中考数学综合试题含答案
中考综合模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列四个实数中,是无理数的为( ) A.B.27C. D.32. 如图所示的几何体的左视图是( )A. B. C. D.3. 如图,直线AB ∥CD ,∠A =70°,∠E =30°,则∠C 等于( )A. 30°B. 40°C. 60°D. 70°4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1B. 1C. -1或1D. 1或05. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=-D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104B. 2.75×104C. 2.75×1012D. 27.5×10117. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A 2m ≤B. 2m <C. 2m ≥D. 2m >9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A. (3,2)B. (3,1)C. (2,2)D. (4,2)10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒二、填空题11. 1483的结果是_____. 12. 将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =2,则CD 的长为______.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 16. 解分式方程:31133x x-=-- ______________. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min )进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图. 组别课前预习时间/t min频数(人数)频率1 010t ≤<2 21020t ≤<0.103 2030t ≤< 16 0.324 3040t ≤< 540t ≥3请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数. 19. 某商场运动服装专柜,对,A B 两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.第一次 第二次 品牌运动服装数/件 20 30 品牌运动服装数/件 30 40 累计采购款/元1020014400(1)问,A B 两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+.21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C 点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到01米)?(3≈1.73,2≈1.41).22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2,求S2-S1.23. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O 点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积最大值.24. 问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.答案与解析一、选择题1. 下列四个实数中,是无理数的为()A. B. 27C. D. 3【答案】D【解析】【分析】根据无理数的定义”也称为无限不循环小数,不能写作两整数之比”即可.【详解】由无理数的定义得:四个实数中,只有3是无理数故选:D.【点睛】本题考查了无理数的定义,熟记定义是解题关键.2. 如图所示的几何体的左视图是( )A. B. C. D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于( )A. 30°B. 40°C. 60°D. 70°【答案】B 【解析】 【分析】根据平行线的性质得出∠A =∠EFD ,再根据三角形的外角性质求出∠C 即可. 【详解】解:∵AB ∥CD ,∠A =70°, ∴∠EFD =70°, ∵∠E =30°, ∴∠C =40°, 故选B .【点睛】本题考查了平行线的性质和三角形的外角性质,关键是求出∠EFD 的度数和求出∠EFD =∠A . 4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1 B. 1C. -1或1D. 1或0【答案】B 【解析】 【分析】根据分式的值为零的条件可以求出x 的值. 【详解】根据题意,得 |x|-1=0且x+1≠0, 解得,x=1. 故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 5. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=- D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭【答案】C 【解析】 【分析】根据整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方逐项判断即可.【详解】A 、6662a a a +=,此项错误B 、25825825822222222-----+=⨯=÷⨯⨯=,此项错误C 、()7211271120a a a a a ++⋅-⋅=-=-,此项正确D 、()()322236751128422ab a b ab a b a b ⎛⎫⎛⎫-⋅--⋅-= ⎪ ⎪⎝⎭⎝⎭=,此项错误故选:C .【点睛】本题考查了整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方,熟记各运算法则是解题关键.6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104 B. 2.75×104 C. 2.75×1012 D. 27.5×1011 【答案】C 【解析】【详解】解:将27500亿用科学记数法表示为:2.75×1012. 故选C .【点睛】本题考查科学记数法—表示较大的数.7. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°【答案】B 【解析】 解:∵∠DBC =90°,E 为DC 中点,∴BE =CE =12CD ,∵∠BCD =60°,∴∠CBE =60°,∴∠DBF =30°,∵△ABD 是等腰直角三角形,∴∠ABD =45°,∴∠ABF =75°,∴∠AFB =180°﹣90°﹣75°=15°,故选B .8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A. 2m ≤B. 2m <C. 2m ≥D. 2m >【答案】A 【解析】 【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m 的不等式,解之可得. 【详解】解不等式1132x x+<-,得:x >8, ∵不等式组无解, ∴4m≤8, 解得m≤2, 故选A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A (3,2) B. (3,1) C. (2,2) D. (4,2)【答案】A 【解析】【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG =6, ∴AD =BC =2, ∵AD ∥BG , ∴△OAD ∽△OBG ,∴OA OB =13, ∴2OAOA +=13, 解得:OA =1,∴OB =3, ∴C 点坐标为:(3,2), 故选A .10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒【答案】C 【解析】 【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可, 【详解】连接CD ,如图所示:∵BC 是半圆O 的直径, ∴∠BDC=90°, ∴∠ADC=90°,∴∠ACD=90°-∠A=20°, ∴∠DOE=2∠ACD=40°, 故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.二、填空题11. 计算14893-的结果是_____.【答案】3【解析】【分析】先化简,再合并同类二次根式即可.【详解】解:14893-4333=-=3故答案为3.【点睛】此题考查二次根式的加减运算,注意先化简,再合并.12. 将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,则CD的长为______.【答案】12﹣3【解析】【分析】如图(见解析),过点B作BG CF⊥于点G,先根据直角三角形的性质、平行线的性质得出45,60,2BCF EDF BC∠=︒∠=︒=,CG DG的长,然后根据线段的和差即可得.【详解】如图,过点B作BG CF⊥于点G90,45ACB A∠=︒∠=︒9045ABC A∴∠=︒-∠=︒,即45ABC A∠=∠=︒122BC AC∴==//AB CF45ABCBCF∴==∠∠︒Rt BCG为等腰直角三角形2122CG BG BC ∴=== 又90,30F E ∠=︒∠=︒9060EDF E ∴=︒-∠=∠︒在Rt BDG 中,tan BG BDG DG ∠=,即12tan 60DG︒= 解得121243tan 603DG ===︒1243CD CG DG ∴=-=-故答案:1243-.【点睛】本题考查了直角三角形的性质、平行线的性质、解直角三角形等知识点,通过作辅助线,构造直角三角形,进而运用到解直角三角形的方法是解题关键.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.【答案】96分 【解析】 【分析】先根据图得出这25名同学的得分,再根据中位数的定义即可得.【详解】由图可知,得分为94分的有5人,得分为96分的有8人,得分为98分的有9人,得分为100分的有3人则将这25名同学的得分按从小到大的顺序进行排序,排在第13位的得分为96分 由中位数的定义得:这些成绩的中位数是96分 故答案为:96分.【点睛】本题考查了中位数的定义,读懂图形,掌握中位数的定义是解题关键.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______. 【答案】14【解析】 【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率. 【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果, ∴小亮和大刚两人恰好分在同一组的概率是41164=, 故答案为14. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 【答案】63a + 【解析】 【分析】根据分式的混合运算法则计算即可. 【详解】原式223319(3)a a a a ++=-÷--23(3)1(3)(3)3a a a a a +-=-⋅+-+313a a -=-+ 3(3)3a a a +--=+ 63a =+. 【点睛】本题考查的是分式的混合运算,掌握分式的混合运算法则、分式的通分、约分法则是解题的关键. 16. 解分式方程:31133x x-=-- ______________. 【答案】x =7 【解析】 【分析】方程两边都乘以最简公分母,注意不要漏乘没有分母的项;去括号,移项合并同类项,即可求得方程的解. 【详解】解:方程两边都乘以(x-3),得:3-(x-3)=-1 去括号,移项,得:-x=-1-6 合并同类项,得:x=7 经检验,x=7是原方程的根 故答案为:x=7【点睛】本题考查了解分式方程,注意在去分母时,不要漏乘没有分母的项,解分式方程必须验根. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).【答案】详见解析 【解析】 【分析】作出AB 的垂直平分线,可得BP =AP ,则∠PBA =∠BAP ,进而得出△BPA ∽△BAC . 【详解】解:如图所示:点P 即为所求, 此时△BPA ∽△BAC .【点睛】此题主要考查了相似变换以及复杂作图,正确把握相似三角形的判定方法是解题关键.18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.组别课前预习时间/t min频数(人数) 频率t≤< 21 010t≤<0.102 1020t≤<16 0.323 2030t≤<4 3040t≥ 35 40请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为,表中的a=,b=,c=;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min的学生人数.【答案】(1)50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数为172.8;(3)九年级每天课前预习时间不少于20min的学生约有860人.【解析】【分析】(1)根据3组的频数和百分数,即可得到本次调查的样本容量,根据2组的百分比即可得到a的值,进而得到2组的人数,由本次调查的样本容量-其他小组的人数即可得到b,用b÷本次调查的样本容量得到c;(2)根据4组的人数占总人数的百分比乘上360°,即可得到扇形统计图中”4”区对应的圆心角度数;(3)根据每天课前预习时间不少于20min的学生人数所占的比例乘上该校九年级总人数,即可得到结果.【详解】(1)16÷0.32=50,a=50×0.1=5,b=50-2-5-16-3=24,c=24÷50=0.48;故答案为50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数=360°×0.48=172.8°;(3)每天课前预习时间不少于20min的学生人数的频率=1-250-0.10=0.86,∴1000×0.86=860,答:这些学生中每天课前预习时间不少于20min的学生人数是860人.【点睛】本题主要考查了扇形统计图的应用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19. 某商场的运动服装专柜,对,A B两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问,A B两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?【答案】(1),A B两种品牌运动服的进货单价分别为240元和180元;(2)最多能购进65件品牌运动服. 【解析】【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【详解】(1)设,A B两种品牌运动服的进货单价分别为元和元.根据题意,得203010200304014400x y x y +=⎧⎨+=⎩,解之,得240180x y =⎧⎨=⎩.经检验,方程组的解符合题意.答:,A B 两种品牌运动服的进货单价分别为240元和180元.(2)设购进品牌运动服件,则购进品牌运动服352m ⎛⎫+⎪⎝⎭件, ∴32401805213002m m ⎛⎫++≤⎪⎝⎭, 解得,40m ≤.经检验,不等式的解符合题意,∴3354056522m +≤⨯+=. 答:最多能购进65件品牌运动服.【点睛】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键. 20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)根据菱形的性质得到AB=AD ,AD ∥BC ,由平行线的性质得到∠BOA=∠DAE ,等量代换得到∠BAF=∠ADE ,求得∠ABF=∠DAE ,根据全等三角形的判定定理即可得到结论; (2)根据全等三角形的性质得到AE=BF ,DE=AF ,根据线段的和差即可得到结论. 【详解】证明:(1)∵四边形ABCD 为菱形, ∴AB AD =,AD BC ∥, ∴BPA DAE ∠=∠.在ABP ∆和DAE ∆中, 又∵ABC AED ∠=∠, ∴BAF ADE ∠=∠.∵ABF BPF ∠=∠且BPA DAE ∠=∠, ∴ABF DAE ∠=∠, 又∵AB DA =, ∴()ABF DAE ASA ≅ (2)∵ABF DAE ≅, ∴AE BF =,DE AF =. ∵AF AE EF BF EF =+=+, ∴DE BF EF =+.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键. 21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F 点,此时,他测得F 点都塔顶A 点的俯视角为30°,同时也测得F 点到塔底C 点的俯视角为45°,已知塔底边心距OC =23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(3≈1.73,2 ≈1.41).【答案】大雁塔的大体高度是65.1米. 【解析】 【分析】作FD ⊥BC ,交BC 的延长线于D ,作AE ⊥DF 于E ,则四边形AODE 是矩形.解直角△CDF ,得出CD =DF =185米,那么OD =OC+CD =208米,AE =OD =208米.再解直角△AEF ,求出EF =AE•tan ∠FAE =20833米,然后根据OA=DE=DF﹣EF即可求解.【详解】解:如图,作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.由题意,可知∠FAE=30°,∠FCD=45°,DF=185米.在直角△CDF中,∵∠D=90°,∠FCD=45°,∴CD=DF=185米,∴OD=OC+CD=208米,∴AE=OD=208米.在直角△AEF中,∵∠AEF=90°,∠FAE=30°,∴EF=AE•tan∠FAE=208×33=20833(米),∴DE=DF﹣EF=185﹣20833≈185﹣119.95≈65.1(米),∴OA=DE≈65.1米.故大雁塔的大体高度是65.1米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB 的表达式;(2)△ABC 和△ABD 的面积分别为S 1,S 2,求S 2-S 1.【答案】(1)463y x =-+;(2)34 【解析】【分析】(1)先由A 点坐标求出反比例函数的表达式,再求出B 点坐标,最后运用待定系数法求直线AB 的表达式即可;(2)ABC 的面积可由”底乘高除以2”直接求得,ABD △的面积运用”补”的思想求出,然后两者作差即可得.【详解】(1)由点3(,4)2A 在反比例函数(0)n y x x=>的图象上 ∴432n=∴6n = ∴反比例函数的表达式为6(0)y x x=> 将点(3,)B m 代入6y x =得623m == ∴(3,2)B设直线AB 的表达式为y kx b =+ 将点3(,4),(3,2)2A B 代入得34232k b k b ⎧+=⎪⎨⎪+=⎩, 解得436k b ⎧=-⎪⎨⎪=⎩ 则直线AB 的表达式为463y x =-+;(2)由点A 、B 的坐标得4AC =,点B 到AC 的距离为33322-= ∴1134322S =⨯⨯= 如图,设直线AB 与y 轴的交点为E令0x =得6y =,则点E 坐标为(0,6)E(0,1)D∴615DE =-=由点3(,4),(3,2)2A B 得:点A 、B 到DE 的距离分别为32,3 ∴2113155352224BDE ADE S S S=-=⨯⨯-⨯⨯= 则21153344S S -=-=.【点睛】本题考查了运用待定系数法求反比例函数、一次函数的表达式,在平面直角坐标系中求几何图形的面积,正确求出两个函数的表达式是解题关键.23. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣2,0),点B (4,0),与y 轴交于点C (0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线、线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△AOC 相似点P 的坐标;(3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求Rt △PFD 面积的最大值.【答案】(1) y =﹣x 2+2x +8;(2)点P (1523,416);(3)165 【解析】【分析】(1)将点A 、B 、C 的坐标代入二次函数表达式,即可求解;(2)只有当∠PEA =∠AOC 时,PEA △∽AOC ,可得:PE =4AE ,设点P 坐标(4k ﹣2,k ),即可求解; (3)利用Rt △PFD ∽Rt △BOC 得: 2()PFD BOC S PD S BC=,再求出PD 的最大值,即可求解. 【详解】解:(1)将点A 、B 、C 的坐标代入二次函数表达式得:42016408a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:a = -1,b =2,c =8,故抛物线的表达式为:y =﹣x 2+2x +8;(2)∵点A (﹣2,0)、C (0,8),∴OA =2,OC =8,∵l ⊥x 轴,∴∠PEA =∠AOC =90°,∵∠P AE ≠∠CAO ,∴只有当∠PEA =∠AOC 时,PEA △∽AOC , 此时AE PE CO AO =,即:82AE PE =, ∴AE =4PE ,设点P 的纵坐标为k ,则PE =k ,AE =4k ,∴OE =4k ﹣2,将点P 坐标(4k ﹣2,k )代入二次函数表达式并解得:k =0或2316(舍去0),则点P (1523,416); (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠COB ,∴Rt △PFD ∽Rt △BOC , ∴2()PFD BOC S PD S BC=, ∴S △PDF =2()PD BC •S △BOC , 而S △BOC =12OB •OC =12×4×8=16,BC==∴S △PDF =2()PD BC•S △BOC =15PD 2, 即当PD 取得最大值时,S △PDF 最大,将B 、C 坐标代入一次函数表达式y kx b =+得:408k b b +=⎧⎨=⎩, 解得:28k b =-⎧⎨=⎩, ∴直线BC 的表达式为:y =﹣2x +8,设点P (m ,﹣m 2+2m +8),则点D (m ,﹣2m +8),则PD =﹣m 2+2m +8+2m ﹣8=﹣(m ﹣2)2+4,当m =2时,PD 的最大值为4,故当PD =4时,∴S △PDF =15PD 2=165. 【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式,相似三角形的判定和性质,利用数形结合的思想把代数和几何结合起来,利用点的坐标的意义表示线段的长度,从而求得线段之间的关系是正确解答本题的关键.24. 问题探究(1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ;(2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由; 问题解决(3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,,若BD ⊥CD ,垂足为点D ,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.【答案】(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.。
2024年安徽省中考真题数学试卷含答案解析

安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。
2024年湖北省武汉市中考真题数学试卷含答案解析

2024年湖北省武汉市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2.小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A.随机事件B.不可能事件C.必然事件D.确定性事件【答案】A【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A.3.如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4.国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯5.下列计算正确的是()A .236a a a ⋅=B .()1432a a =C .()2236a a =D .()2211a a +=+【答案】B【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A.235a a a ⋅=,故该选项不正确,不符合题意;B.()4312a a =,故该选项正确,符合题意;C.()2239a a =,故该选项不正确,不符合题意;D.()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6.如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是()A.B.C.D.【答案】D【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.∠;②以点A为圆心,1个单位长为半7.小美同学按如下步骤作四边形ABCD:①画MAN径画弧,分别交AM,AN于点B,D;③分别以点B,D为圆心,1个单位长为半径画弧,∠的大小是()两弧交于点C;④连接BC,CD,BD.若44∠=︒,则CBDAA.64︒B.66︒C.68︒D.70︒【答案】C【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD是菱形,进而根据菱形的性质,即可求解.===【详解】解:作图可得AB AD BC DC8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是()A .19B .13C .49D .59共有9种情况,至少一辆车向右转有5种,∴至少一辆车向右转的概率是59,故选:D .9.如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是()A B C D .2∵四边形ABCD 内接于 ∴ADC ABC ABC ∠+∠=∠∴ADC CBE∠=∠∵45BAC CAD ∠=∠=︒10.如图,小好同学用计算机软件绘制函数32331y x x x =-+-的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++ 的值是()A .1-B .0.729-C .0D .1∵()0,1-关于点()1,0中心对称的点为()2,1,即当2x =时,201y =,∴12319201020011y y y y y y y +++++=+=+= ,故选:D .二、填空题11.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作℃.【答案】2-【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2-℃.,故答案为:2-.12.某反比例函数k y x =具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).13.分式方程131x x x x +=--的解是.【答案】3x =-【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x --完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案.14.黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)【答案】51【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D ,如图,由题可知,102m BD =,设AD x =,∵45DCA ∠=︒∴DC AD x==15.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是. 45PMN ∴∠=︒45EMG PMN ∴∠=∠=1EG MG ∴==在AEG △和ABN 中,16.抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1-,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c -+-+>;③若1a =-,则关于x 的一元二次方程22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>-,12x x >,总有12y y <,则102m <≤.其中正确的是(填写序号).三、解答题17.求不等式组3121x x x +>⎧⎨-≤⎩①②的整数解.【答案】整数解为:1,0,1-【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨-≤⎩①②解不等式①得:2x >-解不等式②得:1x ≤∴不等式组的解集为:21x -<≤,∴整数解为:1,0,1-18.如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析(2)添加AF BE =(答案不唯一)【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE -=-即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;(2)添加AF BE =(答案不唯一)如图所示,连接EF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE=时,四边形ABEF是平行四边形.19.为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表成绩/分频数4123a2151b06根据以上信息,解答下列问题:(1)直接写出m,n的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20.如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.AO BC ∴⊥,AO 平分BAC∠AC 与半圆O 相切于点DOD AC∴⊥由ON AB⊥ ON OD∴=21.如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;∠=∠;(2)在(1)的基础上,在射线AD上画点E,使ECB ACB(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90︒到点C,再画射线AF交BC于点G;(4)在(3)的基础上,将线段AB绕点G旋转180︒,画对应线段MN(点A与点M对应,点B与点N对应).(2)如图,作OP(4)如图,作OP MN 即为所求作.22.16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23.问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF的值.∵E 是AB 的中点,H 是∴12EH AD =,EH AD ∥又∵2AD CF =,∴EH CF =,∵2AD CF CD ==,∴12AM MD FC AD ===设2AD a =,则MF CD =【点睛】本题考查了矩形的性质,相似三角形的性质与判定,平行四边形的性质与判定,直角三角形中斜边上的中线等于斜边的一半,全等三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.24.抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.∴90T S EGF ∠=∠=∠=∴90EGT FGS ∠=︒-∠=∴ETG GSF∽∴ET TG GS FS=即ET FS GS TG⋅=⋅。
2024年上海市中考真题数学试卷含答案解析

2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。
人教中考数学圆的综合综合题含详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.2.如图,AB是半圆的直径,过圆心O作AB的垂线,与弦AC的延长线交于点D,点E在OD上DCE B∠=∠.(1)求证:CE是半圆的切线;(2)若CD=10,2tan3B=,求半圆的半径.【答案】(1)见解析;(2)13【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径,∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°.∴∠DCE+∠BCE=90°.∵OC =OB ,∴∠OCB =∠B.∵=DCE B ∠∠,∴∠OCB =∠DCE .∴∠OCE =∠DCB =90°.∴OC ⊥CE .∵OC 是半径,∴CE 是半圆的切线.(2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB ,∴∠AOD =∠A CB=90°.∵∠A =∠A ,∴△AOD ∽△ACB .∴AC AO AB AD=. ∵11322OA AB x ==,AD =2x +10, ∴113221013x x x =+. 解得 x =8.∴1384132OA=⨯=.则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.3.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD=,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD 的面积为6×4=24,Rt △CED 的面积为12×4×2=4, 扇形ABE 的面积为12π×42=4π, ∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.4.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”.如图,M (1,2),N (4,2).(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ;(2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围;(3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.【答案】(1)P 1和P 3;(2)3311x -≤≤;(3333 3.r +≤ 【解析】【分析】 (1)先根据题意求出点P 的横坐标的范围,再求出P 点的纵坐标范围即可得出结果; (2)由直线y=x+1经过点M (1,2),得出x≥1,设直线y=x+1与P 4N 交于点A ,过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C ,则在△AMN 中,MN=3,∠AMN=45°,∠ANM=30°,设AB=MB=a ,tan ∠ANM=AB BN ,即tan30°=3a a-,求出a 即可得出结果; (3)圆心O 到P 4的距离为r 的最大值,圆心O 到MP 5的距离为r 的最小值,分别求出两个距离即可得出结果.【详解】(1))如图1所示:∵点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点,M (1,2),N (4,2),∴点P 的横坐标1≤x≤4,∵以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,当∠MPN=60°时,PM=60MN tan ︒=3=3, 同理P′N=3,∴点P 的纵坐标为2-3或2+3,即纵坐标2-3≤y≤2+3,∴线段MN 的“关联点”有P 1和P 3;故答案为:P 1和P 3;(2)线段MN 的“关联点”P 的位置如图所示,∵ 直线1y x =+经过点M (1,2),∴ x ≥1.设直线1y x =+与P 4N 交于点A .过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C .由题意易知,在△AMN 中,MN = 3,∠AMN = 45°,∠ANM = 30°.设AB = MB = a ,∴ tan AB ANM BN ∠=,即tan303a a ︒=-, 解得333a -=∴ 点A 的横坐标为33333111.22x a --=+=+= ∴331.x -≤ 综上 3311.2x -≤≤(3)点P 在以O (1,-1)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,如图3所示:连接P 4O 交x 轴于点D ,P 4、M 、D 、O 共线,则圆心O 到P 4的距离为r 的最大值,由(1)知:MP 4=NP 53即OD+DM+MP 433圆心O 到MP 5的距离为r 的最小值,作OE ⊥MP 5于E ,连接OP 5, 则OE 为r 的最小值,MP 5225MN NP +223(3)+3OM=OD+DM=1+2=3, △OMP 5的面积=12OE•MP 5=12OM•MN ,即12312×3×3, 解得:33 ∴3323 【点睛】本题是圆的综合题,考查了旋转、直角三角形的性质、勾股定理、最值等知识,熟练掌握“关联点”的含义,作出关于MN 的“关联点”图是关键.5.如图,在直角坐标系中,⊙M 经过原点O(0,0),点6,0)与点B(02),点D 在劣弧OA 上,连结BD 交x 轴于点C ,且∠COD =∠CBO.(1)求⊙M 的半径;(2)求证:BD 平分∠ABO ;(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.【答案】(1)M 的半径r =2;(2)证明见解析;(3)点E 的坐标为(263,2). 【解析】 试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴M 的半径r=12AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=2633=∴点E 的坐标为(263,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.6.在O 中,AB 为直径,C 为O 上一点.(Ⅰ)如图①,过点C 作O 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小.【答案】(1)∠P =34°;(2)∠P =27°【解析】【分析】(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;(2)因为D 为弧AC 的中点,OD 为半径,所以OD ⊥AC ,继而求得答案.【详解】(1)连接OC ,∵OA =OC ,∴∠A =∠OCA =28°,∴∠POC =56°,∵CP 是⊙O 的切线,∴∠OCP =90°,∴∠P =34°;(2)∵D 为弧AC 的中点,OD 为半径,∴OD ⊥AC ,∵∠CAB =12°,∴∠AOE =78°,∴∠DCA =39°,∵∠P =∠DCA ﹣∠CAB ,∴∠P =27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.7.如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与A 、B 重合),连AP ,BP ,过C 作CM ∥BP 交PA 的延长线于点M ,(1)求证:△PCM 为等边三角形;(2)若PA =1,PB =2,求梯形PBCM 的面积.【答案】(1)见解析;(21534【解析】【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)证明:作PH ⊥CM 于H ,∵△ABC 是等边三角形,∴∠APC=∠ABC=60°,∠BAC=∠BPC=60°,∵CM ∥BP ,∴∠BPC=∠PCM=60°,∴△PCM 为等边三角形;(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,∴∠PCA+∠ACM=∠BCP+∠PCA ,∴∠BCP=∠ACM ,在△BCP 和△ACM 中, BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ACM (SAS ),∴PB=AM ,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,∴PH=332,∴S梯形PBCM=12(PB+CM)×PH=12×(2+3)×33=1534.【点睛】本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.8.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE 3.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA =2∠ABC .②如图2﹣1中,连接AG ,作FH ⊥AG 于H .∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 222213AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 60AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=,∴PE =36 . 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于C 点,AC 平分∠DAB . (1)求证:AD ⊥CD ;(2)若AD =2,AC=6,求⊙O 的半径R 的长.【答案】(1)证明见解析(2)32【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=12∠DAB .即可得出AD ∥OC ,则AD ⊥CD ; (2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则2AD AC AC R ,从而求得R . 试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径,∴OC ⊥CD .又∵AC 平分∠DAB ,∴∠1=∠2=12∠DAB . 又∠COB =2∠1=∠DAB ,∴AD ∥OC ,∴AD ⊥CD .(2)连接BC ,则∠ACB =90°,在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°,∴△ADC ∽△ACB . ∴2AD AC AC R= ∴R =2322AC AD =10.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B (,2).(2)证明见解析.【解析】 试题分析:(1)在Rt △ABN 中,求出AN 、AB 即可解决问题; (2)连接MC ,NC .只要证明∠MCD=90°即可试题解析:(1)∵A 的坐标为(0,6),N (0,2), ∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B (,2). (2)连接MC ,NC∵AN 是⊙M 的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt △NCB 中,D 为NB 的中点,∴CD=NB=ND ,∴∠CND=∠NCD ,∵MC=MN ,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.。
中考综合模拟测试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.计算:(-3)×(- 13)=()A. -1B. 1C. -9D. 92.如图,下面几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是( )A. B. C. D.3.计算(-2x2y)3的结果是( )A. -8x6y3B. 6x6y3C. -8x5y3D. -6x5y34.如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=()A. 50°B. 65°C. 75°D. 85°5.设点A(-3,a),B(b,12)在同一个正比例函数图象上,则ab的值为()A.23- B.32- C. -6 D.326.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF交于点E,则DE AF的值为()A. 35B. 34C. 12D. 237.已知两个一次函数y=3x+b 1和y=-3x+b 2若b 1<b 2<0,则它们图象的交点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图, 在三边互不相等的△ABC 中, D ,E ,F 分别是AB ,AC ,BC 边的中点.连接DE ,过点C 作CM ∥AB 交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有( )A. 3对B. 4对C. 5对D. 6对9.如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D .若点P 是⊙O 上异于点A ,B 的任意一点,则∠APB=( )A. 30°或60°B. 60°或150°C. 30°或150°D. 60°或120° 10.将抛物线M :y=- 13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M'.若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,则∠ACB=( ) A 45°B. 60°C. 90°D. 120° 二.填空题(共4小题)11.不等式-2x+1>-5的最大整数解是________.12.如图,五边形ABCDE 的对角线共有 ________条.13.如图,在x 轴上方,平行于x 轴的直线与反比例函数y =1k x和y =2k x 的图象分别交于A 、B 两点,连接OA 、OB ,若△AOB 的面积为6,则k 1﹣k 2=_____.14.如图,在正方形ABCD 中,AB=4,E 是BC 边中点, F 是CD 边上的一点, 且DF=1.若M 、N 分别是线段AD 、AE 上的动点,则MN+MF 的最小值为________ .三.解答题(共11小题)15.计算:2(3)|25|20-+--.16.化简:(22739a a a +--﹣43a a ++)÷33a a +-. 17.如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使△ADE 与△ABC 相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)18.2016年4月23日是我国第一个”全民阅读日”某校开展了”建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书情况的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?19.如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.20.某市为了创建绿色生态城市,在城东建了”东州湖”景区,小明和小亮想测量”东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算”东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,2≈1.414.)21.上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离 (千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?22.孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:”如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)23.如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.24.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.25.问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.答案与解析一.选择题(共10小题)1.计算:(-3)×(- 13)=()A. -1B. 1C. -9D. 9 【答案】B【解析】【分析】根据两数相乘,同号得正,把绝对值相乘,再进行计算.【详解】解:1313⎛⎫-⨯-=⎪⎝⎭.故答案为:B.【点睛】此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是( )A. B. C. D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看上下都是正方形,故选:D.【点睛】本题主要考查左视图,掌握三视图是解题的关键.3.计算(-2x2y)3的结果是( )A. -8x6y3B. 6x6y3C. -8x5y3D. -6x5y3【答案】A【解析】【分析】根据幂的乘方与积的乘方运算法则进行运算即可.【详解】(-2x2y)3=-8x6y3.故选A.4.如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=()A. 50°B. 65°C. 75°D. 85°【答案】C【解析】【分析】根据对顶角性质可知∠BAD=∠1=40°,然后利用平行线性质可得∠CAB=115°,据此进一步计算求解即可. 【详解】∵∠BAD与∠1是对顶角,∴∠BAD=∠1=40°,∵AB∥CD,∴∠2+∠CAB=180°,∴∠CAB=180°−∠2=115°,∴∠CAD=∠CAB−∠BAD=75°,故选:C.【点睛】本题主要考查了平行线性质以及对顶角性质,熟练掌握相关概念是解题关键.5.设点A(-3,a),B(b,12)在同一个正比例函数的图象上,则ab的值为()A.23- B.32- C. -6 D.32【答案】B【解析】【分析】设正比例函数的解析式为y=kx,将两点在分别代入函数解析式,就可表示出a,b,然后代入求出ab的值.【详解】设正比例函数的解析式为y=kx(k≠0)∴a=-3k,bk=1 2∴b=1 2k∴13322 ab kk=-⋅=-.故答案为:B.【点睛】此题考查了一次函数图象上点的坐标特征,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.6.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF交于点E,则DE AF的值为()A 35B.34C.12D.23【答案】A【解析】【分析】利用勾股定理求出BC的长,再根据直角三角形的两个面积公式就可求出AD的长,利用勾股定理求出DC 的长,然后利用角平分线的定义,可得到tan∠ACF=tan∠ECD,然后利用锐角三角函数的定义,就可求出DE与AF的比值.【详解】解:在△ABC中2222201525BC AB AC+=+=∵AD是高∴1122AD BC AB AC⋅=⋅∴25AD=20×15解之:AD=12.在Rt△ADC中,222215129 DC AC AD--=∵CF平分∠ACB,∴∠ACF=∠ECD∴tan ∠ACF=tan ∠ECD ∴AF DE AC DC =即159AF DE = ∴35DE AF =. 故答案为:A .【点睛】本题主要考查三角函数的应用,解题的关键是掌握勾股定理、三角函数的定义得到式子求解. 7.已知两个一次函数y=3x+b 1和y=-3x+b 2若b 1<b 2<0,则它们图象的交点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】将两函数联立方程组,解方程组求出两函数的交点坐标,再根据b 1<b 2<0 ,就可得到b 2-b 1>0,b 2+b 1<0,就可确定出交点的横纵坐标的符号,从而可判断出两函数图像的交点所在的象限. 【详解】解:1233y x b y x b =+⎧⎨=-+⎩解之:212162b b x b b y -⎧=⎪⎪⎨+⎪=⎪⎩∵ b 1<b 2<0∴b 2-b 1>0,b 2+b 1<0∴x >0,y <0∴它们图像的交点在第四象限.故答案为:D .【点睛】本题主要考查两直线相交或平行的问题及象限内点的坐标特点,掌握根据直线解析式求得交点坐标且各象限内点的坐标特点是解题的关键.8.如图, 在三边互不相等△ABC 中, D ,E ,F 分别是AB ,AC ,BC 边的中点.连接DE ,过点C 作CM ∥AB 交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有( )A. 3对B. 4对C. 5对D. 6对【答案】C【解析】【分析】 利用已知条件可证得DE ,EF 都是△ABC 的中位线,同时可证得AE=EC ,CF=12BC ,利用三角形中位线定理可得到DE=12BC ,DE ∥BC ,EF ∥AB ,从而可以推出∠EDC=∠FCN ,DE=CF ,再利用AAS 证明△DEN ≌△CFN ,然后利用有两组对边平行的四边形是平行四边形,可证得四边形EFCM 是平行四边形,再利用平行四边形的性质可以推出△EMC ≌△CFE ,△ADE ≌△CME ,△ADE ≌△CEF, △BCD ≌△MDC .【详解】证明:∵D ,E ,F 分别是AB ,AC ,BC 边的中点.∴CF=12BC ,DE 是△ABC 的中位线,EF 是△ABC 的中位线,AE=EC ∴DE=12BC ,DE ∥BC ,EF ∥AB , ∴∠EDC=∠FCN ,DE=CF在△DEN 和△CFN 中DNE CNF EDC FCN DE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DEN ≌△CFN (AAS );∵EF ∥AB ,CM ∥AB∴EF ∥CM ,DE ∥BC∴四边形EFCM 是平行四边形,∴EM=CF=DE ,EF=CM,在△EMC 和△CFE 中,EM CF EF CM CE EC =⎧⎪=⎨⎪=⎩∴△EMC ≌△CFE (SSS );在△ADE 和△CME 中,AE EC AED CEM DE ME =⎧⎪∠=∠⎨⎪=⎩∴△ADE≌△CME(SAS);∴△ADE≌△CEF,∴DE∥BC又BD∥CM∥EF∴四边形DBCM是平行四边形,∴△BCD≌△MDC∴图中的全等三角形一共有5对.故答案为:C.【点睛】本题考查的是三角形中位线定理、全等三角形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D.若点P是⊙O上异于点A,B的任意一点,则∠APB=()A. 30°或60°B. 60°或150°C. 30°或150°D. 60°或120°【答案】D【解析】【分析】利用垂径定理及已知可得到∠OAD=30°,再求出∠AOB的度数,再分情况讨论:当点P在优弧AB上时,利用圆周角定理就可取出∠P的度数;当点P在劣弧上时,利用圆内接四边形的对角互补,就可求出∠AP1B 的度数.【详解】连接OA,OB,∵ 弦AB 垂直平分半径OC∴OD=12OA , ∴∠OAD=30°,∵OA=OB∴∠OAB=∠OBA=30°,∴∠AOB=180°-∠OAB-∠OBA=180°-30°-30°=120°;当点P 在优弧AB 上时∠APB=12∠AOB=12×120°=60°; 当点P 在劣弧上时,∠APB+∠AP 1B=180°∴∠AP 1B=180°-60°=120°.∴∠APB=120°或60°.故答案为:D .【点睛】此题考查了垂径定理,以及圆周角定理,熟练掌握垂径定理是解本题的关键.10.将抛物线M :y=- 13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M'.若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,则∠ACB=( ) A. 45°B. 60°C. 90°D. 120° 【答案】C【解析】【分析】利用二次函数的平移规律:上加下减,左加右减,可求出抛物线M'的函数解析式,由此可得到点C 的坐标,再由y=0求出抛物线M'与x 轴的两个交点A ,B 的坐标,然后利用勾股定理求出AC 2、BC 2、AB 2,由此可以推出AC 2+BC 2=AB 2,利用勾股定理的逆定理,可求出∠ACB 的度数.【详解】∵y=-13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M', ∴抛物线M'的解析式为y=21(2)33x -++ ∵ 若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,∴点C (-2,3)当y=0时21(2)303x -++=解之:x 1=1,x 2=-5∴点A(1,0),点B(-5,0)∴AB2=|-5-1|2=36AC2=32+32=18,BC2=32+32=18∴AC2+BC2=AB2∴∠ACB=90°.故答案为:C.【点睛】本题考查抛物线与x轴的交点、二次函数与几何变换、勾股定理的逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.二.填空题(共4小题)11.不等式-2x+1>-5的最大整数解是________.【答案】2【解析】【分析】先求出不等式的解集,再求出不等式的最大整数解.【详解】解-2x+1>-5-2x>-6x<3,∴这个不等式的最大整数解为2.故答案为:2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.如图,五边形ABCDE的对角线共有________条.【答案】5【解析】【分析】根据n边形的对角线的总数量为(3)2n n,再将n=5代入计算可求出结果.【详解】五边形的对角线的条数为:(53)552-⨯=. 故答案为:5. 【点睛】此题考查了多边形的对角线,掌握多边形的对角线公式是解题的关键.13.如图,在x 轴上方,平行于x 轴的直线与反比例函数y =1k x和y =2k x 的图象分别交于A 、B 两点,连接OA 、OB ,若△AOB 的面积为6,则k 1﹣k 2=_____.【答案】-12. 【解析】【分析】根据AB ∥x 轴,设1211k k x k A x B x k x(,),(,),得到21k x AB x k -=,根据△AOB 的面积为6,列方程即可得到结论.【详解】∵AB ∥x 轴,∴设1211k k x k A x B x k x(,),(,) ∴21k x AB x k -=, ∵△AOB 的面积为6,∴(2111•62k x k x k x-()=, ∴k 1﹣k 2=﹣12,故答案为:﹣12.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数k y x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|;在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2y k ,且保持不变. 14.如图,在正方形ABCD 中,AB=4,E 是BC 边的中点, F 是CD 边上的一点, 且DF=1.若M 、N 分别是线段AD 、AE 上的动点,则MN+MF 的最小值为________ .【答案】955【解析】【分析】作点F 关于AD 的对称点G ,过点G 作GN ⊥AE 于点N ,交AD 于点M ,可证得MG=MF ,△MDG ≌△MDF ,DF=DG=1 ,可推出MN+MF=NG ,根据垂线段最短,可知此时MN+MF 的最小值就是NG 的长;利用正方形的性质,可求出BE 的长,同时可以推出∠B=∠ANM=∠FDM ,∠AMN=∠BAE=∠FMD ,再利用有两组对应角相等的三角形相似,可证得△ABE ∽△MNA ∽△FMD ,然后利用相似三角形的性质及勾股定理就可求出MN ,MG 的长,由此看求出NG 的长.【详解】作点F 关于AD 的对称点G ,过点G 作GN ⊥AE 于点N ,交AD 于点M ,∴MG=MF ,△MDG ≌△MDF ,DF=DG=1∴∠GMD=∠DMF∴MN+MF=MN+MG=NG根据垂线段最短,可知此时MN+MF 的最小值就是NG 的长.∵正方形BCD ,点E 是BC 的中点∴BE=12BC=12AB=2∴∠B=∠ANM=∠FDM=90°,∠BAE+∠MAN=90°,∵∠AMN+∠MAN=90°,∴∠AMN=∠BAE ,∵∠AMN=∠DMG∴∠AMN=∠BAE=∠FMD∴△ABE ∽△MNA ∽△FMD ∴AB MD BE DF =即421MD = 解之:MD=2,∴AM=AD-MD=4-2=2 ∴2AB MN BE AN== 设AN=x ,则MN=2x∴AN 2+MN 2=AM 2,∴x 2+4x 2=4解之:∴在Rt △MDG 中,=∴NG=MN+MG==. 【点睛】本题考查了轴对称−最短距离问题,相似三角形的判定和性质,正确的确定M ,N 的位置是解题的关键.三.解答题(共11小题)15.计算:2(3)|2|-+-【答案】7【解析】【分析】先计算乘方,化简绝对值,计算算术平方根,再进行实数的加减混合运算即可解答.【详解】解:原式=9+5-2-25=7-5【点睛】本题考查实数的混合运算,解题关键是熟练掌握绝对值的化简和算术平方根的意义.16.化简:(22739a a a +--﹣43a a ++)÷33a a +-. 【答案】269(3)a a ++ 【解析】【分析】根据分式的运算法则,先去括号,然后除一个数等于乘这个数的倒数即可.【详解】解:原式=(273(3)(3)a a a a +-+-﹣43a a ++)÷33a a +-. =2273(3)a a a +-+﹣2(4)(3)(3)a a a +-+ =269(3)a a ++ 【点睛】本题考查分式的除法,需要注意,在去括号时,括号中的每一项都要除后面的除数17.如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使△ADE 与△ABC 相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)【答案】详见解析【解析】【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AC 的交点即为所求作的点.【详解】如图,点E 即为所求作的点.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.18.2016年4月23日是我国第一个”全民阅读日”某校开展了”建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书情况的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?【答案】(1)见解析;(2)6本书;(3)4800本书【解析】【分析】(1)观察两统计图可知全班捐赠图书的总数=其它书的数量÷其它书的数量所占的百分比,列式计算;再利用全班捐赠图书的总数×捐赠工具类书的数量所占的百分比,就可求出捐赠工具类书的数量,就可补全条形统计图;然后利用部分的数量÷总数,就可求出文学类和科普类所占的百分比,从而可以补全扇形统计图中的数据;(2)用全班捐赠图书的总数除以八年级5班的人数,列式计算;(3)用800×平均每一个人的捐赠图书的数量,列式计算.【详解】(1)解:全班捐赠图书的总数为24÷8%=300(本),则捐赠工具类书有300×20%=60(本),文学类百分比为120300×100%=40%,科普类百分比为96300×100%=32%,完成统计图如下:八年级5班全班同学捐赠图书情况统计图(2)解:八年级5班平均每人捐赠了30050=6本书;(3)解:∵800×6=4800,估算这个年级学生共可捐赠4800本书.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确它们各自的含义,利用数形结合的思想解答.19.如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.【答案】证明见解析【解析】【分析】由菱形的性质得出AD∥BC,AB=BC,得出∠A=∠CBF,证明△ABE≌△BCF(SAS),即可得出BE=CF.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠A=∠CBF.在△ABE和△BCF中,∵AE=BF,∠A=∠CBF,AB=BC,∴△ABE≌△BCF(SAS),∴BE=CF.点睛:本题考查了菱形的性质、平行线的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.20.某市为了创建绿色生态城市,在城东建了”东州湖”景区,小明和小亮想测量”东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算”东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,2≈1.414.)【答案】1057米.【解析】分析】先根据题意得出△BCD是等腰直角三角形,故可得出CD=BD,再由锐角三角函数的定义得出AD的长,进而可得出结论.【详解】∵∠BCD=45°,CD⊥AB,∴△BCD是等腰直角三角形,∴CD=BD.∵BC=350米,∴CD=BD=350×2=2≈175×1.414=247.45米,∴AD=CD•tan73°≈247.45×3.2709≈809.38米,∴AB=AD+BD=809.38+247.45≈1057(米).答:”东州湖”东西两端之间AB的长为1057米.【点睛】本题是锐角三角函数在实际问题中的考查,在解决此类题型的时候,我们首先需要抽象出数学模型,然后构造出直角三角形,最后利用三角函数解决.21.上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离 (千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?【答案】详见解析【解析】试题分析:由图象知AB过(0,320)和((2,120)两点,故可设AB所在直线解析式为y=kx+b,代入即可求出a,b 的值,从而确定函数关系式;(2)先求出CD所在直线解析式,令y=0,则可求出x的值,从而可知小颖一家当天几点到达姥姥家.试题解析:(1)由图象知:A(0,320),B(2,120)设AB所在直线解析式为y=kx+b,把A、B坐标代入得:320 2120 bk b=⎧⎨+=⎩解得:320 {100 bk==-故AB所在直线解析式为y=-100x+320; (2)由图象知:CD过点(2.5,120)和(3,80)设CD所在直线解析式为y=mx+n,则有2.5120 {380m nm n+=+=解得:80320 mn=-⎧⎨=⎩故CD所在直线解析式为y=-80x+320令y=0时,-80x+320=0,解得x=4所以:8+4=12故小颖一家当天12点到达姥姥家.22.孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:”如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)【答案】小超的回答正确,图表见解析【解析】【分析】根据题意列表,再根据表中的数据可求出所有等可能的结果数及点数之和等于6和点数之和等于7的情况数,然后分别求出点数之和等于6与点数之和等于7的概率,由此可作出判断.【详解】列表如下共有36种等可能的结果数,其中点数之和等于6占5种,点数之和等于7的占6种,∴点数之和为6的概率为536,点数之和为7的概率为61366故小超的回答正确.【点睛】本题考查了利用列表法或树状图求概率的方法:先利用列表法或树状图展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的概念计算出这个事件的概率=mn.23.如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.【答案】(1)证明见解析;(2)325.【解析】【分析】(1)由弦切角等于同弧所对的圆周角得:∠C=∠ABD,再根据直角三角形两锐角互余得出结论;(2)作弦心距,由勾股定理得:OE=3,再证明△OEB∽△BDA,列比例式可以求AD的长.【详解】:(1)∵BD为⊙O的切线,∴∠C=∠ABD,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠C+∠BAD=90°,(2)连接OB,过O作OE⊥AB于E,∴AE=BE=12AB=4,由勾股定理得:OE22OB BE-2254-3,∵BD为⊙O的切线,∴OB⊥BD,∴∠OBD=90°,∵∠ADB=90°,∴AD∥OB,∴∠DAB=∠ABO,∵∠D=∠OEB=90°,∴△OEB∽△BDA,∴BE OB AD AB=,∴458 AD=,∴AD=325;则线段AD的长为325.【点睛】本题考查了切线的性质和垂径定理、以及三角形的外接圆,是常考题型,熟练掌握切线的性质和垂径定理:圆的切线垂直于经过切点的半径.24.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1) B(-1.2);(2) y=57x?66x-;(3)见解析.【解析】【分析】(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.【详解】(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵△AOB 为等腰三角形,∴AO=BO ,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD ,△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ),∵A (2,1),∴OD=AC=1,BD=OC=2,∴B (-1,2);(2)∵抛物线过O 点,∴可设抛物线解析式为y=ax 2+bx ,把A 、B 两点坐标代入可得4212a b a b +⎧⎨-⎩==,解得5676a b ⎧⎪⎪⎨⎪-⎪⎩==, ∴经过A 、B 、O 原点的抛物线解析式为y=56x 2-76x ; (3)∵四边形ABOP ,∴可知点P 在线段OA 的下方,过P 作PE ∥y 轴交AO 于点E ,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=12,∴直线AO解析式为y=12x,设P点坐标为(t,56t2-76t),则E(t,12t),∴PE=12t-(56t2-76t)=-56t2+53t=-56(t-1)2+56,∴S△AOP=12PE×2=PE═-56(t-1)2+56,由A(2,1)可求得5∴S△AOB=12AO•BO=52,∴S四边形ABOP=S△AOB+S△AOP=-56(t-1)2+56+52=()2510163t--+,∵-56<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-13 ),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-13 ).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.【答案】(1)12;(2)9;(3)能实现;170(米).【解析】【分析】(1)当AD⊥BC时,△ABC的面积最大.(2)由题意矩形邻边之和为6,设矩形的一边为m,另一边为6﹣m,可得S=m(6﹣m)=﹣(m﹣3)2+9,利用二次函数的性质解决问题即可.(3)由题意,AC=100,∠ADC=60°,即点D在优弧ADC上运动,当点D运动到优弧ADC的中点时,四边形鱼塘面积和周长达到最大值,此时△ACD为等边三角形,计算出△ADC的面积和AD的长即可得出这个四边形鱼塘面积和周长的最大值.【详解】(1)如图①中,∵BC=6,AD=4,∴当AD⊥BC时,△ABC的面积最大,最大值=12×6×4=12.故答案为12.(2)∵矩形的周长为12,∴邻边之和为6,设矩形的一边为m,另一边为6﹣m,∴S=m(6﹣m)=﹣(m﹣3)2+9,∵﹣1<0,∴m=3时,S有最大值,最大值为9.(3)如图③中,∵AC=50米,AB=40米,BC=30米,∴AC2=AB2+BC2∴∠ABC=90°,作△AOC,使得∠AOC=120°,OA=OC,以O为圆心,OA长为半径画⊙O,∵∠ADC=60°,∴点D在优弧ADC上运动,当点D是优弧ADC的中点时,四边形ABCD面积取得最大值,设D′是优弧ADC上任意一点,连接AD′,CD′,延长CD′到F,使得D′F=D′A,连接AF,则∠AFC=30°=12∠ADC,∴点F在D为圆心DA为半径的圆上,∴DF=DA,∵DF+DC≥CF,∴DA+DC≥D′A+D′C,∴DA+DC+AC≥D′A+D′C+AC,∴此时四边形ADCB的周长最大,最大值=40+30+50+50=170(米).答:这个四边形鱼塘周长的最大值为170(米).【点睛】本题主要是最大值的考查,求最大值,常用方法为:(1)利用平方为非负的性质求解;(2)利用三角形两边之和大于第三边求解,在求解过程中,关键在与将要求解的线段集中到一个三角形中。
中考综合模拟考试 数学试题 含答案解析

9.如图,在矩形 中, 、 相交于点 ,点 是边 上的一点,若 ,则 的度数为()
A. B. C. D.
10.如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是 上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()
A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
21.如图1是一把折叠椅子,如图2是椅子完全打开支稳后 侧面示意图, 表示地面所在的直线,其中 和 表示两根较粗的钢管, 表示座板平面, ,交 于点F,且 , 长 , , 长24cm, 长24cm,
(1)求座板 的长;
(2)求此时椅子的最大高度(即点D到直线 的距离).(结果保留根号)
22.如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
A. 或 B. C. D. 或
7.如图,在 中, ,以顶点 为圆心,适当长为半径画弧,分别交边 、 于点 、 ,再分别以点 、 为圆心,大于 的长为半径画弧,两弧交于点 ,作射线 交边 于点 ,若 , ,则 的面积是()
A B. C. D.
8.若关于x,y的方程组 满足1<x+y<2,则k的取值范围是( )
A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)
中考数学综合模拟测试题(word版含答案)

中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分:120分测试时间:120分钟一.选择题(共10小题,满分40分)1.在实数0,﹣π,,﹣4中,最小的数是()A .0B .﹣πC .D .﹣42.下列运算正确的是()A .A 4•A 2=A 8B .(2A 3)2=2A 6C .(A B )6÷(A B )2=A 4B 4D .(A +B )(A ﹣B )=A 2+B 23.2020年10月22日,南京集成电路大学揭牌,系全国首个”芯片大学”.已知某种芯片的厚度约为0.00012米,其中”0.00012”用科学记数法可表示为()A .12×10﹣4B .1.2×10﹣4C .1.2×10﹣5D .1.2×10﹣34.如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A .B .C .D .5.下列分解因式正确的一项是()A .9x2﹣1=(3x+1)(3x﹣1)B .4xy+6x=x(4y+6)C .x2﹣2x﹣1=(x﹣1)2D .x2+xy+y2=(x+y)26.每年春秋季节,流感盛行,极具传染性.如果一人得流感,不加干预,经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x人,则下列方程正确的是()A .(x+1)2=81B .1+x+x2=81C .1+x+(x+1)2=81D .1+(x+1)+(1+x)2=817.如图,将等边△A B C 的顶点B 放在一组平行线的直线B 上,边A B ,A C 分别交直线A 于D ,E 两点,若∠1=40°,则∠2的大小为()A .24°B .22°C .20°D .18°8.莱洛三角形,也称作崭洛三角形或圆弧三角形,它的应用广泛,不仅用于建筑、商品的外包装设计,还用在工业方面.莱洛三角形形状的钻头可钻出正万形内孔,发动机的原件上也有莱洛三角形.如图1,分别以等边△A B C 的顶点小A ,B ,C 为圆心,以A B 长为半径画弧,我们把这三条弧组成的封闭图形就叫做莱洛三角形,如图2,若A B =3,则莱洛三角形的面积为()A .π﹣B .π+C .π﹣D .π﹣9.在平面直角坐标系中,点O为坐标原点,点A 、B 、C 的坐标分别为(0,3)、(t,3)、(t,0),点D 是直线y=kx+1与y轴的交点,若点A 关于直线y=kx+1的对称点A ′恰好落在四边形OA B C 内部(不包括正好落在边上),则t的取值范围为()A .﹣2<t<2B .﹣2<t<2C .﹣2<t<﹣2或2<t<2D .以上答案都不对10.如图,在矩形A B C D 中,A D = A B ,∠B A D 的平分线交B C 于点E.D H⊥A E于点H,连接B H并延长交C D 于点F,连接D E交B F于点O,下列结论:①A D =A E;②∠A ED =∠C ED ;③OE=OD ;④B H=HF;⑤B C ﹣C F=2HE,其中正确的有()A .2个B .3个C .4个D .5个二.填空题(共4小题,满分20分,每小题5分)11.如果抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,那么A 的取值范围是.12.不等式5x+1≥3x﹣5的解集为.13.在平面直角坐标系中,已知抛物线y1=A x2+3A x﹣4A (A 是常数,且A <0),直线A B 过点(0,n)(﹣5<n<5)且垂直于y轴.(1)该抛物线顶点的纵坐标为(用含A 的代数式表示).(2)当A =﹣1时,沿直线A B 将该抛物线在直线上方的部分翻折,其余部分不变,得到新图象G,图象G对应的函数记为y2,且当﹣5≤x≤2时,函数y2的最大值与最小值之差小于7,则n的取值范围为.14.如图,∠A OB =45°,点M,N在边OA 上,OM=x,ON=x+2,点P是边OB 上的点.若使点P,M,N构成等腰三角形的点P恰好有两个,则x的取值范围是.三.解答题(共9小题,满分90分)15.计算:(π﹣2021)0+2﹣3﹣+2C os45°.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?17.如图,在边长为1的小正方形组成的10×10网格中,给出了格点△A B C (格点为网格线的交点).(1)画出△A B C 关于直线l对称的△A 'B 'C ';(2)画出将△A 'B 'C ′绕B '点逆时针旋转一定的角度得到的△A ″B 'C ″,且点A ″和点C ″均为格点.18.观察下列等式:①=2+,②=3+,③=4+,④=5+,…(1)请按以上规律写出第⑥个等式:;(2)猜想并写出第n个等式:;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:+++…+=.19.关于x的一元二次方程x2﹣(2m+1)x+m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1,x2是该方程的两根,且满足两根的平方和等于3,求m的值.20.如图,已知在平面直角坐标系xOy中,一次函数y=kx+B (k≠0)的图象与反比例函数y=(m≠0)的图象相交于A 、B 两点,且点B 的纵坐标为﹣6,过点A 作A E⊥x轴于点E,tA n∠A OE=,A E=2.求:(1)求反比例函数与一次函数的解析式;(2)求△A OB 的面积.(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.21.如图,已知△A B C ,以A B 为直径的⊙O分别交A C ,B C 于点D ,E.连接OE,OD ,D E,且ED =EC .(1)求证:点E为B C 的中点.(2)填空:①若A B =6,B C =4,则C D =;②当∠A =°时,四边形OD C E是菱形.22.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为”非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,”非常重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生4000人,请你估计该校对视力保护”比较重视”的学生人数;(3)对视力”非常重视”的4人有A 1,A 2两名男生,其中A 1是七年级学生,A 2是八年级学生;B 1,B 2两名女生,其中B 1是八年级,B 2是九年级.若从中随机抽取两人向全校作视力保护经验交流,请求出恰好抽到不同年级、不同性别的学生的概率.23.已知,如图1,Rt△A B C 中,A B =A C ,∠B A C =90°,D 为△A B C 外一点,且∠A D C =90°,E为B C 中点,A F∥B C ,连接EF交A D 于点G,且EF⊥ED 交A C 于点H,A F=1.(1)若=,求EF的长;(2)在(1)的条件下,求C D 的值;(3)如图2,连接B D ,B G,若B D =A C ,求证:B G⊥A D .参考答案一.选择题(共10小题,满分40分)1.在实数0,﹣π,,﹣4中,最小的数是()A .0B .﹣πC .D .﹣4【分析】首先根据负数小于0,0小于正数,然后判断﹣π和﹣4的大小即可得到结果.【解答】解:由于负数小于0,0小于正数,又∵π<4,∴﹣π>﹣4,故选:D .【点评】本题考查实数大小的比较,利用不等式的性质比较实数的大小是解本题的关键.2.下列运算正确的是()A .A 4•A 2=A 8B .(2A 3)2=2A 6C .(A B )6÷(A B )2=A 4B 4D .(A +B )(A ﹣B )=A 2+B 2【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及平方差公式逐一判断即可.【解答】解:A 、A 4•A 2=A 6,故本选项不合题意;B 、(2A 3)2=4A 6,故本选项不合题意;C 、(A B )6÷(A B )2=(A B )2=A 4B 4,故本选项符合题意;D 、(A +B )(A ﹣B )=A 2﹣B 2,故本选项不合题意;故选:C .【点评】本题主要考查了同底数幂的乘除法,积的乘方以及完全平方公式,熟记相关公式与运算法则是解答本题的关键.3.2020年10月22日,南京集成电路大学揭牌,系全国首个”芯片大学”.已知某种芯片的厚度约为0.00012米,其中”0.00012”用科学记数法可表示为()A .12×10﹣4B .1.2×10﹣4C .1.2×10﹣5D .1.2×10﹣3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为A ×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00012=1.2×10﹣4.故选:B .【点评】本题考查用科学记数法表示较小的数,一般形式为A ×10﹣n,其中1≤|A |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A .B .C .D .【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,底层是一个矩形,上层是一个等腰梯形,故选:C .【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.下列分解因式正确的一项是()A .9x2﹣1=(3x+1)(3x﹣1)B .4xy+6x=x(4y+6)C .x2﹣2x﹣1=(x﹣1)2D .x2+xy+y2=(x+y)2【分析】利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:选项A :运用平方差公式得9x2﹣1=(3x+1)(3x﹣1),符合题意;选项B :运用提取公因式法得4xy+6x=2x(2y+3),不符合题意;选项C :x2﹣2x﹣1不能进行因式分解,不符合题意;选项D :x2+xy+y2不能进行因式分解,不符合题意.故选:A .【点评】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.每年春秋季节,流感盛行,极具传染性.如果一人得流感,不加干预,经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x人,则下列方程正确的是()A .(x+1)2=81B .1+x+x2=81C .1+x+(x+1)2=81D .1+(x+1)+(1+x)2=81【分析】设每人每轮平均感染x人,根据经过两轮后共有81人得流感,即可得出关于x的一元二次方程,此题得解.【解答】解:设每人每轮平均感染x人,∵1人患流感,一个人传染x人,∴第一轮传染x人,此时患病总人数为1+x;∴第二轮传染的人数为(1+x)x,此时患病总人数为1+x+(1+x)x=(1+x)2,∵经过两轮后共有81人得流感,∴可列方程为:(1+x)2=81.故选:A .【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,将等边△A B C 的顶点B 放在一组平行线的直线B 上,边A B ,A C 分别交直线A 于D ,E 两点,若∠1=40°,则∠2的大小为()A .24°B .22°C .20°D .18°【分析】过点C 作C F∥A ,则C F∥A ∥B ,再利用平行线的性质和等边三角形的内角是60°可得∠2的度数.【解答】解:过点C 作C F∥A ,则C F∥A ∥B ,∴∠1=∠A C F=40°,∠2=∠B C F.∵等边三角形A B C 中,∠A C B =60°,∴∠B C F=60°﹣40°=20°,∴∠2=∠B C F=20°.故选:C .【点评】本题考查平行线的性质和等边三角形的性质,正确作出辅助线是解题关键.8.莱洛三角形,也称作崭洛三角形或圆弧三角形,它的应用广泛,不仅用于建筑、商品的外包装设计,还用在工业方面.莱洛三角形形状的钻头可钻出正万形内孔,发动机的原件上也有莱洛三角形.如图1,分别以等边△A B C 的顶点小A ,B ,C 为圆心,以A B 长为半径画弧,我们把这三条弧组成的封闭图形就叫做莱洛三角形,如图2,若A B =3,则莱洛三角形的面积为()A .π﹣B .π+C .π﹣D .π﹣【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A 作A D ⊥B C 于D ,∵A B =A C =B C =3,∠B A C =∠A B C =∠A C B =60°,∵A D ⊥B C ,∴B D =C D =,A D = B D =,∴△A B C 的面积为•B C •A D =,S扇形B A C ==π,∴莱洛三角形的面积S=3×π﹣2×=π﹣,故选:D .【点评】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.9.在平面直角坐标系中,点O为坐标原点,点A 、B 、C 的坐标分别为(0,3)、(t,3)、(t,0),点D 是直线y=kx+1与y轴的交点,若点A 关于直线y=kx+1的对称点A ′恰好落在四边形OA B C 内部(不包括正好落在边上),则t的取值范围为()A .﹣2<t<2B .﹣2<t<2C .﹣2<t<﹣2或2<t<2D .以上答案都不对【分析】根据条件,可以求得点A 关于直线B D 的对称点E的坐标,再根据E在图形中的位置,得到关于t的方程组【解答】解:∵点B (t,3)在直线y=kx+1上,∴3=kt+1,得到,于是直线B D 的表达式是.于是过点A (0,3)与直线B D 垂直的直线解析式为.联立方程组,解得,则交点M.根据中点坐标公式可以得到点E,∵点E在长方形A B C O的内部∴,解得或者.本题答案:或者.故选:C .【点评】该题涉及直线垂直时”k”之间的关系;直线的交点坐标与对应方程组的解之间的关系;中点坐标公式需要熟悉.计算量较大.10.如图,在矩形A B C D 中,A D = A B ,∠B A D 的平分线交B C 于点E.D H⊥A E于点H,连接B H并延长交C D 于点F,连接D E交B F于点O,下列结论:①A D =A E;②∠A ED =∠C ED ;③OE=OD ;④B H=HF;⑤B C ﹣C F=2HE,其中正确的有()A .2个B .3个C .4个D .5个【分析】①由角平分线的性质和平行线的性质可证A B =B E,由勾股定理可得A D =A E= A B ,从而判断出①正确;②由”A A S”可证△A B E和△A HD 全等,则有B E=D H,再根据等腰三角形两底角相等求出∠A D E =∠A ED =67.5°,求出∠C ED =67.5°,从而判断出②正确;③求出∠A HB =67.5°,∠D HO=∠OD H=22.5°,然后根据等角对等边可得OE=OD =OH,判断出③正确;④求出∠EB H=∠OHD =22.5°,∠A EB =∠HD F=45°,然后利用”角边角”证明△B EH和△HD F 全等,根据全等三角形对应边相等可得B H=HF,判断出④正确;⑤根据全等三角形对应边相等可得D F=HE,然后根据HE=A E﹣A H=B C ﹣C D ,B C ﹣C F=B C ﹣(C D ﹣D F)=2HE,判断出⑤正确.【解答】解:①∵A E平分∠B A D ,∴∠B A E=∠D A E=∠B A D =45°,∵A D ∥B C ,∴∠D A E=∠A EB =45°,∴∠A EB =∠B A E=45°,∴A B =B E,∴A E= A B ,∵A D = A B ,∴A D =A E,故①正确;②在△A B E和△A HD 中,,∴△A B E≌△A HD (A A S),∴B E=D H,∴A B =B E=A H=HD ,∴∠A D E=∠A ED =(180°﹣45°)=67.5°,∴∠C ED =180°﹣45°﹣67.5°=67.5°,∴∠A ED =∠C ED ,故②正确;∵A B =A H,∵∠A HB =(180°﹣45°)=67.5°,∠OHE=∠A HB (对顶角相等),∴∠OHE=67.5°=∠A ED ,∴OE=OH,∵∠D HO=90°﹣67.5°=22.5°,∠OD H=67.5°﹣45°=22.5°,∴∠D HO=∠OD H,∴OH=OD ,∴OE=OD =OH,故③正确;∵∠EB H=90°﹣67.5°=22.5°,∴∠EB H=∠OHD ,在△B EH和△HD F中,,∴△B EH≌△HD F(A SA ),∴B H=HF,HE=D F,故④正确;∵HE=A E﹣A H=B C ﹣C D ,∴B C ﹣C F=B C ﹣(C D ﹣D F)=B C ﹣(C D ﹣HE)=(B C ﹣C D )+HE=HE+HE=2HE.故⑤正确;故选:D .【点评】本题为四边形的综合应用,涉及矩形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定与性质等知识.熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.二.填空题(共4小题)11.如果抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,那么A 的取值范围是 A <0.【分析】利用二次函数的性质得到抛物线开口向下,即可求解.【解答】解:∵抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,∴抛物线开口向下,∴A <0,故答案为A <0.【点评】本题考查了二次函数图象与系数的关系:二次项系数A 决定抛物线的开口方向和大小.当A >0时,抛物线向上开口;当A <0时,抛物线向下开口;一次项系数B 和二次项系数A 共同决定对称轴的位置:当A 与B 同号时,对称轴在y轴左;当A 与B 异号时,对称轴在y轴右.12.不等式5x+1≥3x﹣5的解集为x≥﹣3.【分析】不等式移项,合并,把x系数化为1,即可求出解集.【解答】解:不等式移项得:5x﹣3x≥﹣5﹣1,合并得:2x≥﹣6,解得:x≥﹣3.故答案为:x≥﹣3.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.13.在平面直角坐标系中,已知抛物线y1=A x2+3A x﹣4A (A 是常数,且A <0),直线A B 过点(0,n)(﹣5<n<5)且垂直于y轴.(1)该抛物线顶点的纵坐标为﹣ A (用含A 的代数式表示).(2)当A =﹣1时,沿直线A B 将该抛物线在直线上方的部分翻折,其余部分不变,得到新图象G,图象G对应的函数记为y2,且当﹣5≤x≤2时,函数y2的最大值与最小值之差小于7,则n的取值范围为﹣<n<1.【分析】(1)把抛物线y1=A x2+3A x﹣4A 化成顶点式即可求得;(2)先求得顶点M的坐标,然后根据轴对称的性质求得对称点M′的坐标,由题意可知当x=﹣5时y1的值与当x=2时y1的值相等,为y1=﹣6,易得函数y2的最大值为n,若2n﹣≥﹣6,即n≥时,y2的最小值为﹣6,即可得出n﹣(﹣6)<7,即n<1,得到≤n<1;若2n﹣<﹣6,即n<时,y2的最小值为2n﹣,即可得出n﹣(2n﹣)<7,即n>﹣,得到﹣<n<,进而即可得到﹣<n<1.【解答】解:(1)y1=A x2+3A x﹣4A =A (x+3)2﹣ A ,∴该抛物线顶点的纵坐标为﹣ A ,故答案为﹣ A ;(2)当A =﹣1时,y=﹣x2﹣3x+4=﹣(x+)2+,抛物线的顶点M(﹣,),∵直线A B ⊥y轴且过点(0,n)(﹣5<n<5),∴点M关于直线A B 的对称点M′(﹣,2n﹣),∵抛物线y1的对称轴为直线x=﹣,且自变量x的取值范围为﹣5≤x≤2,∴当x=﹣5时y1的值与当x=2时y1的值相等,为y1=﹣22﹣3×2+4=﹣6,由题意易得函数y2的最大值为n,若2n﹣≥﹣6,即n≥时,y2的最小值为﹣6,∵函数y2的最大值与最小值之差小于7,∴n﹣(﹣6)<7,即n<1,∴≤n<1,若2n﹣<﹣6,即n<时,y2的最小值为2n﹣,∵函数y2的最大值与最小值之差小于7,∴n﹣(2n﹣)<7,即n>﹣,∴﹣<n<,综上,﹣<n<1,故答案为﹣<n<1.【点评】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,二次函数的最值,分类讨论是解题的关键.14.如图,∠A OB =45°,点M,N在边OA 上,OM=x,ON=x+2,点P是边OB 上的点.若使点P,M,N构成等腰三角形的点P恰好有两个,则x的取值范围是2﹣2≤x≤2或x=2或x=﹣1.【分析】考虑四种特殊位置,求出x的值即可解决问题;【解答】解:如图1中,当△P2MN是等边三角形时满足条件,作P2H⊥OA 于H.在Rt△P2HN中,P2H=NH=,∵∠O=∠HP2O=45°,∴OH=HP2=,∴x=OM=OH﹣MH=﹣1.如图2中,当⊙M与OB 相切于P1,MP1=MN=2时,x=OM=2,此时满足条件;如图3中,如图当⊙M经过点O时,x=OM=2,此时满足条件的点P有2个.如图4中,当⊙N与OB 相切于P1时,x=OM=2﹣2,观察图3和图4可知:当2﹣2<x≤2时,满足条件,综上所述,满足条件的x的值为:2﹣2<x≤2或x=2或x=﹣1,故答案为2﹣2<x≤2或x=2或x=﹣1.【点评】本题考查等腰三角形的判定、直线与圆的位置关系等知识,解题的关键是学会寻找特殊位置解决问题,属于中考填空题中的压轴题.三.解答题(共9小题)15.计算:(π﹣2021)0+2﹣3﹣+2C os45°.【分析】直接利用零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=1+﹣2+2×=1+﹣2+=1﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?【分析】设绳长是x尺,井深是y尺,根据把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺列方程组即可.【解答】解:设绳长是x尺,井深是y尺,依题意有:,解得:,答:绳长是36尺,井深是8尺.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,在边长为1的小正方形组成的10×10网格中,给出了格点△A B C (格点为网格线的交点).(1)画出△A B C 关于直线l对称的△A 'B 'C ';(2)画出将△A 'B 'C ′绕B '点逆时针旋转一定的角度得到的△A ″B 'C ″,且点A ″和点C ″均为格点.【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可.(2)将△A ′B ′C ′绕点B ′逆时针旋转90°即可.【解答】解:(1)如图,△A 'B 'C '即为所求作.(2)如图,△A ″B 'C ″即为所求作.【点评】本题考查作图﹣旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.观察下列等式:①=2+,②=3+,③=4+,④=5+,…(1)请按以上规律写出第⑥个等式:=7+;(2)猜想并写出第n个等式:=(n+1)+;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:+++…+=4753.【分析】(1)根据分母不变,分子是两个数的平方差可得答案;(2)根据发现的规律写出第n个等式并计算可进行验证;(3)根据=1,=2,=3…可得原式=1+2+3……+97,进而可得答案.【解答】解:(1)第⑥个式子为:=7+;故答案为:=7+;(2)猜想第n个等式为:=(n+1)+,证明:∵左边===(n+1)+=右边,故答案为:=(n+1)+;(3)原式=1+2+3+…+97==4753.故答案为:4753.【点评】本题考查对规律型问题的理解和有理数的运算能力,找到规律是解题关键.19.关于x的一元二次方程x2﹣(2m+1)x+m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1,x2是该方程的两根,且满足两根的平方和等于3,求m的值.【分析】(1)计算判别式的值得到△=4m2+1,利用非负数的性质得△>0,然后根据判别式的意义可判断方程总有两个不相等的实数根;(2)根据根与系数的关系得x1+x2=2m+1,x1x2=m,利用x12+x22=3得到(2m+1)2﹣2×m=3,然后解方程即可.【解答】(1)证明:△=(2m+1)2﹣4m=4m2+1,∵4m2≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵x1,x2是该方程的两根,则x1+x2=2m+1,x1x2=m,∵x12+x22=3,∴(x1+x2)2﹣2x1x2=3,∴(2m+1)2﹣2×m=3,解得m=或﹣1.【点评】本题考查了一元二次方程A x2+B x+C =0(A ≠0)的根的判别式△=B 2﹣4A C :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的解和根与系数的关系.20.如图,已知在平面直角坐标系xOy中,一次函数y=kx+B (k≠0)的图象与反比例函数y=(m≠0)的图象相交于A 、B 两点,且点B 的纵坐标为﹣6,过点A 作A E⊥x轴于点E,tA n∠A OE=,A E=2.求:(1)求反比例函数与一次函数的解析式;(2)求△A OB 的面积.(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.【分析】(1)首先根据A E⊥x轴于点E,tA n∠A OE=,A E=2等条件求出A 点的坐标,然后把A 点坐标代入反比例函数的解析式中,求出m的值,再根据B 点在反比例函数的图象上,进而求出k,根据两点式即可求出一次函数的解析式,(2)首先求出一次函数与y轴的交点坐标,然后再根据S△A OB =S△OB D +S△A OD 求面积;(3)根据图象即可求得.【解答】解:(1)在Rt△OEA 中:∵tA n∠A OE==,∵A E=2,∴OE=6,∴点A 的坐标为(6,2),∵A 在反比例函数y=(m≠0)的图象上,∴m=6×2=12,∴反比例函数的解析式为y=,设B 点坐标为(A ,﹣6),把(A ,﹣6)代入y=,解得A =﹣2,把A (6,2)和B (﹣2,﹣6)代入y=kx+B 中,∴,解得,∴一次函数的解析式为y=x﹣4;(2)直线y=x﹣4与y的交点为D ,故D 点坐标为(0,﹣4),∴S△A OB =S△OB D +S△A OD =×4×6+×4×2=12+4=16;(3)观察图象,一次函数的值大于反比例函数的值的x的取值范围是﹣2<x<0或x>6.【点评】本题主要考查反比例函数和一次函数交点问题的知识点,解答本题的关键是根据题干条件求出A 点的坐标,进而求出反比例函数和一次函数的解析式,本题难度一般,是一道很不错的试题.21.如图,已知△ABC ,以A B 为直径的⊙O分别交A C ,B C 于点D ,E.连接OE,OD ,D E,且ED =EC .(1)求证:点E为B C 的中点.(2)填空:①若A B =6,B C =4,则C D =;②当∠A =60°时,四边形OD C E是菱形.【分析】(1)连接A E,如图,先证明∠B =∠C 得到△A B C 为等腰三角形,再根据圆周角定理得到∠A EB =90°,即A E⊥B E,然后根据等腰三角形的性质得到结论;(2)①证明△C D E∽△C B A ,利用相似比可求出C D 的长;①当∠A =60°,证明△A OD 和△A B C 、△C D E、△OB D 都为等边三角形,则OD =D C =C E =OE,然后判定四边形OD C E是菱形.【解答】(1)证明:连接A E,如图,∵ED =EC ,∴∠C =∠ED C ,∵∠ED C =∠B ,∴∠B =∠C ,∴△A B C 为等腰三角形,∵A B 为直径,∴∠A EB =90°,即A E⊥B E,∴B E=C E,即点E为B C 的中点;(2)①∵∠D C E=∠B C A ,∠ED C =∠B ,∴△C D E∽△C B A ,∴C D :B C =D E:A B ,即C D :4=2:6,∴C D =;①当∠A =60°,∵OA =OD ,A B =A C ,∴△A OD 和△A B C 都为等边三角形,∴OD =OA ,同理可得△C D E、△OB D 都为等边三角形,∴C D =C E=D E=B E=OB ,∴OD =D C =C E=OE,∴四边形OD C E是菱形.故答案为;60.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质和菱形的判定.22.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为”非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,”非常重视”所占的圆心角的度数为18°,并补全条形统计图;(2)该校共有学生4000人,请你估计该校对视力保护”比较重视”的学生人数;(3)对视力”非常重视”的4人有A 1,A 2两名男生,其中A 1是七年级学生,A 2是八年级学生;B 1,B 2两名女生,其中B 1是八年级,B 2是九年级.若从中随机抽取两人向全校作视力保护经验交流,请求出恰好抽到不同年级、不同性别的学生的概率.【分析】(1)先由”不重视”的学生人数和所占百分比求出调查总人数,再由360°乘以”非常重视”的学生所占比例得所占的圆心角的度数;求出”重视”的人数,补全条形统计图即可;(2)由该校共有学生人数乘以”比较重视”的学生所占比例即可;(3)画树状图,共有12个等可能的结果,恰好抽到不同年级、不同性别的学生的结果有6个,再由概率公式求解即可.【解答】解:(1)调查的学生人数为16÷20%=80(人),∴”非常重视”所占的圆心角的度数为360°×=18°,故答案为:18°,“重视”的人数为80﹣4﹣36﹣16=24(人),补全条形统计图如图:(2)由题意得:4000×=1800(人),即估计该校对视力保护”比较重视”的学生人数为1800人;(3)画树状图如图:共有12个等可能的结果,恰好抽到不同年级、不同性别的学生的结果有6个,∴恰好抽到同性别学生的概率为=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.也考查了扇形统计图和条形统计图以及样本估计总体.23.已知,如图1,Rt△A B C 中,A B =A C ,∠B A C =90°,D 为△A B C 外一点,且∠A D C =90°,E为B C 中点,A F∥B C ,连接EF交A D 于点G,且EF⊥ED 交A C 于点H,A F=1.(1)若=,求EF的长;(2)在(1)的条件下,求C D 的值;(3)如图2,连接B D ,B G,若B D =A C ,求证:B G⊥A D .【分析】(1)判断出△A HF∽△C HE,得出比例式,求出C E,最后用勾股定理,即可得出结论;(2)先求出A C =3,再判断出△A EG≌△C ED (A SA ),得出EG=ED ,再判断出△A EF∽△D A C ,得出比例式,即可得出结论;(3)先判断出△B ED ∽△B D C ,得出,进而判断出A G=GD ,即可得出结论.【解答】解:(1)如图1,连接A E,∵A F∥B C ,∴△A HF∽△C HE,∴,∴A F=1,,∴,∴C E=3,在Rt△A B C 中,A B =A C ,点E是B C 的中点,∴A E= B C =C E,A E⊥B C ,∴C E=3,∵A F∥B C ,∴A E⊥A F,∴∠EA F=90°,根据勾股定理得,EF==;(2)由(1)知,EF=,C E=3,∴B C =2C E=6,∴A C =3,∵∠A EP=∠C D P,∠A PE=∠C PD ,∴∠EA G=∠PC D ,∵∠A EG=∠C ED ,A E=C E,∴△A EG≌△C ED (A SA ),∴EG=ED ,∴∠ED G=45°=∠A C E,∵∠A PC =∠EPD ,∴∠PED =∠C A P,∴∠FEA =∠C A D ,∴△A EF∽△D A C ,∴,∴,∴C D =.(3)如图2,在Rt△A B C 中,A B =A C ,∴,,连接A E,∵,,∴,∵∠EB D =∠D B C ,∴△B ED ∽△B D C ,∴,∴C D = D E=GD ,∵C D =A G,∴A G=GD ,∵B D =A B ,∴B G⊥A D .【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形判定和性质,勾股定理,构造出相似三角形是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年九年级数学中考综合题练习
1.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3
万元,已知每台新家电可实现产值0.5万元.
(1)分别求总投资额y1(万元)和总利润y2(万元)关于新家电的总产量x(台)的函数关系式;
(2)当新家电的总产量为900台时,该公司的盈亏情况如何?
(3)请你利用第(1)小题中y2与x的函数关系式,分析该公司的盈亏情况.
(注:总投资=前期投资+后期其他投资,总利润=总产值﹣总投资)
2.某花店专卖某种进口品种的月季花苗,购进时每盆花苗的单价是30元,根据市场调查:在一段时间内,销售
单价是40元时,销售量是600盆,而销售单价每上涨1元,就会少售出10盆.
(1)设该种月季花苗的销售单价在40元的基础上涨了x元(x>0),若要使得花店每盆的利润不得低于14元,且花店要完成不少于540盆的销售任务,求x的取值范围;
(2)在(1)问前提下,若设花店所获利润为W元,试用x表示W,并求出当销售单价为多少时W最大,最大利润是什么?
第 1 页共 1 页。