Source localization and beamforming
一种基于麦克风阵列的声源定位算法研究

一种基于麦克风阵列的声源定位算法研究王勇;刘颖;刘建平【摘要】麦克风阵列声源定位广泛应用于视音频会议系统及枪声定位系统等领域.提出了一种基于最小熵值(ME)的麦克风阵列声源定位新方法,其特点在于利用最小熵值方法对麦克风阵列进行时延估计,并与离散网格方法相结合,对声源进行空间搜索.实验结果表明,在同等混响或噪声条件下,该方法定位优于广义互相关-相位变换方法(GCC-PHAT).%The acoustic source is widely used in audio and video conference system and gunshot localization system. In this article, a novel acoustic source localization algorithm for microphone array based on minimum entropy and stochastic region contraction (ME) is proposed. The algorithm show that the acoustic source can be developed to estimate time delay between microphones on a basis of minimum entropy and localize the acoustic source in search space by using discrete grid search algorithm. Experimental results show that the proposed algorithm is much more robust than GCOPHAT in noise and reverberation environment.【期刊名称】《现代电子技术》【年(卷),期】2011(034)019【总页数】4页(P61-64)【关键词】麦克风阵列;声源定位;最小熵值;波达时延差【作者】王勇;刘颖;刘建平【作者单位】西安电子科技大学,陕西西安710071;武警工程学院,陕西西安710086;武警工程学院,陕西西安 710086【正文语种】中文【中图分类】TN911.3-340 引言基于麦克风阵列的声源定位是声学信号处理领域中的一个重要问题。
边界元分析薄板振动问题的简便方法

边界元分析薄板振动问题的简便方法
张妃二;谢道建
【期刊名称】《北京科技大学学报》
【年(卷),期】1993(015)004
【摘要】提出边界元法分析域内具有支承和集中质量的薄板自由振动问题的简便方法。
这是一种处理边界元域内积分项的方法,使得该问题在利用其对应齐次方程的基本解的基础上,将域内积分化为边界积分来处理,节省了工作量。
计算实例结果表明,该方法的精度满足实际工程的要求。
【总页数】6页(P379-384)
【作者】张妃二;谢道建
【作者单位】不详;不详
【正文语种】中文
【中图分类】O343
【相关文献】
1.基于有限元边界元方法的薄板声辐射分析 [J], 赵志高;黄其柏;何锃
2.快速多极虚边界元法对含圆孔薄板有效弹性模量的模拟分析 [J], 许强;蒋彦涛;张志佳
3.弹性环薄板稳定问题的边界元分析 [J], 完海鹰
4.薄板弯曲问题边界元法分析中预条件GM RES算法 [J], 陈娟;肖洪天;高广运
5.随机边界元法在薄板可靠性分析中的应用 [J], 江爱民;汪小超;陈瑞生
因版权原因,仅展示原文概要,查看原文内容请购买。
SIMULTANEOUS LOCALIZATION AND MAPPING METHOD, COMP

专利名称:SIMULTANEOUS LOCALIZATION ANDMAPPING METHOD, COMPUTER DEVICE,AND STORAGE MEDIUM发明人:Chao CHEN申请号:US16931155申请日:20200716公开号:US20200349730A1公开日:20201105专利内容由知识产权出版社提供摘要:Embodiments of this application disclose a method, a computer device, and a storage medium for simultaneous localization and mapping, applied to the field of information processing technologies. In the simultaneous localization and mapping method in the embodiments, edge information of a current frame image captured by an image capturing apparatus is obtained, and the edge information is divided into structural features of a plurality of first components, where each first component may correspond to a partial structure of one object in the current frame image, or correspond to at least one object. Then, a correspondence between first components in the current frame image and second components in a reference frame image may be obtained by matching the structural features of the first components with structural features of the second components in the reference frame image. Finally, the image capturing apparatus may be simultaneously localized according to the correspondence.申请人:Tencent Technology (Shenzhen) Company Limited地址:Shenzhen CN国籍:CN更多信息请下载全文后查看。
北科大考博辅导班:2019北京科技大学仪器科学与技术考博难度解析及经验分享 (2)

北科大考博辅导班:2019北京科技大学仪器科学与技术考博难度解析及经验分享根据教育部学位与研究生教育发展中心最新公布的第四轮学科评估结果可知,在科教评价网版2017-2018仪器科学与技术专业大学排名中,仪器科学与技术专业排名第一的是清华大学,排名第二的是北京航空航天大学,排名第三的是天津大学。
作为北京科技大学实施国家“211工程”和“985工程”的重点学科,钢铁共性技术协同创新中心的仪器科学与技术一级学科在历次全国学科评估中均名列第三十一。
下面是启道考博辅导班整理的关于北京科技大学仪器科学与技术考博相关内容。
一、专业介绍仪器科学与技术专业是有关仪器运行应用的理论研究的工程性学科。
是为研究事物变化规律提供信息获取手段,并加以控制的一门学科。
本学科以传感技术、电子技术、计算机技术、信息处理技术、显示技术、控制技术为基础,对各种信息进行检测、显示或控制。
本学科可以与工业生产、农业生产、医疗仪器、医药化工、电力能源、国防环保、信息通讯、交通运输等多个领域相结合。
对人们的生产、生活、高新技术的发展和国民经济建设有重大促进作用。
北京科技大学钢铁共性技术协同创新中心的仪器科学与技术在博士招生方面,划分为2个研究方向080400 仪器科学与技术研究方向:01 工业大数据建模与分析02 先进检测技术与工业化应用考试科目:①1001 外语水平考核②2001 专业水平考核③3001 综合素质考核二、考试内容北京科技大学仪器科学与技术专业博士研究生招生考试的考核阶段,其中,综合考核内容为:考核分专业水平考核(100分)、外语水平考核(100分)、综合素质考核(100分)、思想政治素质和品德考核(不计成绩,但考核不合格不予录取)四部分。
①专业水平考核(100分)专业水平考核采用答辩形式,考生需提前准备好15分钟的汇报演示文档,主要内容包括科研工作经历、主要创新成果、博士课题设想等方面。
汇报完毕后专家组提问10分钟。
②外语水平考核(100分)外语考核采用笔试加口试的方式。
波束形成旁瓣效应的消除算法研究

波束形成旁瓣效应的消除算法研究卓瑞岩;向阳;肖栋;姚家池;张波【摘要】波束形成技术可以通过非接触式的中远距离声压测量,得到机械设备噪声源位置分布及相对强度,但波束形成算法本身存在"旁瓣效应"引入的虚假声源干扰.因此,基于波叠加法提出对波束形成的改进算法,通过在波束形成定位出的噪声源位置处布置等效源,由声压匹配波叠加法和传声器阵列声压反算等效源强度,再由所得各等效源强度,根据波叠加法基本原理在重建面上进行声压重建,进而消除旁瓣效应.仿真与柴油机噪声源试验结果证明改进算法切实有效.%The location and intensity of the noise source can be figured out by beamforming through non-contact meas-urement, however, the results of beamforming were affected seriously by the side-lobe phenomenon, and the side-lobe indic-ate ghost source. So an improve algorithm to suppress the side-lobe phenomenon was proposed based on wave superposition method. Pre-localize the noise source by beamforming and set equivalent sources based on the pre-localize result. Figure out the intensity of equivalent source based on wave superposition method and micro-phone array sound pressure. Then re-con-struct sound pressure on the re-construction plane based on the equivalent source intensity and wave superposition method. The side-lobe was eliminate finally. Simulation and experiment results show that the improve algorithm can suppress the side-lobe phenomenon successfully.【期刊名称】《舰船科学技术》【年(卷),期】2018(040)002【总页数】5页(P8-12)【关键词】柴油机;噪声源定位;波束形成;波叠加;旁瓣效应【作者】卓瑞岩;向阳;肖栋;姚家池;张波【作者单位】武汉理工大学能源与动力工程学院,湖北武汉 430063;武汉理工大学船舶动力系统运用技术交通行业重点实验室,湖北武汉 430063;武汉理工大学能源与动力工程学院,湖北武汉 430063;武汉理工大学船舶动力系统运用技术交通行业重点实验室,湖北武汉 430063;武汉理工大学能源与动力工程学院,湖北武汉430063;武汉理工大学船舶动力系统运用技术交通行业重点实验室,湖北武汉430063;武汉理工大学能源与动力工程学院,湖北武汉 430063;武汉理工大学船舶动力系统运用技术交通行业重点实验室,湖北武汉 430063;武汉理工大学能源与动力工程学院,湖北武汉 430063;武汉理工大学船舶动力系统运用技术交通行业重点实验室,湖北武汉 430063【正文语种】中文【中图分类】TB5320 引言噪声源的定位是机械设备振动噪声控制工作中的关键部分,基于波束形成的噪声源定位技术属于非接触、中远距离阵列测量定位方法,可在不影响设备正常运行的情况下进行声源定位[1]。
感知模型

分布式表示和状态推理
目标状态表示的问题 两种表示方法:一种是参数化近似表示(高斯分布),一种是非参数 化近似的表示。 参数相对少的参数化近似表示:估计效果较差,但通信开销小 非参数化近似表示:对目标状态值的估计比较差,但通信开销大 一种混合方法: 1)先用一组历史测量值去参数化信任值. 2)一旦信任值单峰分布,我们就用高斯分布去近似表示信任值。
中央化的估计(比较差,随着网络增大,复杂性也线性 增大,单点故障等问题) 顺序估计(增量估计)
Outline
A Tracking Scenario Problem formulation Distributed Representation and Inference of States Tracking Multiple Objects Sensor Models Performance Caparison and Metrics Summary
A constrained optimization problem
Outline
A Tracking Scenario Problem formulation Distributed Representation and Inference of States Tracking Multiple Objects Sensor Models Performance Caparison and Metrics Summary
选举一个初始的leader节点,用 于综合各个点的测量值,当一个 新的leader节点产生时,老的 leader节点会将它的测量值,传 递给新的leader(老的leader 就完成它的使命,没有单点故 障),依次类推。 优点:减少通信开销 缺点:需要制定一个有效的 leader选举标准(见第五章)
高频散射问题的边界截断和有限元方法 李勇霖
高频散射问题的边界截断和有限元方法李勇
霖
高频散射问题是指当电磁波频率很高时,它与大型物体之间的相
互作用。
在这种情况下,电磁波会与物体表面发生反射、透射、偏折
和散射等现象。
其中,散射是指电磁波碰到物体之后分散开来的现象。
高频散射问题在工业领域和科学研究中广泛应用,例如雷达成像、声
学成像和组织识别等。
高频散射问题的边界截断方法是用来控制边界上的散射。
在高频
散射问题中,物体表面的微小波动会被放大成很大的波动,这会导致
计算误差和计算复杂度的增加。
因此,边界截断方法旨在将物体表面
的波动扼杀在摇篮里,以确保计算的准确性和稳定性。
边界截断方法
通常采用吸收边界条件(ABC),这是一种特殊的数学边界条件,可以
将波动从物体表面反射回来的波动吸收,从而保证其不在计算过程中
反复反射。
另一方面,有限元方法是高频散射问题的另一种解决方法。
它是
通过划分问题域的方式将问题转化为独立的小问题,并在每个小问题
中使用适当的数学模型来计算散射现象。
有限元方法在高频散射问题
的数值计算中被广泛使用,因为它可以准确地描述电磁波在物体表面
的反射、透射和散射现象,同时也可以通过细化网格来提高计算精度。
然而,该方法也存在计算复杂度高、求解过程较耗时的缺点。
总之,高频散射问题的边界截断方法和有限元方法是两种有效的
解决方法。
在解决实际问题时,需要根据具体情况选择合适的方法,
以确保计算结果的准确性和计算效率的提高。
基于谱元法的复合材料裂纹梁Lamb波传播特性研究
mo in d e o r n v re r c a mo e t e to u t ta s e s c a k nd d l h La wa e mb v prp g to i a o o i b a o a ain n c mp st e m. Ac o dng o r c u a e c r i t fa t r l
t e c mp s e c a k d b a h o o i r c e e m.C mp rn t e ut o t e c n e t n l nt lme t t o t o a gwi r s l f m h o v n i a i ee n h d,t e p o o e d l a i h sr o i f e me h r p s d mo e s w
内 Lm a b波各模态的能量计算公 式 , 裂纹处的能量守恒证 明了所 提 出模 型的正确性 , 同时计算表 明复合材料 梁 中裂纹处
反射与透射 的 Lmb a 波各模态能量 随着裂纹深度 的变化规律具有单调性 , 结论可 以为定量 识别复合材料 梁裂纹提 供实用
依据。
关键词 :损伤识 别 ;a b波 ; Lm 复合材料梁 ; 向裂纹 ; 横 谱元法
v rfe o b fe tv n f ce t F r lto s f rc l u ai g L mb wa e e e g r e v d i e u n y d ma n, e i d t e e ci e a d e in . o mu ain o ac ltn a v n ry we e d r e n f q e c o i i i i r
me h n c ,t t f e so h p ng wa b an d a d us d t sa ls h e e o ae p c rlfn t lme tmo e f c a i s he si n s ft e s r so ti e n e o e tb ih t e d tr r td s e ta ie e e n d lo f i i i
波束域最大似然测高方法
波束域最大似然测高方法杨雪亚;谢腾飞;江胜利【摘要】针对雷达在低仰角搜索和跟踪目标时波束打地、受阵地反射多径影响严重的问题,提出了波束域最大似然雷达低仰角测高方法.该方法首先形成俯仰多波束覆盖目标,然后使用最大似然算法对多波束的目标数据进行处理,通过空间谱能量最大化的角度信息估计目标仰角和高度.与传统的和差波束及多波束比幅测角方法相比,该方法受多径影响小,具有较高的角度分辨率和高测量精度.计算机仿真和实测数据的处理结果验证了该算法可行有效.【期刊名称】《雷达科学与技术》【年(卷),期】2018(016)002【总页数】5页(P151-154,161)【关键词】波束域;多径信号;测高;最大似然【作者】杨雪亚;谢腾飞;江胜利【作者单位】中国电子科技集团公司第三十八研究所,安徽合肥230088;孔径阵列与空间探测安徽省重点实验室,安徽合肥230088;中国电子科技集团公司第三十八研究所,安徽合肥230088;孔径阵列与空间探测安徽省重点实验室,安徽合肥230088;中国电子科技集团公司第三十八研究所,安徽合肥230088【正文语种】中文【中图分类】TN958;TN957.510 引言雷达在对低空巡航飞行目标进行跟踪测量时,强相关的直达波和多径反射波同时进入接收波束主瓣,多径效应严重影响着低空(低仰角)目标的探测与测量[1-3]。
尤其是处于地平线反射区域的超低空目标,常规的多径消除技术不能使测量雷达有效地工作于这一区域。
由于直达回波和多径反射波在距离和速度上差异很小[4-5],无法通过脉冲压缩从距离上进行分离[6],也不能通过多普勒测速进行分离,只能考虑利用仰角差异进行分离直达回波和多径回波,并进行仰角和高度测量。
由于回波中所携带的关于目标仰角的相位信息被多径回波所破坏,单脉冲测角技术[7]会带来很大的测高误差。
阵列超分辨技术已应用于多径信号的波达方向估计问题中,代表性的算法有线性预测算法[8]、空间平滑MUSIC[9](多重信号分类)算法,以及最大似然[10-11]类参数估计方法等。
法国南特大学综合理工学院
法国南特大学综合理工学院(Ecole Polytechnique de I’Universite)攻读博士学位项目研究方向以及导师信息列表PhD joint training proram(适用于国家公派留学生项目)(红色字体为实验室或研究所名称,蓝色字体为联系方式)IREENANantes Atlantique Electrical Engineering and Electronics Research Instituteireena@polytech.univ-nantes.frPr. Mohammed El Hadi ZAÏM :electric machines, analytical and finite elements modeling, design, optimization, renewable energy (electric machines for marine current turbines and for wind energy) Pr. Luc LORON :electrical drives control, induction motor diagnosis, Pr. Mohamed MACHMOUM :Renewable Energy :- index terms : doubly-fed induction generator, low speed generator, control of variable speed electronic drives, marine renewable energy, tidal currents and ressources, integration of wind energy systems on the network. Power Quality :- index terms : Active filtering and unified power qualitity conditionning, fault tolerant systems, modelling (thermal and electical modelling) and robust control of power electronic converters. Pr. Yide WANG :Array signal processing for telecommunication (sources localization, beamforming, MIMO...) and Non linear signal processing in a communication system (modelization, characterization and linerization of power amplifier, ...). Pr. Serge TOUTAIN :Ultra compact radio front ends taking into account electromagnetic and thermic behavior"Design of active antennas for detection mobile communications " Pr. Hartmut GUNDEL : ferroelectric thin films for tunable radiofrequency devices and systems, nano impression technology for the design of optical waveguide devices. Pr. Joseph SAILLARD and Dr. Christophe BOURLIER :Radar electromagnetic signature of natural surfaces (as the sea for instance ) or artificial objects.Pr. Fouad BENKHORIS :My research field is about the study of multi-source multi-charge electrical systems, like embedded electrical network. Those systems are characterized by a strong interconnection between sources and loads.My study focuses on the modeling (how to obtain a true model of the whole system), control (how to control voltage, frequency and power of the system) and emulation (how to emulate a part of the system in order to carry out a bench mark) of thesesystems.Keywords : Embedded electrical network, multi-source multi-load systems, modeling, control, emulation.LINANantes Atlantique Computing Laboratorylina@polytech.univ-nantes.frProf. Pascale KUNTZ:Data mining, Clustering, Graph Mining, VisualizationIMNJean Rouxel Materials Instituteimn@polytech.univ-nantes.frProf. Jean-Pierre LANDESMAN, Prof. Antoine GOULLET, Prof. Ahmed RHALLABI: Plasma processes with application to electronic materials, nano-technology, photonic devices, dry etching, PECVD, microelectronics and nanoelectronics processing Prof. Jean-Luc DUVAIL, Prof. Olivier CHAUVET :Nano-wires, nano-tubes, nano-physics, nano-characterisationLGMPAMaterials Sciences and Engineering Laboratorylgmpa@polytech.univ-nantes.fr- Prof. René LE GALLmetallurgy, embrittlement- Dr. Franck TANCRETceramics, embrittlement- Dr. Pascal PAILLARDwelding, metallurgy- Prof. Thierry BROUSSELi-ion batteries, fuel cells, supercapacitors- Prof. Yves SCUDELLERthermal engineeringLTNNantes Thermokinetic Laboratoryltn@polytech.univ-nantes.frProf. H. PEERHOSSAINI, Prof. D. DELAUNAYIRCCyNNantes Communication and Cybernetics Research InstituteIVC team (Image and Vidéo Communication)irccyn@polytech.univ-nantes.frProf. Jean Pierre GUEDONmedical imaging, image and video representation and analysis, network services Prof. Christian VIARD GAUDINHandwriting recognition, document's image analysis, Artificial Intellignece applied to image processingDr. Patrick LE CALLEThuman vision modeling and application in image and video processing, image and video coding, video quality assessment。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
30
IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/02/$17.00©2002IEEE
பைடு நூலகம்
BARCLAY SHAW
MARCH 2002
the designer of the architecture and algorithm for the sensor network. In this article, we will deal with these features in terms of acoustic or seismic (i.e., vibrational) sources. While these two sources have some common features, they also have some distinct differences. Radio frequency (RF), visual, infrared, and magnetic sources have other distinct features but will not be considered here. The movement of personnel, car, truck, wheeled/tracked vehicle, as well as vibrating machinery can all generate acoustic or seismic waveforms. These waveforms are referred to as wideband signals since the ratio of highest to lowest frequency component is quite large. For audio waveforms (i.e., 30 Hz-15 kHz), the ratio is about 500, and these waveforms are wideband. Dominant acoustical waveforms generated from wheeled and tracked vehicles may range from 20 Hz-2 kHz, resulting in a ratio of about 100. Similarly, dominant seismic waveforms generated from wheeled vehicles may range from 5 Hz-500 Hz, also resulting in a ratio of about 100. Thus, the acoustic and seismic signals of interest are generally wideband. On the other hand, most propagated RF waveforms are narrowband, since the ratio of the highest frequency f H to the lowest frequency f L is usually very close to unity (e.g., for the 802.11b ISM wireless LAN system, the ratio is 2.4835 GHz/2.GHz = 1.03). Narrowband signals have a well-defined nominal wavelength, and time delay can be compensated by a simple phase shift. For wideband signals there is no characteristic wavelength and time delays must be obtained by interpolation of the waveform. When an acoustic or seismic source is located close to the sensors, the wavefront of the received signal is curved, and the curvature depends on the distance, then the source is in the near-field. As the distance becomes large, the wavefront becomes planar and parallel, then the source is in the far-field. For a far-field source, only the direction-of-arrival (DOA) in the coordinate system of the sensors is observable. A simple example is when the sensors are placed on a line with uniform intersensor spacing, then all adjacent sensors have the same time delay, and the DOA of the far-field source can be estimated readily from the time delay. For a near-field source, the collection of all relative time-delays of the source can be used to determine the source location. For an acoustic source, the propagation speed in air is a known constant of approximately 345 m/s. Measurable atmospheric parameters such as the temperature and the component of the wind velocity along the direction of propagation from the source to the sensors have only second-order effects, but can be used to determine a more accurate propagation speed. It is also known that turbulent atmospheric conditions can cause loss of coherency of acoustical wavefronts [10] and degrade coherent processing of these wavefronts beyond distances of few tens of feet [11]. On the other hand, for a seismic source, the propagation speed is unknown and depends strongly on the propagation medium. The propagation speed of the
Source Localization and Beamforming
istributed sensor networks have been pro- provide an overview of these issues. Some prior systems posed for a wide range of applications. The include: WINS at RSC/UCLA [1], AWAIRS at main purpose of a sensor network is to moni- UCLA/RSC [2]-[4], Smart Dust at UC Berkeley [5], tor an area, including detecting, identifying, USC-ISI network [6], MIT network [7], SensIT syslocalizing, and tracking one or more objects of interest. tems/networks [8], and ARL Federated Laboratory AdThese networks may be used by the military in surveil- vanced Sensor Program systems/networks [9]. lance, reconnaissance, and combat scenarios or around the In the first section, we consider the physical features of perimeter of a manufacturing plant for the sources and their propagation propintrusion detection. In other applica- Joe C. Chen, Kung Yao, erties and discuss the system features of tions such as hearing aids and multimethe sensor network. The next section inand Ralph E. Hudson dia, microphone networks are capable troduces some early works in source loof enhancing audio signals under noisy conditions for im- calization, DOA estimation, and beamforming. Other proved intelligibility, recognition, and cuing for camera topics discussed include the closed-form least-squares aiming. Recent developments in integrated circuit tech- source localization problem, iterative ML source localizanology have allowed the construction of low-cost minia- tion, and DOA estimation. ture sensor nodes with signal processing and wireless communication capabilities. These technological advances not only open up many possibilities but also intro- Microsensor Networks duce challenging issues for the collaborative processing of Physical Features wideband acoustic and seismic signals for source localiza- We first characterize the basic physical characteristics and tion and beamforming in an energy-constrained distrib- features of the sources and their propagation properties as uted sensor network. The purpose of this article is to shown in Table 1. These features are outside the control of