共集电极放大电路和共基电极放大电路.

合集下载

三种放大电路

三种放大电路

基于三种电路对电流放大的研究摘要:放大电路时指能量的控制和转换,用能量比较小的输入信号来控制另一个能源,使输出端的负载得到的能量比较大的信号。

放大的对象是变化量,放大的前提是传输不失真。

三种放大电路的基本组态:三种放大电路为:共发射极放大电路,共基极放大电路,共集电极放大电路。

1、共发射极放大电路三极管V:实现电流放大。

集电极直流电源Ucc:确保三极管工作在放大状态。

集电极负载电阻Rc:将三极管集电极电流变化转为电压变化,以实现电压放大。

基极偏置电阻Rb:为放大电路提供静态工作点。

耦合电容C1和C2:隔直流通交流。

工作原理:Ui直接加在三级管V的基极和发射极之间,引起基极电流ib作相应的变化。

通过V的电流放大作用,V的集电极电流ic也将变化。

ic的变化引起V的集电极和发射极之间的电压UCE变化。

UCE中的交流分量uce经过C2畅通的传送给负载RL,成为输出交流电压u。

,实现电压放大作用。

(1)静态分析:共发射极放大电路的直流通路和静态工作点(2)求静态工作点上图Q点为静态工作点。

2、共集电极放大电路A是一个共集组态的单管放大电路,b为等效电路。

则由a图电路的基极回路可求得基极电流为电流的放大倍数由图b等效电路可知。

3、共基极放大电路直流通路与静态工作稳定电路相同。

电流的放大倍数没有电流的放大作用。

电压放大倍数具有电压放大作用,没有倒向作用。

共基极放大电路具有输出电压与输入电压同相,电压放大倍数高、输入电阻小、输出电阻大等特点。

由于共基极电路有较好的高频特性,故广泛用于高频或宽带放大电路中。

三种电路的比较:1.共射电路既能放大电压又能放大电流,具有较大的电压放大倍数和电流放大倍数,输入电阻在三种电路中居中,输出电阻较大,频带较窄。

常做低频放大电路的单元电路。

2. 共集电路只能放大电流不能放大电压,是三种接法中输入电阻最大,输出电阻最小的电路,电压放大倍数接近1,具有电压跟随特点。

常用于电压放大电路的输入级和输出级,在功率放大电路中也常采用。

简述放大电路的三种组态的特点

简述放大电路的三种组态的特点

简述放大电路的三种组态的特点在电子学中,放大电路是基础的组成部分,它能够放大微弱的电信号,使之足够驱动后续的电路或设备。

放大电路有三种基本组态,分别是共发射极、共基极和共集电极。

每种组态都有其独特的特点和应用场景。

1. 共发射极放大电路(Common Emitter放大电路):共发射极放大电路是最常用的组态之一。

其主要特点包括:a. 输入信号施加在基极和发射极之间,控制晶体管的电流;b. 输出信号则取自集电极和发射极之间;c. 共发射极放大电路具有电压和电流放大能力,因此既可放大交流信号也可放大直流信号;d. 由于其电压放大能力较高,因此常用于音频放大器、功率放大器等场合。

2. 共基极放大电路(Common Base放大电路):共基极放大电路的特点在于:a. 输入信号加在基极上,通过晶体管的电流不受输入信号的控制;b. 输出信号则取自集电极上;c. 共基极放大电路只有电流放大能力而无电压放大能力,因此主要应用于高频信号放大或宽频带放大场合;d. 由于其输入阻抗高、输出阻抗低,因此常用于宽频带放大器、高频振荡器等场合。

3. 共集电极放大电路(Common Collector放大电路):共集电极放大电路的特点包括:a. 输入信号加在基极上,通过晶体管的电流不受输入信号的控制;b. 输出信号则取自发射极上;c. 共集电极放大电路只有电流放大能力而无电压放大能力,因此常用于缓冲、隔离和电流放大等场合;d. 由于其输入阻抗高、输出阻抗低,因此常用于前置级、缓冲级等场合。

总结来说,这三种组态的放大电路各有其独特的应用场景和特点。

在实际应用中,应根据具体需求选择合适的组态,以达到最佳的放大效果。

共集电极放大电路和共基极放大电路

共集电极放大电路和共基极放大电路

(2)
rbe
200
(1
)
26( mV ) IE (mA)
200 (1 ) 26(mV)
IC (mA)
863
A VV V o i (R rc b/e/R L)11.857
R iR b/r /be rbe 86 3 精品课件
RoRc 4k
A VS
Ri Ri Rs
A V
863 (115 .87 )
95
*
例4.5.1 已知 = 50,VBEQ=
Ro
-VCC
200K Rb
Rc 1K -12V
1K Rs +
Vs -
+ Cb1
T Cb2 +
1.2K Re
RL
1.8K
-0.7V, 求Q点、Av、Ri、
200K Rb
-VCC Rc 1K
T
1.2K Re
IBQRbVCC(1VEB)RQe
ICQIBQ
精品课件
*
2.动态分析 ①小信号等效电路
*
精品课件
②电压增益
输入回路:
v iibrb e(1β)ibR L
其中 RL Re//RL
输出回路:
vo(1β)ibRL
电压增益:
Av
vo vi
(1β)ibRL (1β)RL ib[rbe(1β)RL] rbe(1β)RL
1
Av 1 vo与vi同相 电压跟随器
A V1 V V oi1(R rcb1 e/1/Ri2)21.57
Ro
Re2
//
(Ro1// Rb2) rbe2
1
前 两者面 A比V2较例 可VVoo1看题 出1 增中 益明求 显大 提得 高倍 单A 数 V级 1放 1.587

晶体管共集电极放大电路和共基极放大电路及多级放大电路

晶体管共集电极放大电路和共基极放大电路及多级放大电路

2.6 共集电极放大电路和共基极放大电路
(3) 动态性能指标 1)电压放大倍数
Uo Ie ( RE // RL )
(1 )Ib RL
Ui Uo Ibrbe
Ibrbe (1 )Ib RL
其中 RL RE // RL
i b
rbe
ui
RB
RE
c
b
+
RL uo
2.6 共集电极放大电路和共基极放大电路
_ uS
_
Ri RB //[rbe (1 )RL ]
微变等效电路
b
+ rbe
b
ui RB
RE
_
+
RL uo
_
Ri
RL RE // RL
2.6 共集电极放大电路和共基极放大电路
(3) 求电压放大倍数
Au
Uo Ui
(1 )RL rbe (1 )RL
A·us
U·o U·s
·· UU·oi UU·si
【例】电路如图所示,试求:
VCC
(1) 电路的静态工作点ICQ、
UCEQ; RS
(2) 电路的输入电阻Ri;
+
u_S
(3) 电路的电压放大倍数
Au=Uo/Ui 、 Aus=Uo/Us;
C1
RB
+
+
ui
_
T + C2
+
RE
RL uo
_
(4) 输出电阻Ro。
2.6 共集电极放大电路和共基极放大电路
VCC
Au
Uo Ui
RL
rbe
2.6 共集电极放大电路和共基极放大电路

共集放大电路和共基放大电路

共集放大电路和共基放大电路

微变等效电路
v r i be R R // i e ii 1
基本共基放大电路分析
输出电阻
用加压求流法求输出电阻
e
Rs
rce
ib
c
i
-
R v/ i
' o
' Rs ib i ' Rs rbe
vs
+
RE
rbe
v RL
+
R s'
b
' v ( i i ) r i ( R // r ) b ce s b e
Rs vs
Re
+ vo -
1、静态分析
I BQ VC C (VB E Q) Rb (1 )Re
-VCC
Rb
12 0.7 43.3A (200 51 1.2)
Rc
I I 2 . 16 mA CQ BQ
V V I ( R R ) 7 . 25 VR E CQ CC CQ e C
例4.5.1
V 12 V ,R k ,R 1 k CC b 200 s R 1 .2 k ,R 1 k ,R 1 .8 k , e C L BJT 的 50 ,V 0 .7 V BEQ 求该电路的静态工作点 Q,
-VCC
Rb
Rc
C2 RL
C1
+ vi
-
A v , R i , 及 R o, 并 说 明 它 属于什么组态。
Ri
v ' i R R //[ r ( 1 ) R ] 31 . 59 k i b be L i i
' R r s be R R // 34 o e 1

8共集电极放大电路与共基极放大电路

8共集电极放大电路与共基极放大电路

一、复习引入共射极放大的特点有哪些?二、新授(一)共集电极放大电路共集电极放大电路的组成如图1(a)所示。

图1(b)为其微变等效电路,由交流通路可见,基极是信号的输入端,集电极则是输入、输出回路的公共端,所以是共集电极放大电路,发射极是信号的输出端,又称射极输出器。

各元件的作用与共发射极放大电路基本相同,只是R e除具有稳定静态工作的作用外,还作为放大电路空载时的负载。

(a)电路图(b)微变等效电路图1 共集电极放大电路1.静态分析由图1(a)可得方程V CC=I B R B+U BE+(1+β)I B R E则I B= (V CC - U BE )/R B+(1+β)R EI C=βI BU CE= V cc-I E R E≈V cc-I C R E3.动态分析(1)电压放大倍数A u由图1(b)可知u i=i b r be+i e R L′=i b[r be+(1+β)R L′]u o=i e R L′=(1+β)i b R L′式中:R L′=R E//R L。

故A u==u o/u i=i b(1+β)R L′/ I b[r be+(1+β)R L′]= (1+β)R L′/[r be+(1+β)R L′] 一般(1+β)R L′> r be,故A u≈1,即共集电极放大电路输出电压与输入电压大小近似相等,相位相同,没有电压放大作用。

(2)输入电阻R iR i=u i/i b=i b r eb+(1+β)i b R L′/ I b = r be+(1+β)R L′故R i= R B// R L′=R B//[r be+(1+β)R L′]说明,共集电极放大电路的输入电阻比较高,它一般比共射基本放大电路的输入电阻高几十倍到几百倍. (3)输出电阻R o将图3(b)中信号源U s短路,负载R L断开,计算R0的等效电路如图2所示。

图2 计算输出电阻的等效电路由图可得I=I e +I b +βI b =I e +(1+β)I b=U o /(R E +(1+β))·U/(r be +R S ′)式中:R s ′=R S //R B 。

单管放大器总结 共射、共集、共基放大电路

单管放大器总结 共射、共集、共基放大电路

晶体管共射极单管放大器单管放大电路的三种基本结构单管放大电路有共发射极、共基极和共集电极三种解法(组态),他们的输入和输出变量不同,因而电路的性能也不太一样。

共发射极单管放大电路.共集电极单管放大电路.共基极单管放大电路图一为电阻分压式工作点稳定单管放大器实验电路图。

他的偏置电路采用Rb1组成的分压式电路,并在发射极中接有电阻Re,以稳定放大器的静态工作点。

在放大器的输入端加入输入信号Ui后,在放大器的输入端可得到一个与Ui相位相反,幅值被放大的输出信号U0,从而实现放大。

图一共射极单管放大器实验电路图当流过电阻Rb1和Rb2的电流远大于晶体管T的基极电流Ib时,则他的静态工作点Ub可以以以下式估算Ub=Rb1*U/Rb1+Rb2 Ie=Ub-Ube/Re≈Ic Uce=Ucc-Ic(Rc+Re)放大倍数Av=-β(Rc∥Rc)/rbe+(1+β)Re输出电阻:R=Rb1∥Rb2∥[rbe+(1+β)Re]输入电阻;R0≈Rc放大器的测量与调试一般包括:放大器静态工作点的测量与调试。

消除干扰与自激振荡机放大器各项动态参数的测量与调试。

1.放大器静态工作点的测量与调试(1)放大器静态工作点的测量测量放大器静态工作点的条件:输入信号Vi=0即将输入端与地短接,选用量程合适的直流毫安表和直流电压表分别测出所需参数:Ic,Ub,Uc,Ue.(2)静态工作点的调试放大器静态工作点的调试是指对管子集电极电流Ic(或Uce)的调试与测量。

静态工作点对放大器的性能和输出波形都有很大影响。

工作点偏高会导致饱和失真如图(2)所示;反之则导致截止失真如图(3).图二图三改变电路参数Ucc,Rc,Rb(Rb1,Rb2)都会引起静态工作点的改变如图四所示:图四2.放大器的动态指标测试放大器的动态指标包括:电压放大倍数,输入电阻,输出电阻,最大不失真输出电压(动态范围)和通频带等。

(1)电压放大倍数Av的测量调整放大器到合适的静态工作点,再加入输入电压Ui ,在输出电压不是真的情况下,用交流豪伏表测出Ui和Uo的有效值,则Av=Uo/Ui。

共发射极,共集电极和共基极放大电路的特点

共发射极,共集电极和共基极放大电路的特点

共发射极,共集电极和共基极放大电路的特点共发射极、共集电极和共基极放大电路是三种常见的晶体管放大电路。

它们分别以共发射极、共集电极和共基极为特点,具有各自独特的性能和应用。

我们来看共发射极放大电路。

共发射极放大电路是一种常用的放大电路,它的输入信号加在基极上,输出信号取自集电极上。

共发射极放大电路具有以下特点:1. 增益高:共发射极放大电路的电流增益较高,通常可以达到几十至几百倍。

这使得它在放大小信号时非常有效,适用于低频放大器和功率放大器的设计。

2. 输入输出阻抗匹配:由于输入信号加在基极上,共发射极放大电路的输入阻抗较低。

同时,输出信号取自集电极上,输出阻抗也较低。

这使得共发射极放大电路可以与其他电路有效地连接,实现信号的传递和转换。

3. 相位反转:共发射极放大电路的输出信号与输入信号相位相反。

这意味着当输入信号为正半周时,输出信号为负半周;当输入信号为负半周时,输出信号为正半周。

这种相位反转特性在某些应用中非常有用,比如信号的放大和反相。

接下来,我们来看共集电极放大电路。

共集电极放大电路也被称为电压跟随器或者缓冲放大器。

它的输入信号加在基极上,输出信号取自发射极上。

共集电极放大电路具有以下特点:1. 电压放大:共集电极放大电路的电压增益接近于1,即输出电压与输入电压几乎相等。

这使得它可以将输入信号的电压放大,同时保持输出电压的稳定性,适用于需要保持电压稳定的场合。

2. 输入输出阻抗匹配:由于输入信号加在基极上,共集电极放大电路的输入阻抗较高。

同时,输出信号取自发射极上,输出阻抗也较高。

这使得共集电极放大电路可以与其他电路有效地连接,实现信号的传递和转换。

3. 相位不变:共集电极放大电路的输出信号与输入信号相位相同。

这意味着当输入信号为正半周时,输出信号也为正半周;当输入信号为负半周时,输出信号也为负半周。

这种相位不变特性在某些应用中非常有用,比如信号的隔离和传输。

我们来看共基极放大电路。

共基极放大电路的输入信号加在发射极上,输出信号取自集电极上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电压增益
Av

vo vi

vo1 vi

vo vo1

Av1 Av2
其中Av1来自β1 RL rbe1 β1rbe2 rbe1(1 β2 )
Av2

β2 R'L2 rbe2

β2 (Rc2 || RL ) rbe2
RL

rbe2 1 β2
组合放大电路总的电压增益
所以 因为
Av
输入回路:
vi ibrbe (ib β ib )RL ibrbe ib (1 β)RL
其中 RL Re // RL
输出回路: vo (ib β ib )RL ib (1 β)RL
电压增益:
Av

vo vi

ib (1 β)RL ib[rbe (1 β)RL ]

(1 )RL rbe (1 )RL

β RL rbe β RL
1
&1
一般 RL rbe ,则电压增益接近于1, 即 Av 1 。vo与vi同相
电压跟随器
4
4.5.1 共集电极放大电路
2.动态分析
③输入电阻
Ri
vi ii

vi

vi vi
Rb rbe (1 β)R 'L
Rb || [rbe (1 β)R 'L ]
当 1 , RL rbe , 此时输入电阻 Ri Rb // RL :输入电阻大,且与负载有关
Ri Rb rbe (1 β)R 'L (*)
对比:
共射极基本放大电路输入电 阻:
29
回顾:
基极分压式射极偏置电路
电压增益:
Av

vo vi

β ib (Rc / / RL ) ib[rbe (1 β)Re ]

β (Rc / / RL ) (*) rbe
30
回顾:
共基极放大电路
交流通路
Av

vo vi

βR 'L rbe
(*)
31
4.6.1 共射—共基放大电路
Ri Rb rbe
5
共集电极电路
直流通路
交流通路
6
共射极电路
4.5.1 共集电极放大电路
2.动态分析 ④输出电阻
由电路列出方程
it ib βib iRe
ib vt /(rbe Rs)
vt iRe Re
其中 Rs Rs // Rb
则输出电阻
Ro

vt it

应用: 1)作多极放大电路的输入级; 2)作多级大电路的输
出级; 3)作多级放大电路的缓冲级.
8
9
10
11
12
13
14
15
4.5.2 共基极放大电路
1.静态工作点 直流通路与射极偏置电路相同
VB Q

Rb2 Rb1 Rb2
VCC
ICQ

IEQ

VBQ
VB EQ Re
VCEQ VCC ICQRc IEQ Re VCC ICQ(Rc Re )
4.5 共集电极放大电路和 共基极放大电路 p140
4.5.1 共集电极放大电路 4.5.2 共基极放大电路 4.5.3 放大电路三种组态的比较
1
4.5.1 共集电极放大电路
共集电极电路结构如图示
该电路也称为射极输出器
1.静态分析
由 VCC IBQRb VBEQ IEQ Re IEQ (1 β )IBQ
20
21
22
23
24
25
2.三种组态的比较
26
4.5.3 放大电路三种组态的比较
3.三种组态的特点及用途
共射极放大电路: 电压和电流增益都大于1,输入电阻在三种组态中居中,输出电阻与集
电极电阻有很大关系。适用于低频情况下,作多级放大电路的中间级。 共集电极放大电路:
只有电流放大作用,没有电压放大,有电压跟随作用。在三种组态中, 输入电阻最高,输出电阻最小,频率特性好。可用于输入级、输出级或缓 冲级。 共基极放大电路:
Ri vi / ii vi

vi Re
(1
β)
vi rbe

1

1 Re

rbe
1 /(1
β)

Re
||
rbe 1 β
③ 输出电阻
Ro Rc
18
19
4.5.3 放大电路三种组态的比较
1.三种组态的判别 以输入、输出信号的位置为判断依据:
信号由基极输入,集电极输出——共射极放大电路 信号由基极输入,发射极输出——共集电极放大电路 信号由发射极输入,集电极输出——共基极电路
Re //
Rs rbe 1 β

Re
Rs rbe
1

1
时,
Ro
Rs rbe

输出电阻小 7
4.5.1 共集电极放大电路
Av 1 。
Ri Rb //[rbe (1 β)RL ]
Ro

Re
//
Rs 1
rbe β
共集电极电路特点:
◆ 电压增益小于1但接近于1,vo与vi同相 ◆ 输入电阻大,对电压信号源衰减小 ◆ 输出电阻小,带负载能力强

IBQ

VCC VBEQ Rb (1 β)Re
ICQ β IBQ
VCEQ VCC IEQ Re VCC ICQ Re
2
直流通路
4.5.1 共集电极放大电路
2.动态分析 ①小信号等效电路
交流通路
小信号等效电路
3
4.5.1 共集电极放大电路
2.动态分析
②电压增益
IBQ

ICQ β
直流通路
16
交流通路
2.动态指标
①电压增益
输入回路: vi ibrbe
输出回路: vo βib R'L
电压增益:
Av

vo vi

βR'L rbe
RL Rc // RL
17
小信号等效电路
小信号等效电路
2.动态指标
② 输入电阻
ii iRe ie iRe (1 β)ib iRe vi / Re ib vi / rbe (&1)
只有电压放大作用,没有电流放大,有电流跟随作用,输入电阻小, 输出电阻与集电极电阻有关。高频特性较好,常用于高频或宽频带低输入 阻抗的场合,模拟集成电路中亦兼有电位移动的功能。
end
27
4.6 组合放大电路
4.6.1 共射—共基放大电路 4.6.2 共集—共集放大电路
28
4.6.1 共射—共基放大电路


β1rbe2 (1 β2 )rbe1
β2 1

β2 ( Rc2 || RL ) rbe2
等于组成它的各级单管放大电 路电压增益的乘积。
相关文档
最新文档