2018届辽宁省沈阳市第二中学高三下学期第一次模拟考试数学(理)试题(图片版)

合集下载

辽宁省沈阳市郊联体2018届高三第一次模拟考试理数试题 扫描版含答案

辽宁省沈阳市郊联体2018届高三第一次模拟考试理数试题 扫描版含答案

2017-----2018学年度下学期沈阳市郊联体第一次模拟考试题高三数学(理科)答案考试时间120分钟试卷总分150分命题人:沈阳市第八十三中学兰义兴一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B2、D3、D4、B5、A6、A7、C 8 、C 9、A1 0、B 11、C 12、B二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题纸上.)13、___252x 5___. 14、_____ 15、 [41,4]_ 16、___三、解答题:(满分70分.解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17、(本小题满分12分)解:(Ⅰ)由a n 2+2a n =4S n +3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n 2+2(a n+1﹣a n )=4a n+1,即2(a n+1+a n )=a n+12﹣a n 2=(a n+1+a n )(a n+1﹣a n ),∵a n >0,∴a n+1﹣a n =2,…3分∵a 12+2a 1=4a 1+3,∴a 1=﹣1(舍)或a 1=3,则{a n }是首项为3,公差d=2的等差数列,∴{a n }的通项公式a n =3+2(n ﹣1)=2n+1:…4分∴,…5分 ∴.…(7分)(Ⅱ)∵tT n <a n +11,即,∴,…9分 又≥6,当且仅当n=3时,等号成立, ∴≥162,…11分 ∴t <162. …12分18、(本小题满分12分)解:(Ⅰ)∵在△PBC中,PB=,PC=2,BC=1,∴PC2+BC2=PB2.∴PC⊥BC.同理PC⊥DC.∴PC⊥面ABCD.…1分如图以点C为原点,CD,CB,CP,所在直线为x,y,z轴建立空间直角坐标系,则A(1,1,0),B(0,1,0),D(1,0,0),P(0,0,2)∴.设E(0,0,a),则,∵,∴DB⊥AE.…3分(Ⅱ),.设平面DBE的法向量由,可取.∵PA∥面BDE,∴,即,解得a=1.…5分∴,设直线AE与平面BDE所成角的为θsinθ=|cos<>|=.直线AE与平面BDE所成角的正弦值为..…8分(Ⅲ),,.设平面ADE和平面ABE的法向量分别为,由,可取,同理可得.…10分设二面角D﹣AE﹣B的大小为β,|cosβ|=,…11分由图可知β为钝角,二面角D﹣AE﹣B的大小为.…12分19、(本小题满分12分)解:(Ⅰ)记“所选取的2名学生选考物理、化学、生物科目数量相等”为事件A,则,所以他们选考物理、化学、生物科目数量不相等的概率为;…3分(Ⅱ)由题意可知X的可能取值分别为0,1,2;则.,,;…6分从而X的分布列为:数学期望为;…8分(Ⅲ)所调查的50名学生中物理、化学、生物选考两科目的学生有25名,相应的频率为,由题意知,Y~;…10分所以事件“Y≥2”的概率为.…12分20、(本小题满分12分)解:(Ⅰ)∵点Q 在线段AP 的垂直平分线上,∴|AQ|=|PQ|.又|CP|=|CQ|+|QP|=2,∴|CQ|+|QA|=2>|CA|=2.∴曲线E是以坐标原点为中心,C(﹣1,0)和A(1,0)为焦点,长轴长为2的椭圆.…2分设曲线E 的方程为=1,(a>b>0).∵c=1,a=,∴b2=2﹣1=1.∴曲线 E的方程为.…4分(Ⅱ)设M(x1,y1),N(x2,y2).联立消去y,得(1+2k2)x2+4kmx+2m2﹣2=0.此时有△=16k2﹣8m2+8>0.由一元二次方程根与系数的关系,得x1+x2=,x1x2=,.…5分∴|MN|==…7分∵原点O到直线l的距离d=﹣,…8分∴S△MON==.,由△>0,得2k2﹣m2+1>0.又m≠0,…9分∴据基本不等式,得S△MON=.≤=,…11分当且仅当m2=时,不等式取等号.∴△MON面积的最大值为.…12分21、(本小题满分12分)解:(1)当a=﹣1时,f(x)=e﹣x+x,则f′(x)=﹣+1.令f'(x)=0,得x=0.…2分当x<0时,f'(x)<0;当x>0时,f'(x)>0.∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1,f(x)的最小值为1.…4分(2)若x≥0时,f(﹣x)+ln(x+1)≥1,即e x+ax+ln(x+1)﹣1≥0(*)令g(x)=e x+ax+ln(x+1)﹣1,则…5分①若a≥﹣2,由(1)知e﹣x+x≥1,即e﹣x≥1﹣x,…6分故e x≥1+x∴函数g(x)在区间[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴(*)式成立.…8分②若a<﹣2,令,则∴函数ϕ(x)在区间[0,+∞)上单调递增,由于φ(0)=2+a<0,.故∃x0∈(0,﹣a),使得φ(x0)=0…10分则当0<x<x0时,φ(x)<φ(x0)=0,即g′(x)<0∴函数g(x)在区间(0,x0)上单调递减,∴g(x0)<g(0)=0,即(*)式不恒成立.综上所述,实数a的取值范围是[﹣2,+∞).…12分选考题.(本小题满分10分).请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分。

届高三数学(理)第一次月考模拟试卷及答案

届高三数学(理)第一次月考模拟试卷及答案

届高三数学(理)第一次月考模拟试卷及答案2018届高三数学(理)第一次月考模拟试卷及答案高考数学知识覆盖面广,我们可以通过多做数学模拟试卷来扩展知识面!以下是店铺为你整理的2018届高三数学(理)第一次月考模拟试卷,希望能帮到你。

2018届高三数学(理)第一次月考模拟试卷题目一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=( )A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ >0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是( )A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin ),b=f(cos ),c=f(tan ),则( )A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1 ,1]时,f(x)=1﹣x2,g(x)= ,则函数h(x)=f(x)﹣g(x)在区间x∈[-5 ,11]内零点的个数为( ) A.8 B.10 C.12 D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n 项和Sn的取值范围是( )A.[ ,2)B.[ ,2]C.[ ,1)D.[ ,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为( )A . B.C. D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( )①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值= =…= 成立,则n的取值集合是( )A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是 .14.定义在R上的奇函数f(x)以2为周期,则f(1)= .15.设有两个命题,p:x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .16.在下列命题中①函数f(x)= 在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则 f(x)dx=2 f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为 (写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式: >0(c为常数).19.已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )= .(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。

2018年辽宁省沈阳市高考数学一模试卷(理科)

2018年辽宁省沈阳市高考数学一模试卷(理科)
(U)求二面角A-PB- C的余弦值.
19.(12分)高中生在被问及 家,朋友聚集的地方,个人空间”三个场所中 感到 最幸福的场所在哪里? ”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况
是:家占占、朋友聚集的地方占
|5
家里感到最幸福)”是否与国别有关,构建了如下2X2列联表.
的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积. 若在圆 内随机取一点,贝吐匕点取自该圆内接正六边形的概率是(
A.
6. (5分)如图所示,网络纸上小正方形的边长为1,粗实线画出的是某简单几 何体的三视图,则该几何体的体积为()
A.-15B.-9C.1D.9
8.(5分)若4个人按原来站的位置重新站成一排,恰有一个人站在自己原来的 位置,则共有()种不同的站法.
17.(12分)在厶ABC中,已知内角A,B,C对边分别是a,b,c,且2ccosB=2<+b.
(I)求/C;
(U)若a+b=6,AABC的面积为-;,求c.
18.(12分)如图所示,在四棱锥P-ABCD中,平面PAD丄平面ABCD底面ABCD是正方形,且PA=PD/APD=90.
(I)证明:平面PABL平面PCD
其中n=a+b+c+d.
P(k>ko)
0.050
0.025
0.010
0.001
ko
3.841
5.024
6.635
10.828
(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则 按所做的第一题记分.[选修4-4:极坐标与参数方程]
22.(10分)设过原点0的直线与圆(X-4)2+y2=16的一个交点为P,M点为 线段0P的中点,以原点0为极点,x轴的正半轴为极轴建立极坐标系.

2018年辽宁省沈阳市高三教学质量检测理数试题Word版含答案

2018年辽宁省沈阳市高三教学质量检测理数试题Word版含答案

2018年辽宁省沈阳市高三教学质量检测理数试题第Ⅰ卷(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合(){}03<-=x x x A ,{}32101,,,,-=B ,则=B A ( ) A .{}1- B .{}21, C .{}30, D .{}3211,,,- 2.已知i 是虚数单位,复数i z i 21-=⋅,则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知平面向量()3,4a =,1(,)2b x =,若→→b a //,则实数x 为( )A . 32-B .32C .83D .83- 4.命题”:“21)21(,N ≤∈∀+x x P 的否定为( )A .+∈∀N x ,2121>x )(B .+∉∀N x ,2121>x )(C.+∉∃N x ,2121>x )( D .+∈∃N x ,2121>x )(5.已知直线)3(:+=x k y l 和圆1)1(:22=-+y x C ,若直线l 与圆C 相切,则=k ( ) A .0 B .3 C. 33或0 D .3或06.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积是( )A .10636+B . 10336+ C. 54 D .277.将D C B A 、、、这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是( ) A .21 B .41 C. 61 D .818.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N 除以正整数m 后的余数为n ,则记为)mod (m n N ≡,例如mod3)211(=.现将该问题以程序框图的算法给出,执行该程序框图,则输出的n 等于 ( )A .21B .22 C.23 D .249.将函数0)ω)(4πsin(ω2)(>+=x x f 的图象向右平移ω4π个单位,得到函数)(x g y =的图象,若)(x g y =在]3π6π[,-上为增函数,则ω的最大值为( )A .3B .2 C. 23 D .4510.已知C B A S 、、、是球O 表面上的不同点,⊥SA 平面ABC ,BC AB ⊥,1=AB ,2=BC ,若球O 的表面积为π4,则=SA ( )A .22B .1 C. 2D .2311.已知双曲线)0,0(1:2222>>=-b a by a x C 的左、右焦点分别为21F F 、,点M 与双曲线C 的焦点不重合,点M 关于21F F 、的对称点分别为B A 、,线段MN 的中点在双曲线的右支上,若12=-BN AN ,则=a( )A .3B .4 C.5 D .612.已知函数⎪⎩⎪⎨⎧>-≤+=1,)1(log 1,222)(2x x x x f x ,则函数()()[]()232--=x f x f f x F 的零点个数是( )A .4B .5 C. 6 D .7第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每小题5分,共20分. 把答案填在答题纸上)13. 二项式6)21xx +(的展开式中的常数项为 . 14. 若实数y x 、满足不等式组⎪⎩⎪⎨⎧≤-+≤+-≥03010y x y x x ,则目标函数y x z -=3的最大值为 .15. 已知ABC ∆的三个内角C B A 、、的对边分别为c b a 、、,面积为S ,且满足22)(4c b a S --=,8=+c b ,则S 的最大值为 .16. 设函数2)2()(x xg x f +=,曲线)(x g y =在点))1(1g ,(处的切线方程为019=-+y x ,则曲线)(x f y =在点))2(2f ,(处的切线方程为 .三、解答题 (本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本小题满分12分)已知数列{}n a 是公差不为0的等差数列,首项11=a ,且421a a a 、、成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足n an n a b 2+=,求数列{}n b 的前n 项和n T .18.(本小题满分12分)为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50各学生进行调查,得到如下22⨯列联表:(单位:人).(Ⅰ)据此样本,能否有99%的把握认为理科生报考“经济类”专业与性别有关?(Ⅱ)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X ,求随机变量X 的概率分布及数学期望.附:参考数据:(参考公式:21212211222112)(++++-=n n n n n n n n n χ)如图,在三棱柱111C B A ABC -中,侧面⊥C C AA 11底面ABC ,211=====BC AB AC C A AA ,且点O 为AC 中点.(Ⅰ)证明:⊥O A 1平面ABC ; (Ⅱ)求二面角11C B A A --的大小.20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a b y a x C 的左焦点为)0,6(1-F ,22+e .(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,设),(00y x R 是椭圆C 上一动点,由原点O 向圆4)()(2020=-+-y y x x 引两条切线,分别交椭圆于点Q P 、,若直线OQ OP 、的斜率存在,并记为21k k 、,求证:21k k 为定值; (Ⅲ)在(Ⅱ)的条件下,试问22OQ OP +是否为定值?若是,求出该值;若不是,说明理由.已知函数21)(ax x e x f x ---=. (Ⅰ)当0=a 时,求证:0)(≥x f ;(Ⅱ)当0≥x 时,若不等式()0≥x f 恒成立,求实数a 的取值范围; (Ⅲ)若0>x ,证明2)1n(1)1x x e x >+-(.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线x y l =:,圆⎩⎨⎧+-=+-=ϕϕsin 2y cos 1:x C ,(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线l 与圆C 的极坐标方程;(Ⅱ)设直线l 与圆C 的交点为N M 、,求CMN ∆的面积.23.(本小题满分10分)选修4-5:不等式选讲 已知函数x a x x f 21)(--=,)0>a (. (Ⅰ)若3=a ,解关于x 的不等式0)(<x f ;(Ⅱ)若对于任意的实数x ,不等式2)()(2aa a x f x f +<+-恒成立,求实数a 的取值范围.2018年辽宁省沈阳市高三教学质量检测理数试题参考答案一、选择题:(本大题共12小题,每小题5分,在每小题四个选项中,只有一项是符合题目要求的)1-5: BCCDD 6-10: ABCCB 11、12:AA二、填空题(本大题共4小题,每小题5分,共20分)13.2514. 1 15. 8 16.062=++y x 三、解答题17. (本小题满分12分)解:(Ⅰ)设数列{}n a 的公差为d ,由题设,4122a a a =, .................2分即d d 31)1(2+=+,解得01d d ==或 .................4分 又∵0≠d ,∴1d =,可以求得n a n =. .................6分 (Ⅱ)由(Ⅰ)得n n n b 2+=123(12)(22)(32)(2)n n T n =++++++++2=(123222)nn ++++++++)( .................8分222)1(1-++=+n n n . .................12分 (分别求和每步给2分) 18. (本小题满分12分)解:(Ⅰ)635.65.12225302020303005030202030)33636(50222>==⨯⨯⨯⨯=⨯⨯⨯-⨯=χ .................2分 ∴有99%的把握认为理科生愿意报考“经济类”专业与性别有关. .................4分 (Ⅱ)估计该市的全体考生中任一人报考“经济类”专业的概率为202505p == .............6分 X 的可能取值为3,2,1,0,由题意,得)52,3(~B X)3,2,1,0(,)53()52()(33===-k C k X P k k k∴随机变量X 的分布列为.................10分 ∴随机变量X 的数学期望56=)(X E . .................12分 19.(本小题满分12分)解:(Ⅰ)证明:因为C A AA 11=,且O 为AC 的中点,所以AC O A ⊥1, .................2分 又∵侧面11AAC C ⊥底面ABC ,交线为AC ,且⊂O A1平面C C AA 11, ∴⊥O A 1平面ABC . .................4分(Ⅱ)如图,以O 为原点,1,,OA OC OB 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 由已知可得(0,0,0)O ,(0,1,0)A -,1A ,1(0,C ,B∴(3,1,0)AB =,1(3,0,A B =,11(0,2,0)AC = .................6分 设平面1AA B 的一个法向量为),,(111z y xm =,则有111110000m AB y m A B ⎧⎧⋅=+=⎪⎪⇒⎨⋅==⎪⎩令11=x ,得1y =,11z =∴)1,3,1(-=m . .................8分 设平面11BC A 的法向量为),,(222z y x =,则有21122120000y m AC m A B ⎧=⎧⋅=⎪⎪⇒⎨=⋅=⎪⎩令12=x ,则20y =,21z =,∴)1,0,1(=n .................10分 ∴510102,cos =>=<n m ∴所求二面角的大小为)510arccos(-. .................12分20. (本小题满分12分) 解:(Ⅰ)由题意得,22,6==e c ,解得32=a , .................1分 ∴椭圆方程为161222=+y x . (3)分(Ⅱ)由已知,直线OP :1y k x =,OQ :2y k x =,且与圆R 相切, ∴2121001=+-k y x k ,化简得()0424201002120=-+--y k y x k x同理()0424202002220=-+--y k y x k x , .................5分 ∴12,k k 是方程22000240k x y k y -+-=的两个不相等的实数根∴2040x -≠,0∆>,44202021--=x y k k .................7分∵点00(,)R x y 在椭圆C 上,所以16122020=+y x ,即2020216x y -= ∴21421220221-=--=x x k k . .................8分 (Ⅲ)22OP OQ +是定值18.设1122(,),(,)P x y Q x y ,联立⎪⎩⎪⎨⎧=+=1612,221y x x k y 解得⎪⎪⎩⎪⎪⎨⎧+=+=212121212121122112k k y k x ∴()2121212121112k k y x ++=+ 同理,得()2222222221112k k y x ++=+. .................10分 由1212k k =-,∴2222221122OP OQ x y x y +=+++()()222221212111221112k k k k +++++= ()1821361821212111221112212121212121=++=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-++++=k k k k k k综上:1822=+OQ OP . .................12分 21. (本小题满分12分)解:(Ⅰ)0a =时,'()1,()1xxf x e x f x e =--=-. .................1分 当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >. .................2分 故()f x 在(,0)-∞单调递减,在(0,)+∞单调递增,00)(min ==)(f x f ,∴()0f x ≥ .................3分 (Ⅱ)方法一:'()12xf x e ax =--.由(Ⅰ)知1x e x ≥+,当且仅当0x =时等号成立. 故'()2(12)f x x ax a x ≥-=- 从而当120a -≥,即12a ≤时,在区间[0,)+∞上,()0f x '≥,()f x 单调递增,()(0)f x f ≥,即()0f x ≥,符合题意. .................5分 又由1(0)xe x x >+≠,可得1(0)xe x x ->-≠.从而当12a >时,'()12(1)(1)(2)x x x x xf x e a e e e e a --<-+-=--在区间(0,ln 2)a 上,'()0f x <,()f x 单调递减,()(0)f x f <,即()0f x <,不合题意. .................7分 综上得实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦. .................8分方法二:()12x f x e ax '=--,令ax e x h x 21)(--=,则a e x h x2)(-='.1)当21a ≤时,在[)+∞,0上,()0h x '≥,)(x h 递增,)0()(h x h ≥,即0)0()(='≥'f x f)(x f ∴在[)+∞,0为增函数,0)0()(=≥∴f x f ,21≤∴a 时满足条件; .................5分 2)当12>a 时,令0)(='x h ,解得a x 2ln =,在当[)0,ln 2a 上,,0)(<'x h )(x h 单调递减,()a x 2ln ,0∈∴时,有0)0()(=<h x h ,即0)0()(='<'f x f ,∴)(x f 在区间)2ln ,0(a 为减函数,∴0)0()(=<f x f ,不合题意. .................7分综上得实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-21,. .................8分(Ⅲ)由(Ⅱ)得,当21=a 时,0>x ,212x x e x ++>,即212x x e x+>-欲证不等式2)1ln()1(x x e x>+-,只需证22)1ln(+>+x xx ..................10分 设22)1ln()(+-+=x x x x F ,则222)2)(1()2(411)(++=+-+=x x x x x x F ’0>x 时,0)('>x F 恒成立,且0)0(=F ,0)(>∴x F 恒成立.所以原不等式得证. .................12分 22. (本小题满分10分)解:(Ⅰ)将C 的参数方程化为普通方程为1)2()1(22=+++y x , .................1分cos ,sin x y ρθρθ==,∴直线l 的极坐标方程为4πθ=(∈ρR ), .................3分圆C 的极坐标方程为22cos 4sin 40ρρθρθ+++=. .................5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ+++=,得04232=++ρρ解得1ρ=-,2ρ=,|MN |=1|ρ-2|ρ, .................8分因为圆C 的半径为1,则CMN ∆的面积o 11sin 452⨯=12. .................10分(用直角坐标求解酌情给分)23. (本小题满分10分)解:(Ⅰ)当3=a 时,x x x f 21|3|)(--=,即021|3|<--x x , .................1分 原不等式等价于x x x 2132<-<-, .................3分 解得62<<x ,不等式的解集为}62|{<<x x . .................5分 (Ⅱ)2||||)()(ax a x a x f x f +--=+-,原问题等价于2||||a x a x <--,.................6分 由三角绝对值不等式的性质,得|||)(|||||a x a x x a x =--≤-- .. (8)分 原问题等价于2||a a <,又0>a ,2a a <∴,解得1>a . .................10分。

2018年辽宁省沈阳市高三数学模拟试卷(理科)Word版含解析

2018年辽宁省沈阳市高三数学模拟试卷(理科)Word版含解析

2018年辽宁省沈阳市高三模拟试卷(理科数学)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合A={x|2x>1},B={x|0<x<1},则∁AB=()A.(0,1)B.(0,1] C.(1,+∞)D.[1,+∞)2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知平面向量满足,且,则向量与的夹角()A.B.C.D.4.设Sn 是等差数列{an}的前n项和,且a11=S13=13,则a9=()A.9 B.8 C.7 D.65.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为()A.x2+y2﹣2x﹣3=0 B.x2+y2+4x=0 C.x2+y2+2x﹣3=0 D.x2+y2﹣4x=06.在如图的程序框图中,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出“恭喜中奖!”的概率为()A.B.C.D.7.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为()A.B.2 C.3 D.8.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm 的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近( )A .3cmB .4cmC .5cmD .6cm9.我们知道:在平面内,点(x 0,y 0)到直线Ax+By+C=0的距离公式为d=,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x+2y+2z+3=0的距离为( )A .3B .5C .D .10.已知,则a 9等于( )A .﹣10B .10C .﹣20D .2011.已知点A 是抛物线M :y 2=2px (p >0)与圆在第一象限的公共点,且点A 到抛物线M 焦点F 的距离等于a .若抛物线M 上一动点到其准线与到点C 的距离之和的最小值为2a ,则p 为( )A .B .2C .D .412.函数y=kx+2与函数的图象至少有两个公共点,关于k 不等式(k ﹣2)a ﹣k >0有解,则实数a 的取值范围是( )A .B .C .a <﹣1D .a ≥1二.填空题:本大题共4小题,每小题5分.13.设实数x ,y 满足,则2y ﹣x 的最大值为 .14.已知数列{a n }的前n 项和为S n ,且=,a 2=5,则S 6= .15.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是.16.已知四面体ABCD中,∠BAC=∠BAD=60°,∠CAD=90°,,AC=3,AD=4,则四面体ABCD的体积V= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知=(sinx,cosx),=(,﹣1).(Ⅰ)若∥,求sin2x﹣6cos2x的值;(Ⅱ)若f(x)=•,求函数f(2x)的单调减区间.18.如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.19.传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A、B、C、D、E五个等级进行数据统计如下:根据以上抽样调查数据,视频率为概率.(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.20.已知椭圆上的动点P与其顶点,不重合.(Ⅰ)求证:直线PA与PB的斜率乘积为定值;(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN的面积.21.已知函数f(x)=lnx﹣a(x﹣1),a∈R.(Ⅰ)求函数f(x)在(1,f(1))处的切线方程;(Ⅱ)当x≥1时,f(x)≤恒成立,求a的取值范围;(Ⅲ)当x≥1时,求证:不等式e x﹣1﹣a(x2﹣x)≥xf(x)+1.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;[选修4-4:坐标系与参数方程](共1小题,满分10分)22.在直角坐标系xOy中,直线l1的方程为y=x,曲线C的参数方程为(φ是参数,0≤φ≤π).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)分别写出直线l1与曲线C的极坐标方程;(2)若直线=0,直线l1与曲线C的交点为A,直线l1与l2的交点为B,求|AB|.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|2x+1|+|2x﹣3|,(1)若关于x的不等式f(x)>|1﹣3a|恒成立,求实数a的取值范围;(2)若关于t的一元二次方程有实根,求实数m的取值范围.2018年辽宁省沈阳市高三数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合题目要求.B=()1.已知集合A={x|2x>1},B={x|0<x<1},则∁AA.(0,1)B.(0,1] C.(1,+∞)D.[1,+∞)【考点】补集及其运算.【分析】分别求出关于A、B的不等式,求出B的补集即可.【解答】解:A={x|2x>1}={x|x>0},B={x|0<x<1},B={x|x≥1},∁A故选:D.2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母变成一个实数,分子进行复数的乘法运算,整理成复数的标准形式,写出对应点的坐标,看出所在的象限.【解答】解:∵复数==1+i,∴复数对应的点的坐标是(1,1)∴复数在复平面内对应的点位于第一象限,故选A.3.已知平面向量满足,且,则向量与的夹角()A.B.C.D.【考点】数量积表示两个向量的夹角.【分析】根据平面向量的数量积公式与夹角公式,求出cos θ与θ的值.【解答】解:设向量与的夹角为θ,θ∈[0,π]由•(+)=3可得•+=3,代入数据可得2×1×cos θ+22=3,解得cos θ=﹣,∴θ=.故选:C .4.设S n 是等差数列{a n }的前n 项和,且a 11=S 13=13,则a 9=( ) A .9B .8C .7D .6【考点】等差数列的前n 项和.【分析】利用等差数列的通项公式与求和公式即可得出.【解答】解:设等差数列{a n }的公差为d ,∵a 11=S 13=13,∴a 1+10d=13a 1+d=13,解得a 1=﹣17,d=3. 则a 9=﹣17+8×3=7. 故选:C .5.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x+4y+4=0与圆C 相切,则圆C 的方程为( )A .x 2+y 2﹣2x ﹣3=0B .x 2+y 2+4x=0C .x 2+y 2+2x ﹣3=0D .x 2+y 2﹣4x=0 【考点】直线与圆的位置关系.【分析】由圆心在x 轴的正半轴上设出圆心的坐标(a ,0)a 大于0,然后利用点到直线的距离公式表示出圆心到直线3x+4y+4=0的距离,由直线与圆相切得到距离与半径相等列出关于a 的方程,求出方程的解即可得到a 的值.得到圆心的坐标,然后根据圆心坐标和半径写出圆的方程即可.【解答】解:设圆心为(a ,0)(a >0),由题意知圆心到直线3x+4y+4=0的距离d===r=2,解得a=2,所以圆心坐标为(2,0)则圆C的方程为:(x﹣2)2+y2=4,化简得x2+y2﹣4x=0故选D6.在如图的程序框图中,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出“恭喜中奖!”的概率为()A.B.C.D.【考点】程序框图.【分析】根据程序框图转化为几何概型进行计算即可.【解答】解:程序框图对应的区域的面积为1,则“恭喜中奖!满足条件为y≤,平面区域的面积S=dx==,则能输出“恭喜中奖!”的概率为,故选:D.7.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC 三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC 的面积为( )A .B .2C .3D .【考点】类比推理.【分析】根据正弦定理:由a 2sinC=4sinA 得ac=4,则由(a+c )2=12+b 2得a 2+c 2﹣b 2=4,利用公式可得结论.【解答】解:根据正弦定理:由a 2sinC=4sinA 得ac=4,则由(a+c )2=12+b 2得a 2+c 2﹣b 2=4,则.故选A .8.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm 的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近( )A .3cmB .4cmC .5cmD .6cm 【考点】由三视图求面积、体积.【分析】由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r .【解答】解:由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r ,则10﹣r+10﹣r=10cm ,∴r=10﹣5≈3cm .故选:A .9.我们知道:在平面内,点(x 0,y 0)到直线Ax+By+C=0的距离公式为d=,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x+2y+2z+3=0的距离为( )A .3B .5C .D .【考点】类比推理.【分析】类比点P (x 0,y 0)到直线Ax+By+C=0的距离d=,可知在空间中,d==5【解答】解:类比点P (x 0,y 0)到直线Ax+By+C=0的距离d=,可知在空间中,点P (x 0,y 0,z 0)到直线Ax+By+Cz+D=0的距离d=点(2,4,1)到直线x+2y+2z+3=0的距离d==5.故选B .10.已知,则a 9等于( )A .﹣10B .10C .﹣20D .20【考点】二项式定理的应用.【分析】(1+x )10=[2﹣(1﹣x )]10=210﹣+…﹣+(1﹣x )10,即可得出.【解答】解:(1+x )10=[2﹣(1﹣x )]10=210﹣+…﹣+(1﹣x )10,可得a 9=﹣2=﹣20.故选:C .11.已知点A 是抛物线M :y 2=2px (p >0)与圆在第一象限的公共点,且点A 到抛物线M 焦点F 的距离等于a .若抛物线M 上一动点到其准线与到点C 的距离之和的最小值为2a ,则p 为( )A .B .2C .D .4【考点】圆与圆锥曲线的综合;圆锥曲线的综合.【分析】求得圆的圆心和半径,运用抛物线的定义可得A,C,F三点共线时取得最小值,且有A为CF的中点,设出A,C,F的坐标,代入抛物线的方程可得p,由抛物线的定义可得P.【解答】解:圆C:x2+(y﹣4)2=a2的圆心C(0,2),半径为a,|AC|+|AF|=2a,由抛物线M上一动点M到其准线与到点C的距离之和的最小值为2a,由抛物线的定义可得动点到焦点与到点C的距离之和的最小值为2a,点M在A处取最小值,可得A,C,F三点共线时取得最小值,且有A为CF的中点由D(0,2),F(,0),可得A(,),代入抛物线的方程可得2=2p×,解得p=2.故选:B12.函数y=kx+2与函数的图象至少有两个公共点,关于k不等式(k﹣2)a﹣k>0有解,则实数a的取值范围是()A.B.C.a<﹣1 D.a≥1【考点】根的存在性及根的个数判断.【分析】根据函数的图象得出k的范围,分离参数得出a<,求出右侧函数的最大值即可得出a的范围.【解答】解:作出y=kx+2与y=的函数图象,如图所示:联立方程组,得kx2+2x﹣1=0(x>0)或﹣kx2﹣2x﹣1=0(x<0),当x>0,令△=4+4k=0得k=﹣1,当x<0时,令△=4﹣4k=0得k=1.∴k=±1时,直线y=kx+2与y=的函数图象相切,∵函数y=kx+2与函数的图象至少有两个公共点,∴﹣1≤k≤1.∵(k﹣2)a﹣k>0有解,∴a<有解,设f(k)==1+,∴f(k)在[﹣1,1]上是减函数,(k)=f(﹣1)=.∴fmax∴a.故选:B.二.填空题:本大题共4小题,每小题5分.13.设实数x,y满足,则2y﹣x的最大值为 5 .【考点】简单线性规划.【分析】画出可行域,将目标函数变形画出相应的直线,将直线平移至A时纵截距最大,z最大.【解答】解:画出,的可行域如图:将z=2y ﹣x 变形为y=x+z 作直线y=x 将其平移至A 时,直线的纵截距最大,z 最大,由可得A (﹣1,2),z 的最大值为:5. 故答案为:5.14.已知数列{a n }的前n 项和为S n ,且=,a 2=5,则S 6= 722 .【考点】数列递推式;数列的求和.【分析】=,可得a n+1+1=3(a n +1),利用等比数列的通项公式与求和公式即可得出.【解答】解:∵=,∴a n+1+1=3(a n +1),∴5+1=3(a 1+1),解得a 1=1.∴数列{a n +1}是等比数列,公比为3,首项为2. ∴a n +1=2×3n ﹣1,解得a n =2×3n ﹣1﹣1,则S 6=﹣6=722.故答案为:722.15.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是跑步.【考点】进行简单的合情推理.【分析】由(4)可知,乙参加了铅球比赛,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,即可得出结论.【解答】解:由(4)可知,乙参加了铅球比赛,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,所以丙最高,参加了跑步比赛.故答案为跑步.16.已知四面体ABCD中,∠BAC=∠BAD=60°,∠CAD=90°,,AC=3,AD=4,则四面体ABCD的体积V= .【考点】棱柱、棱锥、棱台的体积.【分析】作∠CAD的平分线AE,交CD于E,作BO⊥平面ACD,交AE于O,作BM⊥AD,交AD 于M,作BF⊥AC,交AC于F,连结OM,OF,由三垂线定理得OM⊥AD,OF⊥AC,由此能求出四面体ABCD的体积.【解答】解:作∠CAD的平分线AE,交CD于E,作BO⊥平面ACD,交AE于O,作BM⊥AD,交AD于M,作BF⊥AC,交AC于F,连结OM,OF,∵四面体ABCD中,∠BAC=∠BAD=60°,∠CAD=90°,,AC=3,AD=4,∴CD=5,由三垂线定理得OM⊥AD,OF⊥AC,∴AM=AF==,BM=BF==,OM=OF==,BO==,∴四面体ABCD的体积:V===.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知=(sinx,cosx),=(,﹣1).(Ⅰ)若∥,求sin2x﹣6cos2x的值;(Ⅱ)若f(x)=•,求函数f(2x)的单调减区间.【考点】平面向量数量积的运算;正弦函数的单调性.【分析】(Ⅰ)根据向量的平行和角的三角函数的关系即可求出答案,(Ⅱ)先求出f(x),再得到f(2x)的解析式,根据正弦函数的性质即可得到函数的单调减区间.【解答】解:(Ⅰ)∵=(sinx,cosx),=(,﹣1),∥,∴﹣sinx=cosx,∴tanx=﹣,∴sin2x﹣6cos2x====﹣,(Ⅱ)f(x)=•=sinx﹣cosx=2sin(x﹣),∴f(2x)=2sin(2x﹣),∴+2kπ≤2x﹣≤π+2kπ,k∈Z,∴+kπ≤x≤+kπ,k∈Z.∴函数f(2x)的单调减区间[+kπ, +kπ],k∈Z.18.如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.【解答】(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z 轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B 1BD 的法向量为=(x ,y ,z ),由,得,取z=1,得=(0,,1),∴cos <,>===, 又∵该二面角为钝角,∴二面角A 1﹣BD ﹣B 1的平面角的余弦值为﹣.19.传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A 、B 、C 、D 、E 五个等级进行数据统计如下:根据以上抽样调查数据,视频率为概率.(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)由于这80人中,有12名学生成绩等级为B,所以可以估计该校学生获得成绩等级为B的概率为,即可得出该校高二年级学生获得成绩为B的人数.(2)由于这80名学生成绩的平均分为:(9×100+12×80+31×60+22×40+6×20).(3)成绩为A、B的同学分别有9人,12人,所以按分层抽样抽取7人中成绩为A的有3人,成绩为B的有4人.由题意可得:P(X=k)=,k=0,1,2,3.【解答】解:(1)由于这80人中,有12名学生成绩等级为B,所以可以估计该校学生获得成绩等级为B的概率为.…则该校高二年级学生获得成绩为B的人数约有1000×=150.…(2)由于这80名学生成绩的平均分为:(9×100+12×80+31×60+22×40+6×20)=59.…且59<60,因此该校高二年级此阶段教学未达标…(3)成绩为A、B的同学分别有9人,12人,所以按分层抽样抽取7人中成绩为A的有3人,成绩为B的有4人…则由题意可得:P(X=k)=,k=0,1,2,3.∴P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.10分)所以EX=0+1×+2×+3×=.10分)20.已知椭圆上的动点P 与其顶点,不重合.(Ⅰ)求证:直线PA 与PB 的斜率乘积为定值;(Ⅱ)设点M ,N 在椭圆C 上,O 为坐标原点,当OM ∥PA ,ON ∥PB 时,求△OMN 的面积. 【考点】椭圆的简单性质.【分析】(Ⅰ)设点设P (x 0,y 0),从而可得直线PA 与PB 的斜率乘积为(Ⅱ)设方程为y=kx+m ,由两点M ,N 满足OM ∥PA ,ON ∥PB 及(Ⅰ)得直线OM ,ON 的斜率乘积为﹣,可得到m 、k 的关系,再用弦长公式及距离公式,求出△OMN 的底、高,表示:△OMN 的面积即可.【解答】(本小题满分13分)解:(Ⅰ)证明:设P (x 0,y 0),则.所以直线PA 与PB 的斜率乘积为.…(Ⅱ)依题直线OM ,ON 的斜率乘积为.①当直线MN 的斜率不存在时,直线OM ,ON 的斜率为,设直线OM 的方程是,由得,y=±1.取,则.所以△OMN 的面积为.②当直线MN 的斜率存在时,设直线MN 的方程是y=kx+m ,由得(3k 2+2)x 2+6kmx+3m 2﹣6=0.因为M ,N 在椭圆C 上,所以△=36k 2m 2﹣4(3k 2+2)(3m 2﹣6)>0,解得3k 2﹣m 2+2>0.设M(x 1,y 1),N(x 2,y 2),则,.=.设点O到直线MN的距离为d,则.所以△OMN的面积为…①.因为OM∥PA,ON∥PB,直线OM,ON的斜率乘积为,所以.所以=.由,得3k2+2=2m2…②由①②,得.综上所述,.…21.已知函数f(x)=lnx﹣a(x﹣1),a∈R.(Ⅰ)求函数f(x)在(1,f(1))处的切线方程;(Ⅱ)当x≥1时,f(x)≤恒成立,求a的取值范围;(Ⅲ)当x≥1时,求证:不等式e x﹣1﹣a(x2﹣x)≥xf(x)+1.【考点】函数恒成立问题.【分析】(Ⅰ)根据导数的几何意义即可求出答案(Ⅱ)f(x)﹣=f(x)﹣=,令g(x)=xlnx﹣a(x2﹣1),(x≥1),g′(x)=lnx+1﹣2ax,令F(x)=g′(x)=lnx+1﹣2ax,F′(x)=,由此进行分类讨论,能求出实数a的取值范围.(Ⅲ)原不等式等价于e x﹣1≥xlnx+1,设φ(x)=e x﹣1﹣xlnx﹣1,x≥1,利用导数求出函数的最小值大于等于0即可【解答】解:(Ⅰ)∵x>0,f′(x)=﹣a,∴f′(1)=1﹣a,f(1)=0,∴切点是(1,0),∴切线方程为y=(1﹣a)(x﹣1),(Ⅱ)f(x)﹣=,令g(x)=xlnx﹣a(x2﹣1),(x≥1),g′(x)=lnx+1﹣2ax,令F(x)=g′(x)=lnx+1﹣2ax,∴F′(x)=,①若a≤0,F′(x)>0,g′(x)在[1,+∞)上递增,g′(x)≥g′(1)=1﹣2a>0,∴g(x)在[1,+∞)上递增,g(x)≥g(1)=0,从而f(x)﹣不符合题意.②若0<a<,当x∈(1,),F′(x)>0,∴g′(x)在(1,)上递增,从而g′(x)>g′(1)=1﹣2a,∴g(x)在[1,+∞)上递增,g(x)≥g(1)=0,从而f(x)﹣不符合题意.③若a≥,F′(x)≤0在[1,+∞)上恒成立,∴g′(x)在[1,+∞)上递减,g′(x)≤g′(1)=1﹣2a≤0,从而g(x)在[1,+∞)上递减,∴g(x)≤g(1)=0,f(x)﹣≤0,综上所述,a的取值范围是[,+∞).(Ⅲ)不等式e x﹣1﹣a(x2﹣x)≥xf(x)+1等价于e x﹣1﹣a(x2﹣x)≥xlnx﹣a(x2﹣x)+1,等价于e x﹣1≥xlnx+1,设φ(x)=e x﹣1﹣xlnx﹣1,x≥1,∴φ′(x)=e x﹣1﹣(1+lnx),x≥1,再设m(x)=e x﹣1﹣(1+lnx),∴m′(x)=e x﹣1﹣≥0恒成立,∴m(x)在[1,+∞)上单调递增,∴m(x)min=m(1)=1﹣1=0,∴φ′(x)≥0,在[1,+∞)上恒成立,∴φ(x)在[1,+∞)上单调递增,∴φ(x)min=φ(1)=1﹣0﹣1=0,故e x﹣1≥xlnx+1,故当x≥1时,不等式e x﹣1﹣a(x2﹣x)≥xf(x)+1成立请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;[选修4-4:坐标系与参数方程](共1小题,满分10分)22.在直角坐标系xOy中,直线l1的方程为y=x,曲线C的参数方程为(φ是参数,0≤φ≤π).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)分别写出直线l1与曲线C的极坐标方程;(2)若直线=0,直线l1与曲线C的交点为A,直线l1与l2的交点为B,求|AB|.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)根据tanθ=可得直线l1极坐标.利用x=ρcosθ,y=ρsinθ带入可得曲线C 的极坐标方程.(2)由题意,设A(ρ1,θ1),联立方程组求解,同理,设利用直线的极坐标的几何意义求解即可.【解答】解:(1)直线l1的方程为y=x,可得:tanθ==,∴直线l1的极坐标方程为.曲线C的普通方程为(x﹣1)2+y2=3,又∵x=ρcos θ,y=ρsin θ,所以曲线C 的极坐标方程为ρ﹣2ρcos θ﹣2=0(0≤θ≤π)(2)由题意,设A (ρ1,θ1),则有,解得:设B (ρ2,θ2),则有,解得: 故得|AB|=|ρ1﹣ρ2|=5.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f (x )=|2x+1|+|2x ﹣3|,(1)若关于x 的不等式f (x )>|1﹣3a|恒成立,求实数a 的取值范围;(2)若关于t 的一元二次方程有实根,求实数m 的取值范围.【考点】函数恒成立问题;根的存在性及根的个数判断.【分析】(1)利用绝对值的几何意义求出|2x+1|+|2x ﹣3|的最小值,得到a 的不等式求解即可.(2)通过△≥0,得到|2m+1|+|2m ﹣3|≤8,去掉绝对值求解即可.【解答】解:(1)因为f (x )=|2x+1|+|2x ﹣3|≥|(2x+1)﹣(2x ﹣3)|=4,所以|1﹣3a|<4,即,所以实数a 的取值范围为.…(2)△=32﹣4(|2m+1|+|2m ﹣3|)≥0,即|2m+1|+|2m ﹣3|≤8,所以不等式等价于或或所以,或,或,所以实数m 的取值范围是. …。

推荐-辽宁省沈阳二中2018—2018学年度上学期2018月月考高三(2018届)数学试题 精品

推荐-辽宁省沈阳二中2018—2018学年度上学期2018月月考高三(2018届)数学试题 精品

辽宁省沈阳二中2018—2018学年度上学期12月月考高三(18届)数学试题第Ⅰ卷(共60分)一、 选择题:本大题共12小题,每小题5分,共计60分。

在每小题列出的4个选项中,只有一项符合题目要求。

1.不等式(10x -≥的解集是 ( )2.已知直线,m n 和平面α,则//m n 的一个必要但不充分条件是 ( )A .//m α且//n αB .mα⊥且n α⊥C .//m α且n α⊂D .,m n 与α成等角 3. 已知ln 22a=, ln 33b =,ln 55c =,则 ( ) A .a b c << B .c b a << C .c a b << D . b a c <<4.定义在R上的函数()f x 满足()()23f x f x +=,当[]0,2x ∈时,()22f x x x =-,则当[]4,2x ∈--时,()f x 的最小值是 ( )5.已知正数,x y 满足21x y +=,且1a x y+的最小值是9,则正数a 的值是 ( )6.已知函数2()1log f x x =+,设数列{}n a 满足()()1*n a f n n N -=∈,则数列{}n a 的前n 项和n S =( ) 7.直线2y kx =-交抛物线28y x =于A 、B 两点,若A B 中点的横坐标为2,则k =( )8.已知双曲线22221(0,0)x y a b a b-=>>右焦点为F, 若过点F 且倾斜角为060的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是 ( ) A .(]1,2 B .()1,2C .[)2,+∞ D . ()2,+∞9.已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且BC 边上的高为2a ,则c b b c+的最大值为( )10.点(),M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩所确定的平面区域内,则点(),a b a b +-所确定的平面区域面积.11.函数()22cos 2cos 2xf x x =-的一个单调增区间是( ) 12.若θ是钝角,则满足等式()22log 2sin x x θθ-+=-的实数x 的取值范围( )第Ⅱ卷(共90分)二.填空题:本大题共4小题,每小题4分,共16分。

辽宁省沈阳市2018届高三教学质量监测二数学理试题 Word版含答案

年沈阳市高中三年级教学质量检测(二)2018学数(理科)孟媛媛中学沈阳市第20中学李蕾蕾沈阳市第11命题:东北育才双语学校王海涛娜韩中学董贵臣沈阳市第4中学东北育才学校候雪晨沈阳市第120 王孝宇主审:沈阳市教育科学研究院卷第页,第II卷II卷(非选择题)两部分.第I1至2本试卷分第I卷(选择题)和第. 120分钟3至5页。

满分150分,考试时间注意事项:答题前,考生务必将自己的姓名、考号填写在答题卡上,并将条形码粘贴在答题卡 1..指定区域如需改2B铅笔把答题卡上对应题目的答案标号涂黑, 2.第I卷每小题选出答案后,用卷用黑色墨水签字笔在答题卡指定位置书动用橡皮擦干净后,再选涂其他答案标号。

第II.写作答,在本试卷上作答无效.3.考试结束后,考生将答题卡交回卷第I 60分)(共在每小题给出的四个选项中,只有分.一、选择题:本大题共12小题,每小题5分,共60.一项是符合题目要求的?????5A3,,12,34B?,2,已知集合1. ,集合,则????B?A A?B??3BB5A??A2,1,4,D. B. A.C.i1??z?z i是虚数单位)2.设复数(,则2122 D. B. C.1 A. 22下列命题中,真命题的是3.20>?R,x?x<1<sinx?x1?R,?B. A.x2x?,?x?Rtan0<,?x?R2 C. D.)4?3,8),AB?((AD?2,M ACABCD BD 4.已知平行四边形相交于点,对角线中,与,AM的0000坐标为则1111,6)(?,6)(,?6)((?,6) D. C.A. B.22222x cbx??y?axcba,,轴的交点个数为5.若成等比数列,则函数的图像与A.0B.1C.2D.不确定一次实验:向下图所示的正方形中随机撒一大把豆子,经查数,落在正方形中的豆子的6.?)<Nm(mN总数为粒豆子落在该正方形的内切圆内,以此估计圆周率粒,其中为m3m4m2m A. D. C. B.NNNN3xy??已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为7.4则该双曲线的离心率为453555 D.或 C.或 B. A.535434??????x x32..11?2,??2表示不超过8.若执行如图所示的程序框图,则输的最大整数,如.S出的值为D.5 C.4 B.3 A.2)>0wx)(w?sin(wx)?3cos(f(x)已知曲线9.的两条相邻的?),0(x,且曲线关于点成中心对称,若对称轴之间的距离为02???,x?0?x,则??002??????5 D. C. B. A.3612120?y?62x???0??yx y??mxz?yx, 10.已知实数满足,若目标函数??2?x?m10m??22m??2,则实数的最大值为的取值范围是,最小值为????????3,23,?1?2,?1,21 A. C. B. D.OABCDABCD BCD?AB3 的四个顶点都在球平面四面体的表面上,是边长为,△11.O2?AB 的等边三角形.若,则球的表面积为?2???321612 D. C. A. B. 32)(x)2?2ff(x?R)f(x R?x满??21,?x1??)g(x)xg(f(x)??y x)f(x?1?,足:①定义域为12.已知函数;③当;②对任意,有x?)?e0(x??55,?上零点的个数是间 A.7 B.8 则函数.若函数在区时,?)>0xlnx(?C.9D.10卷II第分)(共90)20分.把答案填在答题纸上.分,共二、填空题:(本大题共4小题,每小题5 如图,某几何体的主视图和俯视图都是矩形,左视图是等腰直角三角形,则该几何体的13.__________. 体积为16)(2x?_______. 14.的二项展开式中的常数项为x)b?a)(x?f(x)?x(x)xf?(,且已知函数15.的导函数为22b2a?4f?(0)?_____.的最小值为,则2)>0y?2px(p F ABC16.已知抛物线的焦点为的顶点都在抛物线上,且满足,△111FC?FA?FB????_______. ,则kkk CABCAB三、解答题:解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.222a?bc?b?ccb,CA,B,a,. 在的对应边分别是满△ABC中,角17.(本小题满分12分)A的大小;(I)求角??aa,a,1A?acos a)已知等差数列求成等比数列的公差不为零,若,且, (II8421n??4Sn. 项和的前??n aa??1?nn△分)为向国际化大都市目标迈进,沈阳市今年新建三大类重点工程,它1218.(本小题满分3.现有来沈阳的们分别是30项基础设施类公程、20项民生类工程和10项产业建设类工程. 个项目中任选一个项目参与建设民工人相互独立地从这60 人选择的项目所属类别互异的概率;)求这3(IX 人中选择的项目属于基础设施类工程或产业建设类工程的人数记为)将此3X,求(II. 的分布列和数学期望△O DBCC、BAB垂为圆周上异于如图,1219.(本小题满分分)的一点,为圆的直径,O FEACBE?AD?BF. 于点所在的平面,于点,直于圆ACD?BF)求证:(I;平面o45CBD,2??ABBC??BCDBEF.所成锐角二面角的余弦值与平面求平面,若)II(△22yx31(a>b??>0)C,离心率为的方程式12(本小题满分分)已知椭圆,且20.22ab36,1(). 经过点2C的方程;I)求椭圆(2222x?y?a?bOCO P的两条切线,过圆作椭圆的方程是上任意一点若切)(II圆,k,kk?k的值,求线的斜率都存在,分别记为. 2211△f(x)?mx?sinxg(x)?axcosx?2sinx(a>0). 12分)已知函数,(本小题满分21.m)(xy?f的值;(I)若曲线上任意相异两点的直线的斜率都大于零,求实数???,0x?a)(gx?xf()1m?的取值,都有不等式II ()若成立,求实数,且对任意??2??. 范围△题中任选一题做答,如果多做,则按所做第一题记分。

辽宁省沈阳市2018届高三教学质量监测二数学理试题Word版含答案

535434X X32..11 2, 2表示不超过8.若执行如图所示的程序框图,则输的最大整数,年沈阳市高中三年级教学质量检测(二)2018学 数(理科)孟媛媛中学沈阳市第20中学 李蕾蕾 沈阳市第11命题:东北育才双语学校 王海涛 娜韩中学董贵臣 沈阳市第4中学 东北育才学校候雪晨 沈阳市第120王孝宇主审:沈阳市教育科学研究院卷第页,第II 卷II 卷(非选择题)两部分.第11至2 本试卷分第I 卷(选择题)和第.120 分钟3至5页。

满分150分,考试时间 注意事项:答题前,考生务必将自己的姓名、考号填写 在答题卡上,并将条形码粘贴在答题卡1.指定区域如需改2B 铅笔把答题卡上对应题目的答案标号涂黑, 2.第I 卷每小题选出答案后,用卷用黑色墨水签字笔在答题卡指定位置书动用橡皮擦干净后,再选涂其他答案标号。

第 II.写作答,在本试卷上作答无效 .3.考试结束后,考生将答题卡交回卷第I 60分)(共在每小题给岀的四个选项中,只有分.一、选择题:本大题共 12小题,每小题 5分,共60. 5A3,,12,34B ,2,已知集合1.,集合,则一项是符合题目要求的 i1B A A B 3BB5A A2,1,4,D. B.A.C.z z i 是虚数单位) 2.设复数(,则2122 D.B. C.1A.---------- 22下列命题中,真命题的是3.20> R,x x v 1 v sinx x1 R, B .x2x , x Rtan 0v , x R2C.•000)4 3,8),AB ((AD 2,M ACABCD BD坐标为则1111,6)( ,6)(, 6)(( ,6) D. C.A.A.D.4.已知平行四边形相交于点 ,对角线中,AM 的B.22222x cbx y axcba,,轴的交点个数为 5.若成等比数列,则函数的图像与A.0B.1C.2D.不确定一次实验:向下图所示的正方形中随机撒一大把豆子,经查数,落在正方形中的豆子的)v Nm(mN m3m4m2m A. NNNN3xy 曲线的离心率为453555 D.或 C.或总数为粒豆子落在该正方形的内切圆内,以此估计圆周率粒, 其中为D. C.B.----- -------- -----已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为 7. — 4则该双B.A.如.UiLJ)> Owx)(w sin(wx) 3cos(f(x)已知曲线9.的两条相邻的 ),0(x ,且曲线关于点成中心对称, 若对称轴之间的距离为—o 2,x 0 x ,则—oo 25 D. C.B.A.0 yx y mxz yx, 10.已知实数满足,若目标函数OABCDABCD BCD AB 3的四个顶点都在球平面四面体的表面上,是边长为,△11.O 2 AB的等边三角形.若,则球的表面积为足:①定义域为12.已知函数;③当;②对任意,有x ) e0(x21, x1 )g(x)xg(f(x)y x)f(x 1则函数.若函数在区时, )> 0xlnx( 55,上零点的个数是间 A.7B.8C.9D.10卷II 第分)(共90 ) 20分.把答案填在答题纸上.分,共二、填空题:(本大题共4小题,每小题5如图,某几何体的主视图和俯视图都是矩形,左视图是等腰直角三角形,则该几何体S 岀的值为D.5C.4 B.3 A.2---------- 3612120 y 62x2 x m10m 22m 2,则实数的最大值为的取值范围是,最小值为3,23, 1 2, 1,21A. C.B. D.2321612 D.C. A. B.— 32)(x)2 2ff(x R )f(x R x 满ri------2的13. *__________ .体积为16)(2x ___ . 14.的二项展开式中的常数项为x)b a)(x f(x) x(x)xf (,且已知函数15.的导函数为22b2a 4f (0)__ .的最小值为,则>0y 2px(p F ABC16.已知抛物线的焦点为的顶点都在抛物线上,且满足,△2)111FC FA FB ________ .,贝U ----------------------------------------------- kkk cABCAB三、解答题:解答应写岀文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置222a bc b ccb,CA,B,a,.在的对应边分别是满△ ABC中,角17.(本小题满分12分)A的大小;(I)求角aa,a,1A acos a )已知等差数列求成等比数列的公差不为零,若,且,(Ii8421n 4Sn.项和的前________ n aa 1 nn△分)为向国际化大都市目标迈进,沈阳市今年新建三大类重点工程,它1218.(本小题满分3.现有来沈阳的们分别是30项基础设施类公程、20项民生类工程和10项产业建设类工程.个项目中任选一个项目参与建设民工人相互独立地从这60 人选择的项目所属类别互异的概率;)求这3 (IX人中选择的项目属于基础设施类工程或产业建设类工程的人数记为)将此3X,求(II.的分布列和数学期望△O DBCC、BAB垂为圆周上异于如图,1219.(本小题满分分)的一点,为圆的直径,O FEACBE ADBF.于点所在的平面,于点,直于圆ACD BF )求证:(I;平面o45CBD,2 ABBC BCDBEF .所成锐角二面角的余弦值与平面求平面,若)II (■△22yx3i(a> b >0)C,离心率为的方程式12 (本小题满分分)已知椭圆,且20 --------------------- ------- —22ab36,1().经过点2C的方程;I)求椭圆 (2222X y a bOCO P的两条切线,过圆作椭圆的方程是上任意一点若切) (II圆,k,kk k的值,求线的斜率都存在,分别记为.2211△f(x) mx sinxg(x) axcosx 2sinx(a> 0). 12 分)已知函数,(本小题满分21.m)(xy f 的值; (I) 若曲线上任意相异两点的直线的斜率都大于零,求实数,0x a)(gx xf() 1m的取值,都有不等式II ()若成立,求实数,且对任意一2 .范围题中任选一题做答,如果多做,则按所做第一题记分。

2018高三数学(理)第一次模拟考试题(东北三省三校有答案)

2018高三数学(理)第一次模拟考试题(东北三省三校有答案)2018高三数学(理)第一次模拟考试题(东北三省三校有答案)哈尔滨师大附中、东北师大附中、辽宁省实验中学 2018年高三第一次联合模拟考试理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数的模为( ) A. B. C. D. 2.已知集合,,若,则实数的取值范围是( ) A. B. C. D. 3.从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为( ) A. B. C. D. 4.已知,则 ( ) A. B. C. D. 5.中心在原点,焦点在轴上的双曲线的一条渐近线经过点,则它的离心率为( ) A. B.2 C. D. 6. 展开式中的常数项是( ) A. B. C.8 D. 7.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的的值是( ) A. B. C.1 D.3 8.已知函数的图象的相邻两条对称轴之间的距离是,则该函数的一个单调增区间为( ) A.B. C. D. 9.辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入,,则输出的值为( ) A.148 B.37 C.333 D.0 10.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥,该四棱锥的侧面积为,则该半球的体积为( ) A. B. C. D. 11.已知抛物线,直线与抛物线交于,两点,若以为直径的圆与轴相切,则的值是( ) A. B. C. D. 12.在,,,是边上的两个动点,且,则的取值范围为( ) A. B. C. D. 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.在中,,,,则 ______________.14.若满足约束条件,则的最大值为______________. 15.甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科、、,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教学科;③在长春工作的教师教学科;④乙不教学科. 可以判断乙教的学科是______________. 16.已知函数,是函数的极值点,给出以下几个命题:① ;② ;③ ;④ ;其中正确的命题是______________.(填出所有正确命题的序号) 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知正项数列满足:,其中为数列的前项和.(1)求数列的通项公式; (2)设,求数列的前项和 . 18.某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间,需求量为100台;最低气温位于区间,需求量为200台;最低气温位于区间,需求量为300台。

2018届辽宁省沈阳二中高三上学期期中考试理科数学试题 及答案 (3)

沈阳二中2017——2018学年度上学期期中考试高三(15届)理科数学试题命题人: 高三数学组 审校人: 高三数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第I 卷(60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若复数(21a -)+(1a -)i(i 为虚数单位)是纯虚数,则实数a = ( )A .±1B .-1C .0D .12. 已知集合2{|}M x x x =>,4{|,}2xN y y x M ==∈,则MN =( )A .{x |0<x <12} B.{x |12<x <1} C.{x |0<x <1}D.{x |1<x <2}3. 下列有关命题的说法正确的是 ( )A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B .“1x =-” 是“2560x x --=”的必要不充分条件.C .命题“若x y =,则sin sin x y =”的逆否命题为真命题.D .命题“x R ∃∈使得210x x ++<”的否定是:“x R ∀∈均有210x x ++<”. 4. 已知各项均为正数的等比数列}{n a 中,13213,,22a a a 成等差数列,则=++1081311a a a a ( ) A. 27 B.3 C. 1-或3D.1或27 5. 函数)(x f 的定义域为]1,0(,则函数)2(lg 2xx f +的定义域为( ) A .]4,5[- B .)2,5[-- C . ]4,1[]2,5[ --D .]4,1()2,5[ -- 6.已知33)6cos(-=-πx ,则=-+)3cos(cos πx x( ) A .332-B .332± C .1- D .1±7. 已知x ,y 满足记目标函数2z x y =+的最小值为1,最大值为7,则,b c的值分别为( )A. -1,-2B. -2,-1C. 1,2D. 1,-28.已知等比数列{}n a 满足na >0,n=1,2,…,且25252(3)n n a a n -⋅=≥,则当n ≥1时,2122221log log log n a a a -++⋅⋅⋅+=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)29.已知x ∈⎝⎛⎭⎪⎪⎫0,π2,且函数f (x )=1+2sin 2xsin 2x的最小值为b ,若函数g (x )=⎩⎪⎨⎪⎧-1⎝⎛⎭⎪⎪⎫π4<x <π28x 2-6bx +4⎝⎛⎭⎪⎪⎫0<x ≤π4,则不等式g (x )≤1的解集为 ( )A.⎝ ⎛⎭⎪⎪⎫π4,π2 B.⎝ ⎛⎦⎥⎥⎤π4,32 C.⎣⎢⎢⎡⎦⎥⎥⎤34,32 D.⎣⎢⎢⎡⎭⎪⎪⎫34,π2 10. 如图,长方形ABCD 的长2AD x =,宽(1)AB x x =≥,线段MN 的长度为1,端点N M ,在长方形ABCD 的四边上滑动,当N M ,沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数()y f x =的图象大致为 ( )11.若曲线f (x ,y )=0上两个不同点处的切线重合,则称这条切线为曲线f (x ,y )=0的“自公切线”.下列方程:①x 2-y 2=1;②y =x 2-|x |;③y =3sin x +4cos x ;④|x |+1=4-y 2对应的曲线中存在“自公切线”的有( )A .①②B .②③C .①④D .③④12.函数()32f x x ax bx c =+++,在定义域[]2,2x ∈-上表示的曲线过原点,且在1x =±处的切线斜率均为1-.有以下命题: ①()f x 是奇函数;②若()[],f x s t 在内递减,则t s -的最大值为4;③()f x 的最大值为M ,最小值为m ,则=0M m +;④若对[]()2,2x k f x '∀∈-≤,恒成立,则k 的最大值为2.其中正确命题的个数为( )A. 1个B.2个C.3个D.4个第Ⅱ卷(90分)二、填空题:本大题共4题,每小题5分,共20分. 13.. 若函数()f x 在R上可导,()()321f x x x f '=+,则()20f x dx =⎰ .14. 若0,0,x y ≥≥且21x y +=,则223x y +的最小值为 .15. 若数列{}n a 是等差数列,对于)(121n n a a a nb +++= ,则数列{}n b 也是等差数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档