浅析输电线路风偏的简略估算

合集下载

输电线路风偏故障分析报告

输电线路风偏故障分析报告

输电线路风偏故障分析报告1. 输电线路风速取值原则1.1 主要技术原则根据《110~500kV架空送电线路设计技术规程》(DL/T 5092-1999)和《电力工程气象勘测技术规程》(DL/T 5158-2002),110~220kV线路气象条件根据沿线气象资料和附近已有线路的运行经验,按15年重现期确定;其中,确定最大设计风速时,按当地气象台站10min时距平均的年最大风速作样本,采用极值Ⅰ型分布作为概率模型,换算至地面15m高度确定。

同时,还规定山区送电线路的最大设计风速,如无可靠资料,按附近平原地区的统计值提高10%选用。

综上所述,影响最大风速取值的主要因素为重现期、风速时距;同时,站点位置也是影响取值的关键因素之一。

2.3 风速时距的选取我国建筑荷载规范采用连续自记、时距为10min的平均风速作为计算建筑物的风荷载。

在实际天气状况下,风速的幅值随时间和空间是变化的,从宏观上看风速时距越短,其平均风速越大,瞬时风速最大。

据统计,2min时距瞬时最大风速是平均风速的1.29倍,10min时距瞬时最大风速达到平均风速的1.5倍(陆地)。

我国采用10min平均风速的主要理由是认为建筑结构质量都比较大,因而其阻尼也较大,风压要对其产生破坏性的影响,时间较长时才能显出动力反应。

实际建筑物大风灾害的统计结果也表明,仅瞬时风速大而10min平均风速不大时,很少造成建筑物受损的灾害。

但上述风速取值对于质量较小的导线尤其引流线明显不合理。

通过国内多年输电线路运行经验证实,目前的风速时距选择对于杆塔结构影响不大,但对于导线尤其质量较小的引流会有较大影响,近年来沿海和公司输电线路引流风偏故障频发也证实了这一因素。

同时,90年代以来,新疆也采用了连续自计方式,尤其2000年以来又新增了大量的自动观测站。

因此,在输电线路设计中,要选用最近年限的观测风速,资料不全的区域还应比对“全国基本风压图” 进行测算,而不能简单套用以往工程的气象条件。

浅析高压架空输电线路中风偏的控制措施及监测

浅析高压架空输电线路中风偏的控制措施及监测

浅析高压架空输电线路中风偏的控制措施及监测架空输电线路设计中风偏影响线路走廊宽度,了解输电线路中风偏的影响因素,并提出了风偏控制的几种措施,以减小风偏,达到减小线路走廊,做出合理的输电线路设计方案。

标签:高压;架空输电线路;风偏;措施随着城市的发展,城镇化进程的加快,高压架空输电线路在线路路径选择中遇到的问题越发突出。

架空输电线路经过现有架空线路密集或征地困难的地区时,线路走廊往往十分紧凑。

受线路走廊影响,在线路设计过程中就需要根据实际情况,采用合理的方法控制导线风偏,从而降低运行风险、减小线路走廊用地,做出合理的设计方案,尽量减少或避免因线路走廊过宽而导致的拆迁成本或青赔成本的增加,从而节省工程投资。

一、架空线路设计中风偏的影响根据规范要求,架空线路设计时,架空线路走廊除了铁塔基础占地和导线边线间距离占地以外,还应考虑导线对地面、建筑物、树木、道路、河流、管道、索道及各种架空线路的距离。

包括,水平距离、垂直距离和净空距离。

导线对跨越物的垂直距离与导线的最大弧垂有关,导线对跨越物的水平距离和净空距离均与最大风偏有关。

同时,最大风偏又与导线的最大弧垂有关。

因此架空线路设计中线路走廊受导线风偏的影响很大。

二、风偏的定义及风偏的危害风偏是一种由风引起的导线摆动现象,风偏的形成一般取决于两个方面的因素,即风激励和线路结构与参数。

输电线路风偏对线路安全运行极具威胁而又颇为复杂,由于风偏的角度很大,轻则造成相间闪络、金属夹具损坏,重则造成线路跳闸停电、拉倒杆塔、导线折断等严重事故,从而造成重大的经济损失。

因此输电线路设计中对风偏的控制十分必要。

三、风偏的计算四、控制风偏的措施通过风偏角和风偏距离的计算公式分析可知,导线的风偏角主要与风速和导线自重及导线几何尺寸有关,绝缘子串的风偏角主要与绝缘子串的长度和重量、重锤重量、导线绝缘子片数和受风面积、弧垂大小、风速、导线几何尺寸、等有关。

结合输电线路设计中可控制因素分析,控制风偏从控制导线弧垂和控制绝缘子串风偏考虑,主要有以下几种方法:(1)减小档距在同一气象条件下,减小档距可以减小弧垂,从而减小风偏,从而达到控制线路走廊的目的。

浅谈220kV输电线路风偏故障及防风偏改造措施

浅谈220kV输电线路风偏故障及防风偏改造措施

浅谈220kV输电线路风偏故障及防风偏改造措施摘要:随着我国环境问题的持续恶化,气候天气也呈现出复杂的特性,一些国家的基础设施都受到天气的影响而无法获得有效的进展,其中受影响最大的莫过于电力系统建设。

通常来说,220kV输电线路都是安装在户外的,因此,一旦遇到大风天气时,很容易发输电线路的风偏故障,对输电线路的安全性及稳定性造成严重的影响,进而出现线路短路以及电弧烧伤等现象,不利于电力系统稳定发展,对人们的生产生活也带了一定的阻碍。

本文以广元电网220kV赤天一线为例,提出了输电线路风偏故障及防风偏改造措施。

关键词:220kV;输电线路;风偏;故障;改造220kV输电线路中出的风偏故障也是输电线路中较为常见的一种故障种类,一旦出现故障现象,就会使电力系统的稳定性及安全性造成严重的影响,尤其遇到气候条件较为恶劣的时候,经常会造成220kV输电线路风偏故障现象。

进而影响人们正常生活工作,因此,应采取有效的措施来对220kV输电线路风偏故障进行改造,具有一定的现实意义。

一、220kV输电线路风偏故障的规律和类型1. 220kV输电线路风偏故障的定义所谓220kV输电线路风偏故障指的是在强风的引导下,输电线路的导线向周边树木以及建筑物等进行放电,也可能是与其他导线有关的空气间隙较小,进而出现较大的击穿电压,使得220kV输电线路出现跳闸现象。

一般情况下,如果没有及时的对220kV输电线路风偏故障进行及时的预防,进而造成短路的现象,那么事故很有可能会因没及时处理而使事故范围加大,影响面更广。

而输电线路对杆塔的放电也是220kV输电线路风偏故障中较为常见的故障类型。

2. 220kV输电线路风偏故障规律在气候环境较为的情况下,尤其是遇到大风、大雾及暴雨天气环境下,极易出现220kV输电线路风偏故障,且强风的来袭必然会出现暴雨等一些强对流天气。

一旦局部出现强风天气,且风力风速都较为强劲的情形下,极易产生220kV输电线路风偏故障,与此同时,220kV输电杆塔也会受大风的影响出现位置偏移的现象,在空气放电间隙缩短时,强风所带来的强对流天气也会使导线和杆塔间的距离变小,使得放电频率增加,导致220kV输电线路的风偏故障,不利于220kV输电线路安全稳定运行。

输电线路风偏放电风险分析与预警方法

输电线路风偏放电风险分析与预警方法

输电线路风偏放电风险分析与预警方法李清;吴雄;李黎;张少峰【摘要】风偏跳闸是造成电网运行故障的主要原因之一,严重影响输电线路稳定运行.为了有效预警输电线路风偏跳闸,本文提出基于天气预报的风偏闪络预警模型.首先根据天气预报建立气象样本集,随机抽取风速风向值,采用引入脉动放大系数和高差修正系数修正后的刚性直棒法,分别计算直线塔悬垂绝缘子串和跳线绝缘子串的风偏角,然后依据输电塔和绝缘子串参数计算导线杆塔最小空气间隙,引入降雨折减系数对最小空气间隙进行修正,最后与规程规定允许最小间隙对比,重复抽样计算得出预警概率.通过实例验证预警模型的可行性和精确性.【期刊名称】《土木工程与管理学报》【年(卷),期】2019(036)002【总页数】6页(P68-73)【关键词】风偏闪络;天气预报;预警;刚性直棒法;随机抽样【作者】李清;吴雄;李黎;张少峰【作者单位】国网河南省电力公司电力科学研究院,河南郑州 450052;华中科技大学土木工程与力学学院,湖北武汉 430074;华中科技大学土木工程与力学学院,湖北武汉 430074;国网河南省电力公司电力科学研究院,河南郑州 450052【正文语种】中文【中图分类】TM773输电线路风偏跳闸是影响输电线路安全可靠运行的主要因素之一。

导线和绝缘子串在横向风的作用下,产生横向偏移,当空气间隙距离小于空气击穿放电距离时发生击穿放电,引起输电线路跳闸,即风偏跳闸[1]。

输电线路风偏跳闸多数在线路工作电压下发生,由于风的持续时间较长,超过重合闸时限产生二次放电,导致风偏放电后大多重合闸不能成功,严重影响输电线路的稳定性和可靠性,造成巨大经济损失[2~4]。

国内外对风偏放电的研究主要是风偏放电机理和风偏角的计算,对于风偏事故预警研究相对较少。

文献[5]介绍了刚性直棒法和弦多边形法及其优劣。

文献[6]考虑降雨度空气间隙的影响引入降雨折减系数,通过刚性直棒法计算空气间隙,建立干字型耐张塔跳线风偏放电预警模型。

架空输电线路风偏计算研究

架空输电线路风偏计算研究

架空输电线路风偏计算研究摘要:架空输电线路通常在露天环境下完成架设及投入运行,因而,常常会受到当地自然气候环境变化的影响,遭遇大风天气时,会出现杆塔塔身部位放电等状况,进而出现风偏闪络问题。

架空输电线路的风偏闪络,属于架空输电线路实际运行维护期间常见的一种问题状况,因此计算风偏角,对于架空输电线路的总体设计及后期运维有着一定的积极作用。

故而,本文主要介绍悬垂绝缘子串相应风偏的摇摆角计算、风速的反算过程等,对档距变化、风偏角及绝缘子串的长度等相互间的实际关系,综合研究导线风偏各种影响因素,便于今后更好地开展架空输电线路的总体设计及后期运维等各项专业性工作。

关键词:架空;输电线路;风偏;计算;前言:架空输电线路绝缘子串及架空输电导线,处于风荷载的作用之下,会有风偏摆动情况产生,若有带电部分在摇摆期间与杆塔间距比允许电气间隙小,则杆塔与输电导线相互间就会有放电情况出现,极易引发风偏闪络方面的事故问题,进而造成人身与设备重大事故。

故而,针对常常出现的输电线路风偏故障及大风天气地区,需进行相关信息数据采集,计算输电线路的风偏故障,已经能够为线路的设计单位及维护单位等提供重要参考。

架空输电线路的悬垂绝缘子串处于风荷载的作用之下会产生一定角度的偏移状况,即为一种风偏角现象。

计算风偏角,对于架空输电线路总体设计及后期运维均有着至关重要的作用。

鉴于此,本文主要围绕着架空式输电线路的风偏计算开展深入研究及探讨,望能够为相关专家及学者对这一课题的深入研究提供有价值的参考或者依据。

一、架空输电线路中悬垂绝缘子串的风偏角具体计算悬垂绝缘子串的风偏角具体计算列式如下:θ=arctan[(0.5βsPj+βsWh)/(0.5Gj+Wv)]。

在该列式当中,βs表示杆塔处于风荷载的作用下具体调整系数,也称风压高度变化系数;Wv、Wh表示导线作用于绝缘子串的末端垂直荷载与水平荷载;Gj表示悬垂绝缘子串自重荷载;Pj表示悬垂绝缘子串的风压。

500kV输电线路风偏的探讨

500kV输电线路风偏的探讨

设计 风速 是 一致 的 。 近几 年 来 , 由于 防 污闪改 造 的原 因 , 运行 线 路 的玻 璃 或 瓷 质 绝 缘 子 更 换 为 复 合 绝 缘 子, 由于 后 者 较前 者 轻 , 偏 角 将增 大 , 成 风 造 复合 绝缘 子 上端 的 防鸟装 置 或均 压环 碰撞 横
担而受损 ,或下端带 电导线离塔身安全距离
发生 线路 风偏 跳 闸的 本质 原 因是 在大 气 环境 中出现 的各 种不 利条 件 ,造成 线 路空 气 间 隙减小 ,当间 隙 的电气 强度 不 能承受 系 统 运行 电压时 就会 发生 击穿 放 电 。在强 风或 飑 线 风 的作 用 下 , 缘 子串 向杆 塔方 向倾 斜 , 绝 减 小 了导线 与杆塔 的空 气 间隙 ,当距 离 不能 满 足绝 缘强 度 要求 时就 会发 生放 电 。在 发生 导 线 风偏放 电期 间 ,气 象资 料给 出 的风 速数 据 与反推 出 的风速 数据 有一 定 的偏 差 ,考虑 到 气 象观 测站 一般 均设 在城 郊 结合 部 ,而且 所 测 数 据为 距地 1m 高度 的 风速 数 据 , 由于 0 而 飑线 风 的 区域性 及 阵发性 ,风 力最 强劲 的 区 域往 往不 是 在观 测站 附近 , 且导 线 、 而 绝缘 子 的悬挂 高度 一般 为 2m 3m, 据设 计规 程 , 0 一0 根 其 风速 应乘 以对 应 的高度 增 加系 数 ,所 以从 导线 风偏 反 推 出的风 速数 据 与气 象部 门给 出 的数 据 存在 一定偏 差是 可能 的 。 1 在设 计 中对 恶劣 气象 条件 估计 不 足 . 2 在 线路 风偏 角 的设计 中 ,如 果选 取 的风 偏 角计 算参 数 不合适 ,使 得线 路 风偏 角安 全 裕度 偏小 ,线路 在强 风的 作用 下 发生 风偏 跳 闸的概率 就 会大 大增 加 。在线 路设 计 中应 根 据 地 区的实 际情 况 , 尤其 是微 地形 区 , 合理 选 择 设计 参数 。 提高线 路抵 御 自然 灾 害的 能力 , 减 少风 偏事 故 的发生 。

探讨输电线路风偏故障原因与对策

探讨输电线路风偏故障原因与对策

探讨输电线路风偏故障原因与对策输电线路由于处于相对复杂的地理环境空间,很容易遭受来自外界气候因素、地理因素等的影响,其中风力因素就是一大因素。

输电线路在强风影响下出现风偏跳闸问题,会破坏整个输电线路的安全运转,而且一旦出现风偏跳闸,就很难通过重合闸的方式恢复供电,严重时可能导致整个输电线路的停运。

因此必须重视输电线路风偏故障的原因分析,并对应提供科学的解决对策。

1 输电线路概况与故障四周环境1.1 输电线路的风力影响风力、风速的大小将直接影响导线的风偏,而且风偏会随着风速的加大而严重,风速达到5~25米/秒时,输电线路会出现跳跃,阵风会使导线随风摇摆,甚至对周围物体、杆塔等进行放电,遇到微气象、微地区时,如果垂直的导线和风向之间成角在45度以上,则可能形成摆动,造成风偏故障。

根据该220kV输电线路的实际情况,因为其处于山地地形、地势较高,一边山岭遍布,气象容易发生变化,输电线路走向同风向之间夹角近90度,此区域的风速会越发变大。

同时,根据相关部门的监测,以及后期的风速值计算,能够得出故障点的风速势必超出30米/秒,线轴同风向之间的夹角也大于45度。

在强风力作用下,输电线路承受过大的载荷,导致塔头空气间隙逐渐变小,形成对塔身的放电闪络问题,导致故障的出现。

1.2 风速、风向与风偏跳闸的关系输电线路实际工作时,风速与风向会在很大程度上影响风偏放电,特别是当风向和线路方向相垂直时,会加剧导线风偏放电问题。

其中线路风压可以通过以下公式来计算:Wx=1/2αρV2μzμscdLpsin2θ式中:V代表风速,通过观察公式能够得出:导线风压同风速平方之间呈现正相关,这就意味着随着风速的上升与增大,线路更易于出现风偏故障,从而造成巨大的故障问题。

一般来说,线路的风偏故障的发生是由于风向与导线方向垂直时的瞬时风力所导致的,风速急剧上升,对应的风向会不断变化,也不易引发风偏故障。

一旦风向与导线方向垂直,风速已经远远超越杆塔自身的承受力,则会造成杆塔倒塌,引发风偏跳闸。

谈讨10kV配电线路导线风偏计算

谈讨10kV配电线路导线风偏计算

谈讨10kV配电线路导线风偏计算摘要:通过配电线路导线风偏计算分析,确定导线边线在最大风偏时对建筑物、竹树、平行运行的线路、山坡、峭壁等风险点水平安全距离,确保配电线路的安全可靠运行。

关键词:配电线路,导线风偏,线路设计引言:通常配电线路设计人员凭经验或缺这方面设计知识,一般不进行导线边线风偏验算,这样,关系到该项目配电线路可能发生导线边线在最大风时,风偏后,导线对建筑物,竹树等等水平安全距离不足,发生触电事故。

设计人员务必做好、通过公式、精确计算导线边线在最大风偏水平安全距离的数据防护工作,才能保证配电线路的正常运行和人身安全。

通过从导线截图S大小、导线放线安全系数K值大小、风速V大小等参数来计算分析导线边线在最大风偏的水平安全距离,力求杜绝一切潜藏的安全隐患。

一、已知10kV配电线路导线选用钢芯铝绞线LGJ-240/30,风速V=30m/s,采用单回路设计,导线放线安全系数K=6,选用悬垂绝缘子XP-7,悬垂绝缘子串长度约H1=0.562m,重量约G J=123.6N,普通绝缘子A j=0.03m2,无需安装防振锤G f=0,地形为平地。

利用“LGJ-240/30架线应力弧垂表K=6”查得:g1=32.772x10-3N/mm2·m,G4(30)=37.946x10-3N/mm2·m,#6-#8为耐张段,耐张段长度170m,线路档距分别为 #6-#7为80m、#7-#8为90m,计算得:代表档距l0为85.4m,代表弧垂f0为1.1421m#6转角塔,转角度45度、采用H1-J-54-12转角塔,水平档距为75m、垂直档距为80m#7直线杆,采用S1-Z1-15(M)直线水泥杆,水平档距为85m、垂直档距为82m#8转角塔,转角度30度、采用H1-J-54-12转角塔,水平档距为75m、垂直档距为85m试计算#7-#8档:导线边线最大风偏值X3多少。

线路中心线距导线边线最大风偏X值多少(不考虑杆塔挠度)1、#7-#8档导线边线最大风偏值X3多少1.1、#7杆绝缘子串风偏值X1绝缘子串风压P J=(n+1)A j V2/1.6由公式分别计算得:P J运=50.6N,P J内(操)=12.7N,P J外=5.6N1.2、#7直线杆绝缘子串风偏角φφ=arctg[(P J/2+g4Al sh)/(G J/2+g1Al Ch)+G f)]由公式分别计算得:φ运=48.72810,φ内=48.13310,φ外=48.02010取最大绝缘子串风偏角φ=48.72810#7绝缘子串风偏值X1=H1Sinφ=0.422m1.3、#8耐张塔绝缘子串风偏角φ约等于01.4、#7-#8档导线弧垂风偏值X21.4.1、导线风偏角β=arctg(g4/g1)=49.184501.4.2、#7-#8导线弧垂f1计算得:f1=f0(l1/l0)2=1.268m1.4.3、#7-#8档导线弧垂风偏值#7-#8档导线弧垂风偏值X2=f1Sinβ=0.960m1.5、#7-#8档导线边线最大风偏值为X3X3=X1+X2=1.382m2、#7-#8档线路中心线距导线边线最大风偏值为X2.1、#7杆中心线与杆导线边线挂点距离为0.815m2.2、#8塔中心线与塔导线边线挂点距离为0.7825m2.3、该档中点中心线(按平地计,导线最大弧垂点发生在线路档距中间上)与导线边线挂点平均距离为0.80m2.4、#7-#8档线路中心线距导线边线最大风偏值为X=0.80+1.382=2.182m3、结论:#7-#8档线路中心线距导线边线最大风偏值为2.182m二、分析计算各类导线截图S大小、安全系数K值大小、风速V大小的不同,比较#7-#8档线路中心线距导线边线最大风偏值∑X计算过程与上面过程类似,不再赘述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析输电线路风偏的简略估算
发表时间:2016-11-09T14:27:50.013Z 来源:《电力设备》2016年第17期作者:周昱1 朱义中2 [导读] 随着社会经济的发展,人民生活水平的不断提高,对生活环境的关注日益加强。

(1.国网江苏省电力公司常熟市供电公司1 江苏常熟 215500;
2.国网江苏省电力公司昆山市供电公司2 江苏昆山 215300)
摘要:在输电线路的日常运行管理过程中,风偏的计算是很重要的,通过对风偏的简略估算,可以很好的解决一些实际问题。

关键词:输电线路;风偏;安全距离随着社会经济的发展,人民生活水平的不断提高,对生活环境的关注日益加强。

当前居民就输电线路与民房等建筑物的安全距离不断提出质疑。

作为一名输电线路运行人员,不断的接到该类投诉,针对该类问题的应答都基于《架空输电线路运行规程 DL/T 741-2010》中的相关条款:
导线与建筑物之间的垂直距离,在最大计算弧垂情况下,不应小于附表1所列数值。

(附表1)
一般送电线路的最大风速,是根据当地气象台站的最大风速统计值进行选取的,在苏州地区一般最大风速均按30m/s来考虑。

由于苏州地区为平原地区,地形起伏较小,除上拔等特殊杆塔外,线路水平档距与垂直档距相差不大,通过对苏州地区不同线规、不同档距、不同地形下的输电线路最大风偏角进行计算,发现不同档距的输电线路的最大风偏角大部分处于40度~50度之间。

2、实际应用
在实际工作中,不断碰到输电线路与建筑物安全距离的探讨,为方便输电线路运行人员与客户沟通,做到心中有数,通常最大风偏角可以取45度角来估算。

例:苏州地区某220kV线路39#(2G2-SZ2-33)与40#(2G2-SJ1-21)档距内离40#塔166米且边导线外12.5米处需要建一写字楼,楼高30米。

通过查阅该输电线路资料知道耐张段的长度为602米,39#到40#档距为299米,代表档距为301米,通过查询该线路档案知道该段导线在最大气温气象条件下离房子最近处的最大弧垂为7.34米,且考虑220kV绝缘子串及金具的长度为3米,根据附图1知道,离房子最近处的摇摆半径为9米,通过CAD中简单模拟现场情况如附图2,就很容易知道,在该处建房是满足《架空输电线路运行规程 DL/T 741-2010》的。

输电线路风偏的简约估算,通过CAD的帮助,在输电线路日常运行中可以很好的提高工作效率,为输电线路运行人员提供便捷,但是对于简约估算后安全距离裕度较小的,还是建议根据理论进行详细的计算。

参考文献:
[1]张殿生.电力工程高压送电线路设计手册.中国电力出版社,。

相关文档
最新文档