用PLC实现三相交流异步电动机可逆旋转控制

合集下载

任务三 三相异步电动机正反转循环运行的PLC控制

任务三  三相异步电动机正反转循环运行的PLC控制

(二)设备与器材
表1-22 设备与器材
序号
名称
符号
型号规格
数量 备注
1
常用电工工具
十字起、一字起、尖嘴钳、剥线钳 等
1
2
计算机(安装GX Works3编程 软件)
3
三菱FX5U可编程控制器
PLC
FX5U-32MR/ES
4
三相异步电动机正反转循环运 行控制面板
5
三相异步电动机
6
以太网通信电缆
M
WDJ26,PN=40W,UN=380V, IN=0.2A,nN=1430r/min,f=50Hz
2)学会用三菱FX5U PLC的顺控程序指令编辑三相异步电动机正反转循 环运行控制的程序。
3)会绘制三相异步电动机正反转循环运行控制的I/O接线图。 4)掌握FX5U PLC I/O接线方法。 5)熟练掌握使用三菱GX Works3编程软件编辑梯形图程序,并写入 PLC进行调试运行。
11
项目一 任务三 三相异步电动机正反转运行运行的PLC控制
MPS
栈存储器的第一层, 之前存储的数据依次
下移一层
读取堆栈第一层的 MRD 数据且保存,堆栈内
的数据不移动
读取堆栈存储器第
MPP
一层的数据,同时该 数据消失,栈内的数
据依次上移一层
梯形图表示
FBD/LD表示
ST表示
目标元件
ENO:=MPS(EN);
ENO:=MRD(EN);

ENO:=MPP(EN);
对于FX5U PLC默认情况下,16位计数器的个数为256个,对应编号为C0 ~C255;32位超长计数器个数为64个,对应编号为LC0~LC63。

三相异步电动机双速可逆变频调速PLC控制

三相异步电动机双速可逆变频调速PLC控制

三相异步电动机双速可逆变频调速PLC控制异步电动机变频调速所要求的变频电源几乎都采用静止式变频器。

利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的开关顺序,即可以达到对输出进行换相的目的,很容易实现电动机的正、反转切换。

本文介绍了PLC在三相交流异步电动机变频调速系统方面的设计,说明了系统的控制策略和工作原理,探讨三相异步电动机双速可逆变频调速PLC控制。

1、PLC在三相交流异步电动机变频调速系统设计三相交流异步电动机变频调速系统,以可编程序控制器PLC 作为核心控制部件,通过速度传感器将电动机的转速信号传给PLC, PLC经过控制规律的运算后,给出控制信号,改变电动机输入电压的频率,来调节电动机的转速,从而构成了一个闭环的速度控制系统。

如图1 所示。

2、三相异步电动变频器电路连接的要点2.1变频器前面一定要加接触器输入侧接触器的作用。

一般说来,在断路器和变频器之间,应该有接触器。

a. 可通过按钮开关方便地控制变频器的通电与断电。

b. 发生故障时可自动切断变频器电源,如:变频器自身发生故障,报警输出端子动作时,可使接触器KM迅速断电,从而使变频器立即脱离电源。

另外,当控制系统中有其他故障信号时,也可迅速切断变频器电源。

2.2变频器与电动机之间是否接输出接触器并不要求和工频进行切换时,变频器与电动机接触器,则有可能在变频器的输出频率较高的致变频器跳闸。

a. 当一台变频器只控制一台电动机,且并不要求和工频进行切换时,变频器与电动机之间不要接输出接触器。

因为如果接入了输出接触器,则有可能在变频器的输出频率较高的情况下启动电动机,产生较大的启动电流,导致变频器跳闸。

b. 必须接输出接触器的情况有两种:当一台变频器接多台电动机时,每台电动机必须要有单独控制的接触器。

另外,在变频和工频需要切换的情况下,当电动机接至工频电源时,必须切断和变频器之间的联系。

通用变频器,一般都是采用交、直、交的方式组成,利用普通的电网电源运行的交流拖动系统,为了实现电动机的正、反转切换,必须利用触器等装置对电源进行换相切换。

三相异步电动机可逆运行能耗制动控制(S7-200系列PLC).

三相异步电动机可逆运行能耗制动控制(S7-200系列PLC).

三相异步电动机可逆运行能耗制动控制(S7-200系列PLC)解:1) I/O编址:I0.1——SB1停车 I0.4——FR过载保护 Q0.1——KM1线圈I0.2——SB2正转 Q0.2——KM2线圈I0.3——SB3反转 Q0.3——KM3线圈2) KT的对应指令——选定时器:T37(100ms时基接通延时定时器)设定时时间:PT=100(定时时间10s)2)梯形图(注意:I0.4过载保护设为常开触点)说明:在控制线路中,设置有KT的瞬动触点与KM3辅助常开触点串联,在PLC控制中,定时器是软器件,不存在机械故障的问题,所以不必设KT 的瞬动触点。

如果直接翻译,则根据定时器的工作时序,在Q0.3的自锁支路上串联的应是T37的常闭触点。

3)I/O端子接线图(略)多路定时器——多台电动机的顺序循环控制(S7-200系列PLC)控制要求:(1)由运行开关控制:“1”= 起动,“0”= 停止解:1) I/O编址:I0.0 ——运行开关定时器:T37 PT=800Q0.1——1#设备Q0.2——2#设备Q0.3——3#设备Q0.4——4#设备Q0.5——5#设备2)梯形图:如图8-3-14 (a)所示。

这里,利用了比较指令进行各时段的控制,非常方便3)I/O端子接线图(略)。

S7-200 PLC的PPI协议及其开发实例通过硬件和软件侦听的方法,分析PLC内部固有的PPI通讯协议,然后上位机采用VB编程,遵循PPI通讯协议,读写PLC数据,实现人机操作任务。

这种通讯方法,与一般的自由通讯协议相比,省略了PLC的通讯程序编写,只需编写上位机的通讯程序资源S7-226的编程口物理层为RS-485结构,SIEMENS提供MicroWin软件,采用的是PPI(Point to Point)协议,可以用来传输、调试PLC程序。

在现场应用中,当需要PLC与上位机通讯时,较多的使用自定义协议与上位机通讯。

在这种通讯方式中,需要编程者首先定义自己的自由通讯格式,在PLC 中编写代码,利用中断方式控制通讯端口的数据收发。

PLC控制三相异步电动机正反转设计

PLC控制三相异步电动机正反转设计

PLC控制三相异步电动机正反转设计摘要本论文文设计了三相异步电动机的PLC控制电路,就是三相异步电动机的正反转控制,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强等优点。

非常实用。

三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。

本文研究的这个系统的控制是采用PLC的编程语言----梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。

关键词:PLC 三相异步电动机可编程控制梯形图武汉职业技术学院毕业设计(论文)引言 (1)第一章三相异步电动机基础 (2)1.1三相异步电动机的基本结构 (2)1.1.1 三相异步电动机定子 (2)1.1.2三相异步电动机转子 (3)1.2三相异步电动机的工作原理 (3)1.3三相异步电动机的正反转工作过程 (4)1.3.1 三相异步电动机的原理 (4)1.3.2 三相异步电动机的制动 (4)第二章 PLC基础的知识 (5)2.1关于PLC的定义 (5)2.2PLC与继电器控制的区别 (5)2.3PLC的工作原理 (5)第三章三相异步电动机的PLC控制 (7)3.1三相异步电机的正反转PLC控制 (7)3.2PLC定时器控制电动机正反转互锁的设计 (9)3.2.1 PLC定时器控制电动机正反转电路的主接线图 (9)3.2.2 PLC定时器控制三相异步电动机正反转的梯形图 (10)3.2.3定时器控制电动机正反转的指令表程序 (11)3.2.4 PLC的I/O分配 (11)3.2.5 实体框形图 (12)3.3三相异步电动机使用PLC控制优点 (13)结论 (13)参考文献 (14)致谢 (15)引言三相异步电动机的应用非常广泛,具有机构简单,效率高,控制方便,运行可靠,易于维修成本低的有点,几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,三相异步电动机运行的环境不同,所以造成其故障的发生也很频繁,所以要正确合理的利用它。

PLC控制变频器实现三相异步电动机正反转

PLC控制变频器实现三相异步电动机正反转

PLC控制变频器实现三相异步电动机正反转摘要随着我国经济的高速发展,交流变频器调速技术已经进入一个崭新的时代,其应用越来越广泛,而电动机作为现代动力技术的来源,与人们的生活紧密相关,随着人们对其要求的提高,电动机得到了快速的发展,其拖动技术已经发展到了变压变频调速,其逻辑控制也由plc代替原来的继电器控制。

本文在三相异步电动机的正反转原理为基础上,采用了PLC和变频器控制电动机的正反转,本论文介绍了PLC与变频器之间的通信网络,再此基础上介绍了变频器和PLC相关知识。

论文以“PLC控制变频器实现三相异步电动机正反转”电路原理设计图为核心,介绍了相关元件的结构原理及其选型分析,最后对设计的整个系统进行定性分析,在设计系统的过程和实践运行过程中可能会遇到的问题,本文也散开了论述。

关键词:继电器控制PLC 变频器三相异步电动机正反转前言1 PLC控制变频器实现三相异步电动机正反转技术的现状与前景在当今面临能源危机的条件下,节能降耗不仅有近期的直接经济效益,更有这长远的社会利益。

变频器是公认的交流电动机(包括三相异步电动机)最理想和最有前途的调速方案,除了具有卓越的调速性能,还有显著的节能用。

自20世纪80年代变频器相续被引进中国以来对三相异步电动机正反转的节能应用与速度工艺控制中心中得到了快速发展和广泛应用。

在传送、纺织、起重、建材、石油、化工、治金、造纸、挤压和机床等行业以及公用工程(如电梯上升与下降,自动们的开启与关闭)中。

在生产制造的过程中,大部分需要用到PLC编程去自动控制生产制造过程,这样就少企业对人力的投资,从而转向对生产技术的投资,这样有利于经济效益的提高,用PLC控制生产过程对企业的安全生产也提供了强有力的保障,所以用PLC控制变频器实现三相异步电动机的正反转已得以广泛应用于生产当中,PLC控制变频器实现三相异步电动机的正反转急技术是提高经济效益一种最有效的方法之一,用其技术能较集中资金投资于生产技术2设备选型本设计所用到额定功率P MN=10KW、额定电压U MN=380V、额定电流I MN=22A、转速140r/min的电动机,变频器与电机相距L=40米,工作效率40Hz,线电压△U不超过2%2.1导线的选型1)变频器与电机之间的导线选择论证根据线电路电压△U的一般要求:△U≦(2~3)%·U MN·f/50【1】带入数据求解得到电路电压△U:△U≦6.08(v)又根据△U的计算公式:△U=√3·I MN·R o·L/1000单位长度(每米)导线的电阻Ro=3.989根据下表:可知:应选用的导线的标称截面积为4.0平方毫米2)购买导线的型号导线选购于成都特变线缆公司提供的成都特变BV4mm2铜芯线图表1—2 特变BV4mm2铜芯线详细信息该导线需购40×3m,总购价:40×3×2.54=304.8元2.2熔断器的选型熔断器作用:熔断器由熔体。

任务1.1-用PLC改造三相异步电动机正反转控制线路

任务1.1-用PLC改造三相异步电动机正反转控制线路

任务1.1 用PLC 改造三相异步电动机正反转控制线路1.1.1任务描述下图1-1-1是三相异步电动机正反转控制线路,它由主电路和辅助电路两部分组成,能够实现异步电动机的正反转控制,此外该电路还具有短路保护和过载保护的功能。

现利用三菱FX 系列PLC 改造三相异步电动机正反转控制线路,要求不改变原先的控制面板,保持系统原有的外部特性,即改造完成后工作人员不需要改变长期形成的操作习惯。

本任务要求电机正反转启动按钮、停止按钮以及过载保护常闭触点与改造前一致。

图1-1-1 三相异步电动机正反转控制线路1.1.2任务目标1.能根据控制要求分配PLC 的输入输出端口; 2.会根据输入输出端口完成线路的连接;3.能选择PLC 指令完成梯形图程序的编写,例如LD 、AND 、OUT 、SET 和RST 等指令; 4.会上电调试程序功能。

1.1.3任务分析与实施一、硬件线路1.系统输入输出信号分析根据图1-1-1的分析,系统的输入信号由两部分构成:一是三相异步电动机停止、正反向启动的控制信号,分别由按钮SB1、SB2 和SB3提供;二是三相异步电动机的过载检测信号,由热继电器FR 的常闭触点提供。

系统需提供两个输出信号,分别用于驱动接触器KM1和KM2,使三相异步电动机实现M3L1L2L3QSFU1FU2KM1KM2FRKM1KM2KM1KM2SB3SB2SB1KM1KM2FR123456789正反转运行。

根据上述分析,PLC 的I/O 端口分配如表1-1-1所示。

表1-1-1 I/O 端口分配表2.硬件线路的设计硬件线路由主电路和控制回路构成,具体如图1-1-2所示。

图1-1-2 三相异步电动机正反转PLC 控制线路说明:(1)为延长PLC 输入点的使用寿命,其输入信号一般采用常开的方式接入,但为更可靠接受保护类信号,其输入信号一般采用常闭的方式接入;(2)与上图中一致,凡是由PLC 实现的正反转控制线路,KM1和KM2必须实行电气联锁,否则在电动机正反转切换的过程中会导致主回路短路;(3)由于三菱FX2N-48MR (继电器输出型)的输出点承受电压最大为AC240V 或DC30V ,故本图中使用的接触器线圈额定电压选为AC220V 。

用PLC实现三相异步电动机的正反转控制实训教学探讨

用PLC实现三相异步电动机的正反转控制实训教学探讨

用PLC实现三相异步电动机的正反转控制实训教学探讨文/冯春楠摘要:继电接触器控制电路虽然应用很广,但存在触点使用寿命短、体积大、接线繁杂等缺点,特别是因为它采用固定接线方式,一旦控制要求有所变动,就得重新设计安装,通用性和灵活性较差。

本文分析提出,采用PLC(可编程控制器)控制克服以上缺点,特别是在复杂的控制以及控制要求有所变动的控制中,其通用性和灵活性较为优越。

关键词:三相异步电动机正反转 PLC控制实训教学一、PLC系统PLC是一种数字运算操作的电子系统,专为在工业环境下应用而设计。

它采用可编程的存储器,用来在其内部存储程序,执行逻辑运算、顺序控制、定时、计数和算术运算等操作指令,并通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。

用PLC实现电路的控制,主要包括对电路的控制要求进行分析、确定输入/输出点数及其地址分配、进行主电路及PLC接线、进行程序设计、对程序进行仿真调试和带负荷调试运行这几个步骤。

二、用PLC实现三相异步电动机的正反转控制实训教学探讨(以三菱公司的FX2N为例)1.分析电路控制要求按下正转启动按钮,电动机获电正转;按下停机按钮,不管当前是正转还是反转,电动机均断开电源停止运转;按下反转启动按钮,电动机获电反转。

也就是说,正转启动按钮控制电动机正转运行,反转启动按钮控制电动机反转运行,停机按钮控制电动机停机。

2.确定输入/输出(I/O)点数及其地址分配(1)确定输入点数及其地址分配。

确定输入点数及其地址分配即为确定输入信号的个数及其对应的输入继电器的地址分配。

PLC的每一个输入点及其对应的输入电路,都等效为一个输入继电器,而每一个输入继电器都有若干个常开和常闭触点,供编程使用。

根据以上对“三相异步电动机的正反转控制”电路的分析控制要求,共有三个输入信号,分别由正转启动按钮开关、停机按钮开关、反转启动按钮开关输入,根据控制要求分析,分别对应着三个输入点,即三个相对应地址输入继电器。

PLC控制三项异步电机正反转控制

PLC控制三项异步电机正反转控制

PLC控制三项异步电机正反转控制摘要随着时代不断的发展,在实际生产过程中,尤其是在工业制造领域,对于机械设备以及操作技术的要求越来越严格,一般需要机械可以达到对向的运动,例如生活中常见的传送带的传输过程、电梯的上下运动以及汽车的前进与后退等运动,都需要借助正反两个不同方向的动力装置,才能够实现。

关键词:可编程控制器;工控设备;正反1.PLC控制技术概述1.1 PLC特性分析新型可编程控制系统的设计初衷是为了妥善处理相关复杂的操作要求以及操作环境,其具体的运行原理是借助不同功能的I/O接口,进而来控制设备以不同的指令运行的一种新型技术手段。

其相比于传统的控制技术来说,其特征为:1.1.1 PLC与继电器逻辑控制系统的比较直到PLC出现之前,电气控制广泛的在价格较低的继电器中应用,如图-1所示。

图-1 PLC与继电器逻辑控制系统的比较项目继电器逻辑控制系统PLC控制逻辑接线逻辑,覆盖大,接线复杂,修改困难存储逻辑,体积较小、布线少,控制灵活,易于扩展控制速度控制功能通过开闭触点实现,动作速度达数万毫秒,触点易抖动存储逻辑,体积小、连线少,控制灵活,易于扩展限时控制由时间继电器实现,精度低,易受环境和温度的影响控制功能由半导体开关实现,每一指令执行时间微秒,无触点抖动触点数量4-8对,易磨损任意多个,永不磨损工作方式并行工作串行循环扫描设计与施工施工设计及调试必须按顺序进行,且工期长,修改难度大系统设计完成后,可同时进行施工和设计,施工周期短,易于调试且修改方便可靠性与可维护性寿命短,可靠性与可维护性差可靠性强,使用寿命久,且有自诊断功能,易于维修,维修方便价格使用机械开关、继电器及接触器等,价格实惠使用大规模集成电路,前期投资较大1.1.2 PLC与微型计算机控制系统的比较同样是采用微电子制作的PLC,它和微型计算机的构造相似,如二者都有中央处理器、ROM、RAM以及输入和输出,但是PLC采用了一定的抗干扰技术,加上丰富的扩展模块,可将它的可扩展能力提高,使其更易适应工业控制,PLC 和微型计算机的区别如图-2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用PLC实现三相交流异步电
动机可逆旋转控制
(1)元件清单 主回路需要刀开关1个、交流接触器2个、熔断器3个、热继电器1个,LQD40A48-3V31V2REJ主回路原理图同图1-32;控制回路需要中间继电器2个、熔断器2个、常开按钮2个、常闭按钮1个、PLC装置1套,具体配置:PS307(5A)电源模块1个、CPU 314模块1个、SM321 DI32×DC 24V 数字量输入模块1个、SM322 D016×Rel AC120V/230V 数字量输出模块1个(继电器输出)。

(2)控制回路 由于PLC的驱动能力有限,一般不能直接驱动大电流负载,而是通过中间继电器(线圈电压为直流24 V、触点电压为交流380 V)驱动接触器,然后由接触器再驱动大电流负载,这样还可以实现PLC系统与电气操作回路的电气隔离。

所以控制回路包括PLC瑞子接线图(如图1-34所示)和接触器控制原理图(如图1-35所示),其中KA1和KA2分别为正转和反转控制用中间继电器的线圈及触点,KM1和KM2分别为正转和反转控制用交流接触器的线圈及触点,SB1和SB2分别为正转和反转用常开型的启动按钮,SB3为常闭型的停止按钮,FR是主回路中热继电器的常闭触点。

该PLC硬件系统所使用的数字量输入模块有32个输入点,每8点(1字节)为1组,拥有1个公共端,分别用1M、2M 、3M、4M表示,外部控制按钮(SB1,SB2,SB3)通过DC 24 V送入相应的输入点(10.0,10.1,10.2)。

所使用的数字量输出模块有16个输出点,每8点(1字节)为1组,拥有一个公共电源输入端,分别用1L,2L表示,外部负载(KA1,KA2)均通过电源(如DC 24 V)接在公共电源输入端(如11。

)与输出端(QO.0,QO.1)之间。

控制原理:在停机状态下,如需要电动机正转,则按下正转启动按钮SB1,输入点10.O接通,通过PLC内部用户程序控制,则使输出点QO.O接通、QO.1断开,KA1线圈得电,其常开触点闭合,从而使KM1线圈得电,串接于主回路的KM1主触点闭合,现电动机的正转。

在PLC内部通过程序运算,实现输出点QO.0的自锁。

当需要停机时,则按下停止按钮SB3,输入点10.2断开,通过PLC内部用户程序控制,解除对QO.O的自锁,QO.O断开,电动机停机。

对电动机的反转操作也是如此。

相关文档
最新文档