注:其它解法按步给分) 23.(9分)解:作图如下:24.(9分)答案不惟一.P ACD BEF (1)正确画出△A 1B 1C 1. ………………3分 (2)正确画出△A 2B 2C 2. ………………6分 (3)正确画出点P . ……………………9分(注:画对一个得5分,两个得9分)∵只能为正整数 ∴m 最小为434答:他当月至少要卖434件.………………………………………………10分 (3)设一件甲为a 元,一件乙为b 元,一件丙为c 元,则⎩⎨⎧=++=++3703235023c b a c b a …………………………………………………………11分 将两等式相加得720444=++c b a 则180=++c b a答:购买一件甲、一件乙、一件丙共需180元.………………………………13分26.(13分)解:(1)①125;②α2190+;………………………………4分 (2)∵BF 和CF 分别平分ABC ∠和ACE ∠ ∴ABC FBC ∠=∠21,ACE FCE ∠=∠21……………5分 ∴FBC FCE BFC ∠-∠=∠……………………………6分 )(21ABC ACE ∠-∠= A ∠=21……………………………………………7分 即α21=∠BFC ………………………………………………8分(3)由轴对称性质知:α21=∠=∠BFC BGC ………………10分 由(1)②可得BGC BMC ∠+=∠2190………………12分 ∴α4190+=∠BMC .……………………………………13分。

2016年河北省沧州市七年级下学期数学期末试卷与解析答案(冀教版)

2015-2016学年河北省沧州市七年级(下)期末数学试卷(冀教版)一、精心选一选,相信自己的判断力!(本题共10小题,每小题3分)1.(3分)下列运算中,正确的是()A.x2•x3=x6B.(ab)3=a3b3C.3a+2a=5a2D.(x3)2=x52.(3分)如图所示的图案分别是三菱、大众、奥迪、奔驰汽车的车标,其中可以看做是由“基本图案”经过平移得到的是()A.B. C.D.3.(3分)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm4.(3分)如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于()A.70°B.80°C.90°D.110°5.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.16.(3分)若(x﹣3)(x+5)是x2+px+q的因式,则p为()A.﹣15 B.﹣2 C.8 D.27.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.8.(3分)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是()A.60°B.70°C.110° D.80°9.(3分)已知二元一次方程组,则x﹣y等于()A.1.1 B.1.2 C.1.3 D.1.410.(3分)如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)二、认真填一填,试试自己的身手(本大题共10小题,每小题3分)11.(3分)多项式2ax2﹣12axy中,应提取的公因式是.12.(3分)不等式3x+2≥5的解集是.13.(3分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.14.(3分)分解因式:ma2﹣4ma+4m=.15.(3分)某书中一道方程题:+1=x,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是x=2.5,那么□处应该是数字.16.(3分)(﹣)2002×(1.5)2003=.17.(3分)在△ABC中,∠ABC=∠C,BD为AC边上的高,∠ABD=30°,则∠C=.18.(3分)如果关于x的不等式﹣k﹣x+6>0正整数解为1、2、3,则正整数k的取值范围是.19.(3分)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.20.(3分)如果方程组的解与方程组的解相同,则a+b的值为.三、解答题,精心想一想,细心算一算,才能成功!(60分)21.(8分)如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD 的周长大3cm,BC=8cm,求边AC的长.22.(10分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.23.(10分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.24.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学第二步到第三步运用了因式分解的A.提取公因式法B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.25.(10分)在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.26.(12分)我市绿色无公害蔬菜基地有甲、乙两种种植户,他们种植了A、B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如表:种植户种植A类蔬菜面积(亩)种植B类蔬菜面积(单亩)总收入(单位:元)甲3228000乙2116500说明:不同种植户的同类蔬菜每亩平均收入相等.(1)求A、B两类蔬菜每亩平均收入格式多少元?(2)某种植户准备租18亩地用来种植A、B两类蔬菜,为了使总收入不低于96000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所用租地方案.2015-2016学年河北省沧州市七年级(下)期末数学试卷(冀教版)参考答案与试题解析一、精心选一选,相信自己的判断力!(本题共10小题,每小题3分)1.(3分)下列运算中,正确的是()A.x2•x3=x6B.(ab)3=a3b3C.3a+2a=5a2D.(x3)2=x5【解答】解:A、x2•x3=x5,故此选项错误;B、(ab)3=a3b3,故此选项正确;C、3a、2a不是同类项,不能合并,故此选项错误;D、(x3)2=x6,故此选项错误;故选:B.2.(3分)如图所示的图案分别是三菱、大众、奥迪、奔驰汽车的车标,其中可以看做是由“基本图案”经过平移得到的是()A.B. C.D.【解答】解:观察图形可知,图案C可以看作由“基本图案”经过平移得到.故选:C.3.(3分)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.4.(3分)如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于()A.70°B.80°C.90°D.110°【解答】解:∵DF∥AB,∴∠BED=∠D=70°,∵∠BED+∠BEC=180°,∴∠CEB=180°﹣70°=110°.故选:D.5.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.6.(3分)若(x﹣3)(x+5)是x2+px+q的因式,则p为()A.﹣15 B.﹣2 C.8 D.2【解答】解:∵(x﹣3)(x+5)=x2+2x﹣15,∴p=2,q=﹣15;故选:D.7.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【解答】解:解不等式2x+1>﹣1,得:x>﹣1,解不等式x+2≤3,得:x≤1,∴不等式组的解集为:﹣1<x≤1,故选:B.8.(3分)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是()A.60°B.70°C.110° D.80°【解答】解:过点E作一条直线EF∥AB,则EF∥CD,∴∠A=∠1,∠C=∠2,∴∠AEC=∠1+∠2=∠A+∠C=70°.故选:B.9.(3分)已知二元一次方程组,则x﹣y等于()A.1.1 B.1.2 C.1.3 D.1.4【解答】解:由二元一次方程组,两式相加得:5x﹣5y=6,则x﹣y=1.2.故选:B.10.(3分)如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【解答】解:阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:A.二、认真填一填,试试自己的身手(本大题共10小题,每小题3分)11.(3分)多项式2ax2﹣12axy中,应提取的公因式是2ax.【解答】解:∵2ax2﹣12axy=2ax(x﹣6y),∴应提取的公因式是2ax.12.(3分)不等式3x+2≥5的解集是x≥1.【解答】解:不等式3x+2≥5移项,得3x≥3,系数化1,得x≥1.故答案为:x≥1.13.(3分)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.14.(3分)分解因式:ma2﹣4ma+4m=m(a﹣2)2.【解答】解:ma2﹣4ma+4m,=m(a2﹣4a+4),=m(a﹣2)2.15.(3分)某书中一道方程题:+1=x,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是x=2.5,那么□处应该是数字1.【解答】解:把x=2.5代入+1=x得:+1=2.5,解这个方程得:□=1.故答案为:1.16.(3分)(﹣)2002×(1.5)2003= 1.5.【解答】解:原式=(﹣×1.5)2002×1.5=(﹣1)2002×1.5=1.5.故答案为:1.5.17.(3分)在△ABC中,∠ABC=∠C,BD为AC边上的高,∠ABD=30°,则∠C= 60°或30°.【解答】解:如图1,∵BD为AC边上的高,∴∠ADB=90°,∵∠ABD=30°,∴∠A=60°,∵∠ABC=∠C,∴∠C==60°,如图2,∵BD为AC边上的高,∴∠ADB=90°,∵∠ABD=30°,∴∠BAD=60°,∵∠ABC=∠C,∴∠C=30°,综上所述:∠C的度数为:60°或30°.故答案为:60°或30°.18.(3分)如果关于x的不等式﹣k﹣x+6>0正整数解为1、2、3,则正整数k 的取值范围是2.【解答】解:解不等式﹣k﹣x+6>0,得x<6﹣k.∵不等式的正整数解为1,2,3,且k为正整数,∴6﹣k=4,即k=2,故答案为2.19.(3分)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.【解答】解:∵∠1=155°,∴∠EDC=180°﹣155°=25°,∵DE∥BC,∴∠C=∠EDC=25°,∵△ABC中,∠A=90°,∠C=25°,∴∠B=180°﹣90°﹣25°=65°.故答案为:65°.20.(3分)如果方程组的解与方程组的解相同,则a+b的值为1.【解答】解:把代入方程组,得:,①+②,得:7(a+b)=7,则a+b=1.故答案为1.三、解答题,精心想一想,细心算一算,才能成功!(60分)21.(8分)如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD 的周长大3cm,BC=8cm,求边AC的长.【解答】解:∵CD为△ABC的AB边上的中线,∴AD=BD,∵△BCD的周长比△ACD的周长大3cm,∴(BC+BD+CD)﹣(AC+AD+CD)=3,∴BC﹣AC=3,∵BC=8,∴AC=5.22.(10分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.=(3a+b)(2a+b)﹣(a+b)2,【解答】解:S阴影=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2,=5a2+3ab(平方米)当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63(平方米).23.(10分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.【解答】解:∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=∠EFD=65°;∴∠BHF=180°﹣∠HFD=115°.24.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学第二步到第三步运用了因式分解的CA.提取公因式法B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式,选择C,故答案为:C;(2)该同学因式分解的结果不彻底,最后结果为(x﹣2)4;故答案为:不彻底;(x﹣2)4;(3)原式=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.25.(10分)在“五•一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.【解答】解:(1)设成人人数为x人,则学生人数为(12﹣x)人.则35x +(12﹣x)=350解得:x=8故学生人数为12﹣8=4人,成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16=336元.336<350所以,购团体票更省钱.答:有成人8人,学生4人;购团体票更省钱.26.(12分)我市绿色无公害蔬菜基地有甲、乙两种种植户,他们种植了A、B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如表:种植户种植A类蔬菜面积(亩)种植B类蔬菜面积(单亩)总收入(单位:元)甲3228000乙2116500说明:不同种植户的同类蔬菜每亩平均收入相等. (1)求A 、B 两类蔬菜每亩平均收入格式多少元?(2)某种植户准备租18亩地用来种植A 、B 两类蔬菜,为了使总收入不低于96000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所用租地方案.【解答】解:(1)设A 、B 两类蔬菜每亩平均收入分别是x 元,y 元,根据题意得:,解得:,答:A 、B 两类蔬菜每亩平均收入分别是5000元和6500元;(2)设需种植A 类蔬菜y 亩,根据题意得:,解得:9<y ≤14, ∵y 为整数,∴y=10,11,12,13,14, ∴共有5种租地方案,方案一:种植A 类蔬菜10亩,种植B 类蔬菜8亩; 方案二:种植A 类蔬菜11亩,种植B 类蔬菜7亩; 方案三:种植A 类蔬菜12亩,种植B 类蔬菜6亩; 方案四:种植A 类蔬菜13亩,种植B 类蔬菜5亩; 方案五:种植A 类蔬菜14亩,种植B 类蔬菜4亩.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年河北省沧州市七年级(下)期末数学试卷(新人教版)一、正确选择.(本大题10个小题,每小题2分,共20分)1.如图所示,下列判断正确的是()A.图(1)中∠1与∠2是一组对顶角B.图(2)中∠1与∠2是一组对顶角C.图(3)中∠1与∠2是一组邻补角D.图(4)中∠1与∠2是互为邻补角2.设a,b,c是在同一平面内的三条不同的直线,则在下面四个命题中,正确的有()①如果a与b相交,b与c相交,那么a与c相交;②如果a与b平行,b与c平行,那么a与c平行;③如果a与b垂直,b与c垂直,那么a与c垂直;④如果a与b平行,b与c相交,那么a与c相交.A.4个 B.3个 C.2个 D.1个3.在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC 在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有()A.①②③④B.①②③④⑤C.①②③⑤D.①③④⑤4.下列各数中是无理数的是()A.B.C.D.35.小敏的家在学校正南150m,正东方向200m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对表示为()A.(﹣200,﹣150)B.(200,150)C.(200,﹣150) D.(﹣200,150)6.下列方程组中是二元一次方程组的是()A.B.C.D.7.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.8.如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣39.不等式<1的正整数解为()A.1个 B.3个 C.4个 D.5个10.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件二、准确填空.(本大题10个小题,每小题3分,共30分)11.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.12.如图所示,若AB∥DC,∠1=39°,∠C和∠D互余,则∠D=,∠B=.13.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°,其中能判断a∥b的是(填序号).14.把命题“等角的余角相等”写成“如果…,那么….”的形式为.15.﹣64的立方根是.16.将点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,﹣1),则x+y=.17.某班在大课间活动中抽查了20名学生每分钟跳绳次数,得到如下数据(单位:次):50,63,77,83,87,88,89,9l,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是.18.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是,最小的值是,如果组距为1.5,则应分成组.19.某汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的9折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同,那么该款汽车的进价是万元,标价是万元.20.若不等式组有解,则a的取值范围是.三、解答题.(本大题6个小题,共70分)21.(10分)解方程组:(1)(2).22.(10分)解下列不等式(组),并把解集在数轴上表示出来.(1)1﹣>(2).23.(12分)如图所示,已知∠B=∠C,AD∥BC,试说明:AD平分∠CAE.24.(12分)小明给如图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标.(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?请说明理由.25.(12分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.26.(14分)阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的小数部分为b,求的值.2015-2016学年河北省沧州市七年级(下)期末数学试卷(新人教版)参考答案与试题解析一、正确选择.(本大题10个小题,每小题2分,共20分)1.如图所示,下列判断正确的是()A.图(1)中∠1与∠2是一组对顶角B.图(2)中∠1与∠2是一组对顶角C.图(3)中∠1与∠2是一组邻补角D.图(4)中∠1与∠2是互为邻补角【考点】对顶角、邻补角.【分析】根据对顶角和邻补角的定义作出判断即可.【解答】解:根据对顶角和邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点评】本题考查对顶角和邻补角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.2.设a,b,c是在同一平面内的三条不同的直线,则在下面四个命题中,正确的有()①如果a与b相交,b与c相交,那么a与c相交;②如果a与b平行,b与c平行,那么a与c平行;③如果a与b垂直,b与c垂直,那么a与c垂直;④如果a与b平行,b与c相交,那么a与c相交.A.4个 B.3个 C.2个 D.1个【考点】命题与定理.【分析】利用两条直线的位置关系分别判断后即可确定正确的选项.【解答】解:①如果a与b相交,b与c相交,那么a与c相交,错误;②如果a与b平行,b与c平行,那么a与c平行,正确;③如果a与b垂直,b与c垂直,那么a与c垂直,错误;④如果a与b平行,b与c相交,那么a与c相交,正确,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解两条直线的位置关系,难度不大.3.在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC 在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有()A.①②③④B.①②③④⑤C.①②③⑤D.①③④⑤【考点】平移的性质.【分析】根据图形平移的基本性质,对①、②、③、④、⑤逐一进行判断,验证其是否正确.【解答】解:①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵经过平移,对应点所连的线段平行且相等,∴△ABC在平移过程中,对应边中点所连线段的长等于平移的距离,正确;⑤∵移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确;∴①、③、④、⑤都符合平移的基本性质,都正确.故选D.【点评】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等或共线,对应线段平行且相等,对应角相等.4.下列各数中是无理数的是()A.B.C.D.3【考点】无理数;立方根.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:=3,,3是有理数,是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.小敏的家在学校正南150m,正东方向200m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对表示为()A.(﹣200,﹣150)B.(200,150)C.(200,﹣150) D.(﹣200,150)【考点】坐标确定位置;方向角.【分析】根据题意,建立适当坐标系,从而确定要求点的位置.【解答】解:以学校位置为原点,以正北、正东为正方向,建立直角坐标系.因为小敏的家在学校正南150m,正东方向200m处,所以用有序实数对表示为(200,﹣150).故选C.【点评】考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.6.下列方程组中是二元一次方程组的是()A.B.C.D.【考点】二元一次方程组的定义.【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【解答】解:A、第一个方程值的xy是二次的,故此选项错误;B、第二个方程有,不是整式方程,故此选项错误;C、含有3个未知数,故此选项错误;D、符合二元一次方程定义,故此选项正确.故选D.【点评】此题主要考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.7.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是根据题意找出合适的等量关系列方程组.8.如果x >y ,则下列变形中正确的是( )A .﹣ x yB . yC .3x >5yD .x ﹣3>y ﹣3【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:A 、两边都乘以﹣,故A 错误;B 、两边都乘以,故B 错误;C 、左边乘3,右边乘5,故C 错误;D 、两边都减3,故D 正确;故选:D .【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.9.不等式<1的正整数解为( )A .1个B .3个C .4个D .5个【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,然后找出符合题意的正整数解.【解答】解:解不等式得,x <4,则不等式<1的正整数解为1,2,3,共3个. 故选:B .【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.10.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【考点】全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.【点评】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.二、准确填空.(本大题10个小题,每小题3分,共30分)11.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.【点评】本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.12.如图所示,若AB∥DC,∠1=39°,∠C和∠D互余,则∠D=39°,∠B= 129°.【考点】平行线的性质;余角和补角.【分析】由平行线的性质可知∠D=∠1,根据∠C和∠D互余可求得∠C,最后根据平行线的性质可求得∠B.【解答】解:∵AB∥DC,∴∠D=∠1=39°.∵∠C和∠D互余,∴∠C+∠D=90°.∴∠C=90°﹣39°=51°.∵AB∥DC,∴∠B+∠C=180°.∴∠B=180°﹣51°=129°.故答案为:39°;129°.【点评】本题主要考查的是平行线的性质、余角的定义,掌握平行线的性质是解题的关键.13.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°,其中能判断a∥b的是①③④(填序号).【考点】平行线的判定.【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:①∵∠1=∠2,∴a∥b,故此选项正确;②∠3=∠6无法得出a∥b,故此选项错误;③∵∠4+∠7=180°,∴a∥b,故此选项正确;④∵∠5+∠3=180°,∴∠2+∠5=180°,∴a∥b,故此选项正确;故答案为:①③④.【点评】此题主要考查了平行线的判定,正确把握平行线的几种判定方法是解题关键.14.把命题“等角的余角相等”写成“如果…,那么….”的形式为如果两个角是相等角的余角,那么这两个角相等.【考点】命题与定理.【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【解答】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为如果两个角是相等角的余角,那么这两个角相等.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.15.﹣64的立方根是﹣4.【考点】立方根.【分析】根据立方根的定义求解即可.【解答】解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.将点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,﹣1),则x+y=﹣3.【考点】坐标与图形变化-平移.【分析】根据向下平移纵坐标减,向左平移横坐标减列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,﹣1),∴x=﹣3﹣2,y﹣3=﹣1,解得x=﹣5,y=2,所以,x+y=﹣5+2=﹣3.故答案为:﹣3.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.某班在大课间活动中抽查了20名学生每分钟跳绳次数,得到如下数据(单位:次):50,63,77,83,87,88,89,9l,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是0.20.【考点】频数与频率.【分析】首先找出在90~110这一组的数据个数,再根据频率=频数÷总数可得答案.【解答】解:跳绳次数在90~110这一组的有9l,93,100,102共4个数,频率是:4÷20=0.20.故答案为:0.20.【点评】此题主要考查了频率,关键是掌握频率=频数÷总数.18.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是53,最小的值是47,如果组距为1.5,则应分成5组.【考点】频数(率)分布表.【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:分析数据可得:最大的值是53,最小的值是47,则它们的差为53﹣47=6;如果组距为1.5,由于=4;但由于要包含两个端点,故可分为5组.故本题答案为:53;47;5.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.19.某汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的9折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同,那么该款汽车的进价是10万元,标价是12万元.【考点】一元一次方程的应用.【分析】直接假设出进价进而表示出标价,进而表示出利润得出答案.【解答】解:设该款汽车的进价x万元,根据题意可得:(1+20%)x•0.9×9﹣9x=4×[(1+20%)x﹣0.2﹣x]解得:x=10,则(1+20%)×10=12(万元).故答案为:10,12.【点评】此题主要考查了一元一次方程的应用,正确表示出利润是解题关键.20.若不等式组有解,则a的取值范围是a>﹣1.【考点】不等式的解集.【分析】先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.【解答】解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1.故答案为:a>﹣1.【点评】考查了不等式组的解集,求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.三、解答题.(本大题6个小题,共70分)21.(10分)(2016春•沧州期末)解方程组:(1)(2).【考点】解三元一次方程组;解二元一次方程组.【分析】(1)②×2得:4x+2y=26③,再利用③﹣①可消去未知数x,进而可得y的值,然后再把y的值代入②可计算出x的值,进而可得答案;(2)首先利用①+②可消去未知数y得3x+4z=﹣4④,然后再③×2得:4x﹣4z=﹣10⑤,再把④⑤组合消去未知数z,计算出x的值,进而可得y、z的值,从而可得方程组的解.【解答】解:(1)②×2得:4x+2y=26③,③﹣①得:5y=15,y=3,把y=3代入②得:x=5,方程组的解为;(2)①+②得:3x+4z=﹣4④,③×2得:4x﹣4z=﹣10⑤,④+⑤得:7x=﹣14,解得:x=﹣2,把x=﹣2代入①得:﹣6﹣y=﹣7,y=1,把y=1代入②得:1+4z=3,z=,方程组的解为.【点评】此题主要考查了二元一次方程和三元一次方程组的解,关键是掌握加减消元法解方程组.22.(10分)(2016春•沧州期末)解下列不等式(组),并把解集在数轴上表示出来.(1)1﹣>(2).【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)首先去分母,然后去括号、移项、合并同类项、系数化为1即可求解;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:(1)去分母,得10﹣2(2﹣3x)>5(1+x),去括号,得10﹣4+6x>5+5x,移项,得6x﹣5x>5﹣10+4,合并同类项,得x>﹣1.;(2),解①得x≥1,解②得x>2..则不等式组解集是:x>2.【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.(12分)(2016春•沧州期末)如图所示,已知∠B=∠C,AD∥BC,试说明:AD平分∠CAE.【考点】平行线的性质;角平分线的定义.【分析】本题主要利用两直线平行,同位角相等和角平分线的定义进行做题.【解答】证明:∵AD∥BC(已知)∴∠B=∠EAD(两直线平行,同位角相等)∠DAC=∠C(两直线平行,内错角相等)又∵∠B=∠C(已知)∴∠EAD=∠DAC(等量代换)∴AD平分∠CAE(角平分线的定义).【点评】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.24.(12分)(2016春•沧州期末)小明给如图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标.(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?请说明理由.【考点】坐标确定位置.【分析】(1)直接利用以医院为原点建立平面直角坐标系即可;(2)根据各个象限点的特点即可得出所在第几象限;(3)根据同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标不一样,即可说明理由.【解答】解:(1)体育场的坐标为(﹣2,5),文化宫的坐标为(﹣1,3),超市的坐标为(4,﹣1),宾馆的坐标为(4,4),市场的坐标为(6,5);(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限;(3)不是,因为对于同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.【点评】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,比较基础.25.(12分)(2014•宜宾)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是54度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用C的人数÷所占百分比可得被调查的学生总数;(2)利用总人数减去其它各项的人数=A的人数,再补图即可;(3)计算出B所占百分比,再用360°×B所占百分比可得答案;(4)首先计算出样本中喜欢健美操的学生所占百分比,再利用样本估计总体的方法计算即可.【解答】解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(14分)(2016春•沧州期末)阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的小数部分为b,求的值.【考点】估算无理数的大小.【分析】根据<,<,可得出a和b的值,代入运算即可得出答案.【解答】解:∵<,<,∴a=﹣2,b=﹣3,∴=﹣2+﹣3﹣=﹣5.【点评】此题考查了估算无理数的大小,属于基础题,注意掌握“夹逼法”的运用.。

相关文档
最新文档