欧几里得空间几个等价定义
欧几里得几何学的公理体系

欧几里得几何学的公理体系.欧几里得几何(Euclid geometry)起源于古埃及,当尼罗河泛滥后,为了重新整理土地而需要进行丈量. 因此他们用geometry一词,其原意就是“丈量土地”. 自此就开始了对图形的研究. Euclid《原本》把直到古希腊时代为止的这些知识综合整理出来,而成为一个逻辑体系. 由于这个《原本》中包含了图形的知识、实数理论的原型、数论等,而直接研究图形的部分最多,因此,中文译本将书名译成为《几何原本》. (“几何”来自“geo”的音译)几何学是数学科学中关于图形的数学分支. 在这一阶段,几何学就意味着数学的全部,古代数学家把萌芽中的代数学也包括在几何学中.“数”与“形”的结合,是17世纪开始的,由于代数学、分析学的发展,并形成了几何学、代数学、分析学等独立的数学分支,数学家R.Descartes首先建立了解析几何学,他利用坐标系,将图形问题转化为数量之间的问题,并用代数的计算方法来处理几何问题.于是,相对于解析几何学来说,不用坐标而直接研究图形的几何学,称之为纯粹几何学. 纯粹几何学的进一步发展,就是射影几何学.十九世纪出现了罗巴杰夫斯基几何,这种几何否定了欧几里得几何中的平行线公理.在n维向量空间建立后,几何体系就综合成了n维欧几里得几何、n维射影几何、n维非欧几何.把几何学用“群”的观点统一起来加以论述,也就是“埃尔兰根纲领(Erlangen program, 1872)”,德国数学家F.Klein的一篇不朽论文):每种几何学视为由一个点集组成的“空间”S,以及“由S到S的变换群G”所确定的,研究S的子集(图形)性质中对于G来说不变的性质,这就是几何学.在埃尔兰根纲领距今已近140年的今天,几何学的发展日新月异,微分几何学及其发展Riemann几何学、代数几何学,在20世纪取得辉煌的成就,举世瞩目.欧几里得几何学:以平行公理为基础的几何学,其公理体系的核心是:“第五共设”两条直线与第三条直线相交,在第三条直线一侧的两个角(同旁内角)之和小于两直角时,此两条直线必在此侧相交.它等价于过不在直线L上的点P且平行于L的直线有且仅有一条.最初,几何学的研究对象是图形,首先要用到空间的直观性. 但是,直观性有时缺乏客观性,必须明确规定公理、定义,排出直观,建立纯粹的、合乎逻辑的几何学思想.《几何原本》已经从事建立公理、定义的工作,但毕竟距今太远,缺陷很多,公理也不完备. 19世纪后半叶,D.Hilbert(就是在1900年世界数学家大会上提出著名的Hilbert的23问题的著名数学家,这23个问题推动了20世纪数学的快速发展)公理体系形成了,它是包含了欧几里得几何公理的、更加完善的几何公理体系.欧几里得《几何原本》的简单介绍——全书共13卷,除第5、7、8、9、10中讲述比例和算术理论外,其余各卷都是关于几何内容的.第1卷:平行线、三角形、平行四边形的有关定理;第2卷:毕达哥拉斯定理及其应用;第3卷:关于圆的定理;第4卷:圆的内接与外切多边形定理;第6卷:相似理论;第11、12、13卷:立体几何.《几何原本》是一个数学知识的逻辑体系,结构是由定义、共设、公理、定理组成的演绎推论系统.开始给出了23个定义. 前6个定义是:(1)点没有大小;(2)线有长度没有宽度;(3)线的界是点;(4)直线上的点是同样放置的;(5)面只有长度没有宽度;(6)面的界是线.其次是5个共设:(1)从任一点到另一点可以引一直线;(2)有限直线可以无限延长;(3)以任意点为圆心,可用任意半径作圆;(4)所有直角都相等;(5)若两条直线与另一条直线相交,所成的同旁内角之和小于二直角,则此两直线必在这一侧相交.然后是5个公理:(1)等于同量的量相等;(2)等量加等量其和相等;(3)等量减等量其差相等;(4)可重合的图形全等;(5)全体大于部分.公理之后是一些重要的命题.要强调两点——1、“第五共设”等价于“平行公理”:2、欧几里得的《几何原本》有许多缺点,例如几何逻辑结构还很不严谨;对一些定义叙述不够清晰、甚至含混不清;共设、公理还很不够,以至于很多定理的证明要靠几何直观,等等. 然而,从辩证唯物主义的观点来看,它仍然是一部不朽的著作.19世纪末,德国数学家D.Hilbert于1899年发表了著名的《几何基础》,成功地建立了欧几里得几何的完整的公理体系,称为著名的Hilbert公理体系.希尔伯特的五组公理包含:结合公理、顺序公理、合同公理、平行公理、连续公理. 由此五组公理,可以推出欧几里得几何中的所有定理,与欧几里得几何的全部内容,因而使得欧氏几何成为一个逻辑结构非常完善而严谨的几何体系.希尔伯特《几何基础》的简单介绍——希尔伯特公理体系:一、结合公理 (incidence axioms )——结合性叙述了点、线、面位置关系,叙述为 “在上”或“通过”. (1) 对于两点A 、B ,存在通过A 、B 的直线L ; (2) 当两点A 、B 不相同时,通过此两点的直线L 是唯一的;(3) 每条直线上至少有两个点;至少存在三个点不在同一条直线上;(4) 对于不在同一条直线上的三点A 、B 、C ,存在通过这三点的唯一的一个平面π; (5) 每个平面上至少有一个点;(6) 若直线L 上有两点在平面π上,则直线L 上的每一点都在平面π上; (7) 若两平面1π、2π通过一点A ,则它们必通过 另一点B ;(8) 至少存在4个点不在同一个平面上.二、顺序公理(order axioms )顺序性确定了几何元素的顺序关系,叙述为 “在之间”. (1) 若A 、B 、C 在同一直线L 上,且“点B 在A 与C 之间”,则“B 在C 与A 之间”; (2) 对于不同的两点A 、C ,在通过它们的直线L上至少存在一点B L ∈,使得C 在A 与B 之间;(3) 对于在一条直线上L 的三点A 、B 、C 中,至多有一点在另两点之间;(亦即,若B 在A 、C 之间,则A 不可能在B 、C 之间;由以上三条,由此得到: ① 在直线L 上的点可以赋予线性的序;② 在直线L 上,可以定义线段,以A 、B 为端点的线段记为AB 或BA ;定义线段AB的内部,外部) (4) 设A 、B 、C 是不在同一直线上的三点, π是 通过三点的平面,也记为ABC ,L 是平面ABC 上的直线,但不通过A 、B 、C 中的任何一点. 若直线L 通过线段AB 上的点,则L 或通过线 段AB 上的一点,或通过线段BC 上的一点;(Pasch ,帕施公理).B ∙ LC ∙A ∙ L三、合同公理(congruence axioms )合同性确定了线段或角的合同关系,叙述为“合同于”或“等于”. (1) 如果两点A 、B 在直线L 上,点'A 在同一条或另一条直线'L 上,则直线'L 上的点'A 的一 侧存在点'B ,使得线段''A B “合同”于AB , 记为''A B AB ≡;A ∙B ∙'L L(2) 线段的合同关系是一个等价关系;AB BA ≡;''A B AB ≡ ⇒ ''AB A B ≡;''A B AB ≡、''''A B AB ≡ ⇒ ''''''A B A B ≡;(3) 设AB 、BC 是直线L 上的两线段,没有公共内点,又设''A B 、''B C 是直线'L ('L 与L 可同, 或不同)上的两线段,也没有公共内点. 若''AB A B ≡、''BC B C ≡,则''AC A C ≡;(4) 设平面π上有一个角(),h k ∠,又在平面'π('π 与π可同,或不同)上有一条直线''L π⊂,并且指定了平面'π被直线'L 分为两侧. 取直线'L 上的一点''O L ∈,并从'O 出发、在直线'L 上引射线'h ,则在平面'π的该侧上,有且仅有一 条射线'k ,使得角()','h k ∠合同与角(),h k ∠, 记为 ()()',',h k h k ∠≡∠;(5) 角的合同关系也是等价关系. 【注】 角的定义:设平面π上通过同一点O 的 两不同直线为1L 、2L . 由点O 出发,分别在1L 与2L 上引两条射线,记为k 、h .B ∙’ A ∙’A ∙h 1L (),h k ∠O k2L将这一对射线的所决定的集合称为平面π上的角,记 为(),h k ∠或(),k h ∠;若A 、B 分别为射线h 与射线k 上的点,也记此角为AOB ∠. O 称为角(),h k ∠的顶点;射线h 、k 称 为角(),h k ∠的边.角的合同关系用几何语言叙述为: ① 设(),h k ∠是平面π上的角,1L 是平面1π上的直线(π与1π可同、可不同);过1L 上的一点1O , 作1L 上一射线1h . 则在1π上必存在过1O 的唯一一条射线1k ,使得 ()()',',h k h k ∠≡∠.1O ∙ 1k(),h k ∠ ()','h k ∠1h1L② 角的合同关系是一个等价关系;③ 设A 、B 、C 与1A 、1B 、1C 分别为不在一直线上的三点,如果有B ∙11AB A B ≡、11AC A C ≡、111BAC B AC ∠=∠,则必有111ABC A B C ∠=∠.四、平行公理(parallel axioms )平行公理确定了直线的平行关系,叙述为 “平行于”. 对于任意直线L 与不在L 上的一点A ,则在L 与A 确定的平面π上,有且仅有一条直线'L 通过点A 且不与直线L 相交.五、连续公理(continuity axioms )(1) 对于任意两线段AB 、CD ,在通过线段AB 的直线L 上,存在有限多个点1A 、2A 、、 n A ,使得1AA 、12A A 、、1n n A A -都合同于线段DC , 1121n n CD AA A A A A -====, 并且使得“B 在A 与n A 之间”(阿基米德公理(Archimedes );或称直线的连续性公理);(2) 一直线L 上的点的集合,在保持结合公理的(2),顺序公理的(2),合同公理的(1)-(5)与连续公理的(1)的条件下,不可能再扩充 ;(直线的完备性公理).由Hilbert 建立的五个公理体系可以推得欧几里得几何的全部内容.平行公理是欧几里得几何的“灵魂”,若将其余4个公理保留,将平行公理改为罗巴切夫斯基公理,就可推出罗巴切夫斯基几何的全部内容.数学科学中,允许同时成立两个对立的公理体系,而且这种对立的体系具有同样的真理性.仿射几何 ——(一) n 维仿射空间:设X 是一个n 维线性空间,A 是一个集合,A 中的元素称为“点”,如果A 中的两点P 、Q 对应于X 中的唯一的向量PQ ,满足:(1) PP 等于X 中的零向量;(2) 任给A 中一点P ,任给X 中的向量a ,则在A 中存在唯一的点Q ,使得PQ a =;(3) 对于A 中的三点P 、Q 、R ,有等式PR PQ QR =+;则称A 为一个n 维仿射空间;特别地,1n =时,称A 为仿射直线;2n =时,称A 为仿射平面;3n =时,称A 为仿射空间. 也把仿射空间中的元称为向量.仿射直线、仿射平面、仿射空间的实际例子:对于一维、二维、三维欧氏空间,若不使用欧氏距离,仅仅视为集合,则它们分别是一维仿射直线、二维仿射平面、三维仿射空间.(二) 仿射几何学: 主要研究仿射空间中的图形在仿射变换下不变的几何性质. 如共线性、平行性、单比,等.三维仿射空间中A 的仿射坐标系: 设1e 、2e 、3e 是三维仿射空间A 中三个不共面的向量,称它们为A 中的一组基. 可以证明,空间A 中的任意向量m A ∈,可用基1e 、2e 、3e 表示123m x e y e z e =++,把有序实数(),,x y z 称为向量m 的仿射坐标. 空间A 中的一个点O 与一组基{}123,,e e e ,合在一起{}123;,,O e e e 称为空间的一个仿射坐标系 (也称为仿射标架). 也常用记号123OM m x e y e z e ==++.仿射坐标系中的1e 、2e 、3e 只需不共面,不必相互垂直. 若两两互相垂直,则仿射坐标系就是直角坐标系.仿射变换: 设仿射空间A 中有两组仿射坐标系{}123:;,,I O e e e 、{}123:';',','II O e e e ,点'O 在仿射坐标系{}123:;,,I O e e e 中的坐标为()000,,x y z ,'j e 在{}123:;,,I O e e e 中的坐标为 ()123,,,1,2,3j j j a a a j =, ① {}123:;,,I O e e e 到{}123:';',','II O e e e 的点的仿射坐标变换公式: 设点P A ∈在I 、II 中的坐标分别为(),,x y z 、()',','x y z , 则111213021222303132330'''x a a a x x y a a a y y z a a a z z ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦; ② {}123:;,,I O e e e 到{}123:';',','II O e e e 的向量的仿射坐标变换公式: 设向量OM 在I 、II 中的坐标分别为()123,,u u u 、 ()123',','u u u ,则111121312212223233132333'''u a a a u u a a a u u a a a u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.射影几何 ——(一) 射影平面、射影空间在仿射平面、仿射空间中,引进无穷远点,则称它们为扩大了的仿射平面、扩大了的仿射空间.在扩大了的射影平面、射影空间中,若将原有的点与引进的无穷远点不加区别,得到的平面、空间就称为射影平面、射影空间.在射影空间中,任意两条直线必定相交(平行直线相交于无穷远点)、任意两个平面必定相交(平行平面相交于无穷远直线)、任意直线与平面必定相交(平行于平面的直线与平面相交于一个无穷远点).(二)射影几何学在定义齐次坐标、射影坐标、射影变换之后,就可以讨论射影空间中图形在射影变换下不变的性质了.平行公理是欧几里得几何的“灵魂”,若将其余4个公理保留,将“欧几里得平行公理”改为“罗巴切夫斯基公理”,就可推出罗巴切夫斯基几何的全部内容.数学科学中,允许同时成立两个对立的公理体系,而且这种对立的体系具有同样的真理性.11。
北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

第9章欧几里得空间9.1复习笔记一、定义与基本性质1.欧几里得空间定义设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β),它具有以下性质:(1)(α,β)=(β,α);(2)(kα,β)=k(α,β);(3)(α+β,γ)=(α,γ)+(β,γ);(4)(α,α)≥0,当且仅当α=0时(α,α)=0.这里α,β,r是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间.2.长度(1)定义非负实数称为向量α的长度,记为|α|.(2)关于长度的性质①零向量的长度是零,②|kα|=|k||α|,③长度为1的向量称为单位向量.如果α≠0,向量1αα就是一个单位向量,通常称此为把α单位化.3.向量的夹角(1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有|(α,β)|≤|α||β|当且仅当α,β线性相关时,等号才成立.(2)非零向量α,β的夹角<α,β>规定为(3)如果向量α,β的内积为零,即(α,β)=0,那么α,β称为正交或互相垂直,记为α⊥β.零向量才与自己正交.(4)勾股定理,即当α,β正交时,|α+β|2=|α|2+|β|2.4.有限维空间的讨论(1)度量矩阵设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得a ij=(εi,εj)(i,j=1,2,…,n),显然a ij=a ji,于是利用矩阵,(α,β)还可以写成(α,β)=X'AY,其中分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵.(2)性质①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC;表明不同基的度量矩阵是合同的.②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的.二、标准正交基1.正交向量组欧式空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组.按定义,由单个非零向量所成的向量组也是正交向量组.2.标准正交基(1)定义在n维欧氏空间中,由n个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基.说明:①对一组正交基进行单位化就得到一组标准正交基.②一组基为标准正交基的充分必要条件是:它的度量矩阵为单位矩阵.(2)标准正交基的求法①定理1n维欧氏空间中任一个正交向量组都能扩充成一组正交基.②定理2对于n维欧氏空间中任意一组基ε1,ε2,…,εn,都可以找到一组标准正交基η1,η2,…,ηn,使L(ε1,ε2,…,εi)=L(η1,η2,…,ηi),i=1,2,…,n.定理2中把一组线性无关的向量变成一单位正交向量组的方法称做施密特正交化过程.例:把α1=(1,1,0,0),α3=(-1,0,0,1),α2=(1,0,1,0),α4=(1,-1,-1,1)变成单位正交的向量组.解:①先把它们正交化,得β1=α1=(1,1,0,0),②再单位化,得3.基变换公式设ε1,ε2,…,εn与η1,η2,…,ηn是欧氏空间V中的两组标准正交基,它们之间的过渡矩阵是A=(a ij),即因为η1,η2,…,ηn是标准正交基,所以矩阵A的各列就是η1,η2,…,ηn在标准正交基ε1,ε2,…,εn下的坐标.4.正交矩阵n级实数矩阵A称为正交矩阵,如果A'A=E.由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基.三、同构1.同构定义实数域R上欧式空间V与V'称为同构的,如果由V到V'有一个双射σ,满足(1)σ(α+β)=σ(α)+σ(β),(2)σ(kα)=kσ(α),(3)(σ(α),σ(β))=(α,β),这里α,β∈V,k∈R,这样的映射σ称为V到V'的同构映射.同构的欧氏空间必有相同的维数.每个n维的欧氏空间都与R n同构.2.同构的性质同构作为欧氏空间之间的关系具有(1)反身性;(2)对称性;(3)传递性;(4)两个有限维欧氏空间同构的充分必要条件是它们的维数相同..四、正交变换1.定义欧氏空间V的线性变换A称为正交变换,如果它保持向量的内积不变,即对于任意的α,β∈V,都有(Aα,Aβ)=(α,β).2.性质。
欧几里得五大公理

欧几里得五大公理欧氏几何公理是欧几里得建立的几个几何公理,也称欧式几何,它的建立,采用了分析与综合的方法,不止是单独一个命题的前提与结论之间的连结,而是所有几何命题的连结成逻辑网路。
历史影响古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。
这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作。
在《原本》里,欧几里德系统地总结了古代劳动人民和学者们在实践和思考中获得的几何知识,欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。
而这本书,也就成了欧式几何的奠基之作。
两千多年来,《几何原本》一直是学习几何的主要教材。
哥白尼、伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。
五条几何公理1.过相异两点,能作且只能作一直线(直线公理)。
2.线段(有限直线)可以任意地延长。
3.以任一点为圆心、任意长为半径,可作一圆(圆公理)。
4.凡是直角都相等(角公理)。
5.两直线被第三条直线所截,如果同侧两内角和小于两个直角,则两直线则会在该侧相交。
上述前三条公理是尺规作图公理,用来定直线与圆。
在纸面上用尺规划出的任何直线与圆,按定义而言,都不是「真正」数学上的直线与圆。
然而,欧氏似乎是说:我们可以用尺规作出近似的图形,以帮助我们想像真正的图形,再配合正确的推理就够了。
第四条公理比较不一样,它好像是一个未证明的定理。
事实上,它宣称著:直角的不变性或空间的齐性(thehomogeneityofspace)。
它规范了直角,为第五公理铺路。
第五公理又叫做平行公理(theparallelaxiom),因为它等价于:过直线外一点,可作且只可作一直线跟此直线平行。
空间几何的欧几里得空间

空间几何的欧几里得空间欧几里得是希腊数学家,他的作品《几何原本》被认为是欧几里得空间的奠基工作。
欧几里得空间指的是三维空间中的几何定理,包括点、线、面等。
欧几里得几何早在公元前300年左右就被发明了。
它的原理和公理经过了几百年的发展和完善,成为了今天欧几里得几何的基础。
欧几里得空间的定义和特征欧几里得空间可以由三条公理唯一地确定。
这些公理是:1.给定两个点,可以画出唯一一条通线。
2.可以从任意一个点向任意方向画出一条直线。
3.所有的角有180度。
这些公理可以解释出欧几里得几何的一些基本特征。
当我们在三维空间中,任意给定两个不同的点,我们可以用直线连接它们,这条直线将这两个点所在的直线切分成两部分。
类似地,我们可以从任意一个点,画出一条向任意方向的直线。
这些一般经验可以被简洁地表述为「既定点之间只有一条直线之交」和「可以从任意一点引出一条唯一的直线」。
对角度的定义和度数的规定,使得图形的角度产生了「锐角」、「直角」和「钝角」三种不同的类型。
欧几里得空间的应用欧几里得几何的应用非常广泛,特别是在建筑、工程、科学和技术等领域。
作为一种公认的几何形式,欧几里得空间能够描述和解决很多关于空间的问题。
比如,使用欧几里得几何可以讨论到平面内的三角形性质,例如高、垂线、媒线、重心等,也可以研究空间内的球与圆的性质,如半径、周长、体积等。
针对实际应用的需求,欧几里得几何经过了不断的发展与推广。
例如在建筑设计中,可以利用欧几里得几何来设计建筑外形,如切割和组合形状等。
在科学和技术领域,也可以利用欧几里得几何进行模型建立和计算。
除此之外,欧几里得几何还可以在地图、测量、图案设计以及绝对几何学等方面提供帮助。
结论欧几里得空间是几何学研究中最广泛应用的一种形式之一,它奠定了数学中几何的基础,为技术、建筑设计、科学、技术和计算机科学等领域提供了基础的数学工具。
欧几里得几何一直处于几何学的主流地位,尽管它的局限性已经在非欧几里得几何和黎曼度量几何中得到补充和拓展。
欧几里得空间

第九章欧几里得空间§1 定义与基本性质教学目的:理解欧几里得空间的定义与性质,掌握向量的长度与夹角的概念,度量矩阵的概念与性质,会求欧几里得空间基的度量矩阵 .教学重点:欧几里得空间的定义与性质,度量矩阵的性质 .教学难点:理解欧几里得空间的定义 .教学内容:一、向量的内积定义1设V是实数域R上一个向量空间,在V上定义了一个二元实函数,称为内积,记作( , ) ,它具有以下性质 :1) ( , ) ( , );2) (k , ) k( , ) ;3) ( , ) ( , ) ( , );4) ( , ) 0 ,当且仅当0时, ( , ) 0这里,,是V任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间.例1在线性空间R n中,对于向量(a1, a2 , ,a n) , (b1,b2, ,b n),定义内积( , ) a1b1 a2b2 a n b n. (1)则内积(1)适合定义中的条件,这样R n就成为一个欧几里得空间•仍用来表示这个欧几里得空间 .在 n 3时, (1) 式就是几何空间中的向量的内积在直角坐标系中的坐标表达式.例 2 在 R n里 , 对于向量(a1, a2 , ,a n) , (b1,b2, ,b n),定义内积( , ) a1b1 2a2b2 na n b n .则内积(1)适合定义中的条件,这样R n就也成为一个欧几里得空间•仍用来表示这个欧几里得空间 .,对同一个线性空间可以引入不同的内积 ,使得它作成欧几里得空间•例 3 在闭区间[a,b] 上的所有实连续函数所成的空间C(a,b) 中 ,对于函数f(x),g(x) 定义内积b(f (x),g(x)) a f (x)g(x)dx • (2)对于内积(2),C(a,b)构成一个欧几里得空间•同样地,线性空间R[x], R[x]n 对于内积 (2) 也构成欧几里得空间•例 4 令 H 是一切平方和收敛的实数列2(x1,x2 , ,x n ), x nn1所成的集合,则H是一个欧几里得空间,通常称为希尔伯特(Hilbert)空间•二、欧几里得空间的基本性质1 )定义中条件 1 )表明内积是对称的•2) ( ,k ) (k , ) k( , ) k(,).定义2非负实数,(,)称为向量的长度,记为显然,向量的长度一般是正数,只有零向量的长度才是零,这样定义的长度符合熟知的性质:这里k R, V .长度为1的向量叫做单位向量.如果,0由⑶式,向量就是一个单位向量.用向量的长度去除向量,得到一个与成比例的单位向量,通常称为把单位化.柯西-布涅柯夫斯基不等式:即对于任意的向量,有(,)I II I当且仅当,线性相关时,等式才成立对于例1的空间R n,(5)式就是对于例2的空间C(a,b),(5)式就是定义3非零向量,的夹角,规定为arccos(根据柯西-布涅柯夫斯基不等式,有三角形不等式定义4如果向量,的内积为零,即bn.f (x)g(x)dx 2(x)dx g2(x)dx那么,称为正交或互相垂直,记为两个非零向量正交的充要条件是它们的夹角为- 只有零向量才与自己正交.(,)XAY ,勾股定理:当,正交时,推广:如果向量两222 1 2m12m设V 是一个n 维欧几里得空间,在 2,n,对于V 中任意两个向量 X 1 1X 2 2X n n , y 1 1 y 2由内积的性质得X 1 1n n(i 1 j 1X 2 jEja ij(i ,j)X n n , y 11 y22(i, j 1,2, ,n)y n(8)显然a ij a ji.于是na j X i y jj 1(9)利用矩阵,)还可以写成(10)1,2 12 V 中取一组基m两两正交,那么其中x1 y1y2x2X 2 , Yx n y n分别是, 的坐标,而矩阵A (a ij ) nn称为基1, 2, , n 的度量矩阵 .上面的讨论表明,在知道了一组基的度量矩阵之后,任意两个向量的内积就可以通过坐标按( 9)或( 10 )来计算,因而度量矩阵完全确定了内积 .设1, 2, , n是空间V的另外一组基,而由1, 2, , n到1, 2, , n的过渡矩阵为 C ,即( 1, 2, , n) ( 1, 2, , n)C于是不难算出,基1, 2, , n的度量矩阵B b ij i , jC AC . (11) 这就是说,不同基的度量矩阵是合同的 .根据条件 (4),对于非零向量,即X有( , ) X AX 0因此,度量矩阵是正定的 .反之,给定一个n级正定矩阵A及n维实线性空间V的一组基1, 2, , n可以规定V上内积,使它成为欧几里得空间,并且基的1, 2, , n度量矩阵是A. 欧几里得空间的子空间在所定义的内积之下显然也是一个欧几里得空间 . 欧几里得空间以下简称为欧氏空间 .§2 正交基理解正交基、标准正交基、正交矩阵的概念,掌握施密特正交.化方教学目的:法,会求欧几里得空间的标准正交基教学重施密特正交化方法 .点:教学难求标准正交基 .点:教学内容:、标准正交基定义 5 欧氏空间 V 的一组非零的向量 ,如果它们两两正交,就称为一个正交向量组 .按定义,由单个非零向量所成的向量组也是正交向量组正交向量组是线性无关的.这个结果说明,在n 维欧氏空间中,两两正交的非 零向量不能超过 n 个.定义 6 在 n 维欧氏空间中, 由 n 个向量组成的正交向量组称为正交基; 由单 位向量组成的正交基称为 标准正交基组 .对一组正交基进行单位化就得到一组标准正交基 设 1, 2, , n 是一组标准正交基,由定义,有显然, (1)式完全刻画了标准正交基的性质 .换句话说,一组基为标准正交基 的充要条件是:它的度量矩阵为单位矩阵 .因为度量矩阵是正定矩阵的,根据第 五章关于正定二次型的结果, 正定矩阵合同于单位矩阵 .这说明在 n 维欧氏空间中 存在一组基, 它的度量矩阵是单位矩阵 .由此断言, 在 n 维欧氏空间中, 标准正交 基是存在的 .在标准正交基下,向量的坐标可以通过内积简单地表示出来,即( 1, ) 1 ( 2, ) 2( n , ) n .(2)在标准正交基下,内积有特别简单的表达式 .设这个表达式正是几何中向量的内积在直角坐标系中坐标表达式的推广 应该指出,内积的表达式 (3),对于任一组标准正交基都是一样的 .这说明了,所 有的标准正交基,在欧氏空间中有相同的地位 .二、规范正交基的存在性及其正交化方法( i , j )1,当 i j; 0,当 i j.(1)x 1 1 y 11那么( , ) x 1y 1 x 2 y 2x 2 2 x n n .y 2 2 y n n .x n y n X Y. (3)定理 1 n 维欧氏空间中任一个正交向量组都能扩充成一组标准正交基 . 应该注意,定理的证明实际上也就给出了一个具体的扩充正交向量组的方法如果从任一个非零向量出发,按证明中的步骤逐个地扩充,最后就得到一组正交基 .再单位化,就得到一组标准正交基 .定理2对于n维欧氏空间中任意一组基1, 2, , n,都可以找到一组标准正交基1, 2, , n ,使L( 1 , 2, , i ) L( 1, 2, , i ) ,i1,2, ,n.应该指出,定理中的要求L( 1 , 2 , , i ) L( 1, 2, , i ) ,i1,2, ,n.就相当于由基1, 2, , n 到基1, 2, , n 的过渡矩阵是上三角形的定理 2 中把一组线性无关的向量变成一单位正交向量组的方法在一些书和文献中称为施密特( Schimidt )正交化过程 .例 1 1 (1,1,0,0), 2 (1,0,1,0), 3 ( 1,0,0,1), 4 (1, 1, 1,1) 变成单位正交组 .三、正交矩阵上面讨论了标准正交基的求法 .由于标准正交基在欧氏空间中占有特殊的地位,所以有必要来讨论从一组标准正交基到另一组标准正交基的基变换公式 .设1, 2, , n 与1, 2, , n 是欧氏空间 V 中的两组标准正交基,它们之间的过渡矩阵是 A (a ij ) ,即A 1A定义7 n 组实数矩阵A 称为正交矩阵,如果A A E由标准正交基到标准正交基的过渡矩阵是正交矩阵; 反过来, 是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基最后指出,根据逆矩阵的性质,由AA E即得AA E写出来就是1, 当 i j ; ai1aj1 ai2aj2 ain ajn0,当 i j.(5)式是矩阵列与列之间的关系, (7)式是矩阵行与行之间的关系 .这两组关系是等因为 )(12是标准正交基,所以)1,当i j ; j )0,当 i j.矩阵 A 的各列就是 2n在标准正交基式可以表示为a 1i a 1ja 2i a 2ja ni a nj(5)式相当于一个矩阵的等式或者a 11 a 21a n1 a 12 a 22a n2 1,当i0,当 ij; j.a 1n a 2na nn(4)n下的坐标 .按公式 (3),(4)(5)(6)如果第一组基 (7)价的.例2考虑定义在闭区间[0,2 ]上一切连续函数所作成的欧氏空间 函数组1,cosx,sinx, , cosnx,sin nx,构成C [0,2 ]的一个正交组.把上面的每一向量除以它的长度,就得到C [0,2 ]的一个标准正交组例3欧氏空间R n的基(i )i(0,,0, 1 ,0, ,0),i 1,2, ,n是R n 的一个标准正交基.§3 同构教学目的:理解欧几里得空间同构的定义,注意它与一般线性空间同构的不同 . 教学重点:同构的定义 . 教学难点:同构的判定 . 教学内容:定义8实数域R 上欧氏空间V 与V 称为同构的,如果由V 到V 有一个双射 ,满足1) () () ( ), 2) (k ) k(),3)( ( ), ( )) ( , ) , 这里 ,V,k R ,这样的映射称为V 到V 的同构映射 由定义,如果 是欧氏空间V 到V 的一个同构映射,那么也是 V 到V 作为 线性C[0,2 ]. 1 1.2cos x, 1sinx,1 .—sin nx,广1空间的同构映射 .因此,同构的欧氏空间必有相同的维数 .设V是一个n维欧氏空间,在V中取一组标准正交基1, 2, , n,在这组基下, V 的每个向量都可表成x1 1 x2 2 x n n( ) (x1,x2, ,x n ) R n就是V到R n的一个双射,并且适合定义中条件 1),2).上一节(3)式说明,也适合条件 3),因而是 V 到 R n的一个同构映射,由此可知,每个n 维的欧氏空间都与R n同构.同构作为欧氏空间之间的关系具有反身性、对称性与传递性 .既然每个n维欧氏空间都与R n同构,按对称性与传递性得,任意两个n维欧氏空间都同构 .定理 3 两个有限维欧氏空间同构它们的维数相等 . 这个定理说明,从抽象的观点看,欧氏空间的结构完全被它们的维数决定 .§4 正交变换教学目的:掌握正交变换的定义与性质及其分类,了解正交变换与正交矩阵之间的关系.教学重点:正交变换的定义与性质 .教学难点:正交变换的应用 .教学内容:定义 9 欧氏空间 V 的线性变换 A 叫做一个正交变换 ,如果它保持向量的内积不变,即对任意的,都有, V ,都有 .(A ,A )= ( , ).正交变换可以从几个不同方面公平加以刻画 .定理 4 设 A 是维欧氏空间的一个线性变换,于是下面四个命题是相互等价的:1) A是正交变换;2) A保持向量的长度不变,即对于V ,|A |=| |;3 )如果!, 2, , n是标准正交基,那么A 1 , A 2,…,A n也是标准正交基;4) A在任一组标准正交基下的矩阵是正交矩阵.因为正交矩阵是可逆的,所以正交变换是可逆的•由定义看出,正交变换实际上就是一个欧氏空间到自身的同构映射,因而正交变换的乘积与正变换的逆变换还是正交变换.在标准正交基下,正交变换与正交矩阵对应,因此,正交变换的乘积与正交矩阵的逆矩阵也是正交矩阵•如果A是正交矩阵,那么由AA E可知2A 1或者A 1.因此,正交变换的行列式等于+1或-1.行列式等于+1的正交矩阵通常称为旋转,或者称为第一类的;行列式等于-1的正交变换称为第二类的•例如,在欧氏空间中任取一组标准正交基1, 2, , n,定义线性变换A为:A 1 1 , A i i ,I 2,3, ,n.那么,A就是一个第二类的正交变换.从几何上看,这是一个镜面反射.例1令H是空间V3里过原点的一个平面,V3,令对于H的镜面反射与它对应.: 是V3的一个正交变换.例 2 设L(R3),令()(X2,X3,X1), (X1,X2,X3)V3.则是 R3的一个正交变换.例3将V2的每一向量旋转一个角的正交变换关于V2的任意标准正交基的矩阵是cos sinsin cos又令是例 1 中的正交变换 .在平面 H 内取两个正交的单位向量1, 2,再取一个垂直于 H 的单位向量 3 ,那么 1 ,2, 3是V的一个规范止父基,关于这个基的矩阵是1 000 100 01以上两个矩阵都是正交矩阵§5 子空间教学目的:理解子空间正交的定义与性质,掌握正交补的定义与求法教学重点:子空间正交的定义与性质,正交补的定义 . 教学难点:正交补的性质与求法 .教学内容:定义 10 设V1,V2 是欧氏空间 V 中两个子空间 .如果对于任意的V1, V2 ,恒有( , ) 0则称V i,V2为正交的,记为V V2.一个向量,如果对于任意的V,恒有( , ) 0则称与子空间V1正交,记为V1.因为只有零向量与它自身正交,所以由V1 V2可知V1 V2 0;由V1, V1可知0.定理5如果子空间V i,V2, ,V s两两正交,那么和V V2 V s是直和•定义 11 子空间V2 称为子空间V1 的一个正交补,如果V1 V2 ,并且V1 V2 V .显然,如果V是V的正交补,那么V也是V的正交补.定理6 n维欧氏空间V的每一个子空间V i都有唯一的正交补.V1 的正交补记为V1 ,由定义可知维(V1)+ 维(V)= n推论V1 恰由所有与V1 正交的向量组成 .由分解式V V1 V1可知, V 中任一向量都可以唯一分解成12其中 1 V1, 2 V2 .称 1 为向量在子空间V1 上的内射影 .§6 实对称矩阵的标准形掌握实对称矩阵的特点与性质,会把一个对称矩阵对角化;掌握对称变教学目的:换的定义及性质,了解对称变换与对称矩阵之间的对应关系 .教学重点:对称变换,对称矩阵的性质,实对称矩阵对角化方法 . 教学难点:实对称矩阵对角化方法 . 教学内容:由第五章得到, 任意一个对称矩阵都合同于一个对角矩阵,换句话说,都有 一个可逆矩阵C 使CAC 成对角形•现在利用欧氏空间的理论,第五章中关于实对 称矩阵的结果可以加强 .这一节的主要结果是:对于任意一个n 级实对称矩阵A ,都存在一个n 级正交矩阵T ,使T AT T 1AT成对角形 .引理1设A 是实对称矩阵,则A 的特征值皆为实数.对应于实对称矩阵 A ,在n 维欧氏空间R n 上定义一个线性变换A 如下:x 1 x 1x 2 x 2(1)A 2 A 2 .x nx n显然 A 在标准正交基1 0 011,2,,n(2)0 1下的矩阵就是 A.引理2设A 是实对称矩阵,A 的定义如上,则对任意 , R n,有(A , )=( ,A),(3)或(A ) A定义 12 欧氏空间中满足等式 (3) 的线性变换称为对称变换 . 容易看出,对称变换在标准正交基下的矩阵是实对称矩阵 .用对称变换来反映实对称矩阵,一些性质可以看得更清楚 .引理3设A 是对称变换,V 是A-子空间,则V i 也是A-子空间.引理4设A 是实对称矩阵,则R n中属于A 的不同特征值的特征向量必正交T AT T 1AT 对角形 .基.事实上,设T 是一个正交矩阵,而就是对角形 .定理 7 对于任意一个 n 级实对称矩阵 A ,都存在一个 n 级正交矩阵 T ,使成面来看看在给定了一个实对称矩阵 A 之后,按什么办法求正交矩阵 T 使T AT 成对角形 .在定理的证明中看到,矩阵 A 按(1)式在R n 中定义了一个线性变 换.求正交矩阵 T 的问题就相当于在 R n 中求一组由A 的特征向量构成的标准正交t 11 t 211t 12 t 22t 1n t 2nt n1t n2t nn是 R n 的一组标准正交基,它们都是A 的特征向量 . 显然,由 1, 2 ,, n 到12n的过渡矩阵就是t 11 t 21t 12t 22t 1n t 2nt n1 t n2 t nn1 T 1ATTAT根据上面的讨论,正交矩阵T的求法可以按以下步骤进行:1. 求出A的特征值.设1, , r是A的全部不同的特征值•2. 对于每个i,解齐次方程组X iX2(i E A) 0X n求出一个基础解系,这就是 A的特征子空间V i的一组基.由这组基出发,按定理 2的方法求出V i的一组标准正交基ii , , ik i.3. 因为1, , r两两不同,所以根据这一节引理4 ,向量组rk r还是两两正交的•又根据定理7以及第七章§5的讨论,它们的个数就等于空间的维数.因此,它们就构成R n的一组标准正交基,并且也都是A的特征向量.这样,正交矩阵T也就求出了•例已知0 1111 0 1 1A1 1 0 11110求一正交矩阵T使TAT成对角形•应该指出,在定理7中,对于正交矩阵T我们还可以进一步要求事实上,如果求得的正交矩阵T的行列式为-1,那么取11S 1那么T i TS 是正交矩阵,而且T i | T|S 1 显然 T 1AT 1 TAT .如果线性替换X 1 C11 y 1C12y2C1n yn,X 2 C 21 y 1 022 y2C2n yn,X nCn1 y1C n2y 2Cnn yn的矩阵C C j 是正交的,那么它就称为正交的线性替换.正交的线性替换当然是 非退化的.用二次型的语言,定理7可以叙述为: 定理8任意一个实二次型n na x x aII i j iji 1 j 1都可以经过正交的线性替换变成平方和其中平方项的系数1, 2, , n 就是矩阵A 的特征多项式全部的根最后指出,这一节的结果可以应用到几何上化简直角坐标系下二次曲线的方 程,以及讨论二次曲线的分类在直角坐标系下,二次曲线的一般方程是a11 a12a13 x b 1 Aa12 a22 a23 , Xy ,B b 2a 13a23a33zb 3则(5)可以写成XAX 2BX d 0a ji2 2 1 y12 y22 n y n,2 2 2 aux a 22x a 33X2@2xy 2a 13xz 2a 23 yz 2dx2b 2y 2b 3z d经过转轴,坐标变换公式为X c11 C12 C13 X iy C21 C22C23 y i ,或者X CX iz C31 C32 C33 Z i其中C为正交变换且C 1,在新坐标系中,曲面的方程就是X i(CAC)X i 2(B C)X i d 0根据上面的结果,有行列式为1的正交矩阵C使1 0 0CAC 0 200 0 3这就是说,可以作一个转轴,使曲面在新坐标系中的方程为2 2 2 * * *i X i 2力3丫1 20 X i 2b2 y i 2b3Z i d 0其中(b;,b;,b3) (b i,b2,b3)C这时,再按照1, 2, 3是否为零的情况,作适当的移轴与转轴就可以把曲面的方程化成标准方程.譬如说,当i, 2, 3全不为零时,就作移轴*biX1x271y i y2* b22Z i Z2 b! 3于是曲面的方程化为2 1 X222 y22 .*3Z2 d 0其中* 2 * 2 * 2* d b2 b3d d1 2 3§向量到子空间的最小距离•最小一乘法理解向量间的距离与向量到子空间的最小距离的概念,了解它在实际教学目的:中的应用一最小一乘法.教学重点:向量间的距离与向量到子空间的最小距离的概念教学难点:实际应用教学内容:在解析几何中,两个点和间的距离等于向量的长度.定义13长度称为向量和的距离,记为d (,)不难证明距离的三条性质:1) d( , ) d(,);2) d ( , ) 0,并且仅当时等号才成立;3) d( , ) d( , ) d(,)(三角不等式)在中学所学几何中知道一个点到一个平面(一条直线)上所有点的距离以垂线最短.下面可以证明一个固定向量和一个子空间中各向量间的距离也是以“垂线最短”.先设一个子空间W,它是由向量1, 2, , k所生成,即W L(1, 2, , k).说一个向量垂直于子空间W,就是指向量垂直W于中任何一个向量.易证垂直于W 的充要条件是垂直于每个i (i 1,2, ,k).现给定,设是W中的向量,满足垂直于W.要证明到W中各向量的距离以垂线最短,就是要证明,对于 W中任一向量,有我们可以画出下面的示意图:证明()()因W是子空间,W, W,则W.故垂直于.由勾股定理,2 2 2故这就证明了,向量到子空间各向量间的距离以垂线最短 .这个几何事实可以用来解决一些实际问题 .其中的一个应用就是解决最小二乘法问题.例已知某种材料在生产过程中的废品率 y与某种化学成分x有关.下列表中记载了某工厂生产中y与相应的x的几次数值:我们想找出y 对x 的一个近似公式. 最小二乘法问题:线性方程组an X i 812X 2 Q S Xsb i 0,a 21 X i 822X 2 a2s Xsb 2 0,8ni X i 8n2 X 2an s xsb n可能无解 .即任何一组数X i ,X 2, ,X S 都可能使n(aii X iai2X 2i iais Xsb i )2(i)不等于零 .我们设法找X i 0,X 0, ,X S 使(i )最小, 这样的x ;,x 0, ,x ;称为方程组的最小二乘解.这种问题就叫最小二乘法问题.下面利用欧氏空间的概念来表达最小二乘法, 数条件.令,x S 使丫与B 的距离最短.但从(2),知道向量丫就是aiiai2aisa2ia22a ?s2s,Ba nian2anssa ij X jX ij isX 2 ,丫j ia2j XjX ssa nj X jj iY B 2AX用距离的概念,(1 )就是b ib 2b n⑵AX.并给出最小二乘解所满足的代最小二乘法就是找X :, x 2,述成:应用前面所讲的结论,设是所求的向量,则B Y B AX回忆矩阵乘法规则,上述一串等式可以写成矩阵相乘的式子,即AAX AB这就是最小二乘解所满足的代数方程,它是一个线性方程组,系数矩阵是 AA , 常数项是 A B .这种线性方程组总是有解的 .回到前面的例子,易知a 11 Y x 1a21x 2a 12 a 22a 1s a 2s x sa n1 a n2 a ns把 A 的 各 列 向 量 分 别 记 成.由它们生成的子空间为L(1, 2, , s ) .Y 就是 L ( s )中的向量 .于是最小二乘法问题可叙找 X 使( 1 )最小,就是在 12s) 中找一向量 Y ,使得 B 到它的距离比到子空间 L (12s) 中其它向量的距离都短 .AXx 1 1 x 2 2x s s必须垂直于子空间 L (s) .为此只须而且必须(C, 1) (C, 2 )(C, s ) 01C 0, 2 C 0, s C 0.s按行正好排成矩阵 A ,上述一串等式合起来就是A(BAX) 03.6 1 1.003.7 1 0.903.8 1 0.90A 3.9 1 ,B 0.814.0 1 0.604.1 1 0.564.2 1 0.35最小二乘解a,b 所满足的方程就是aAA A B 0,b即为106.75a 27.3b 19.675 0,27.3a 7b 5.12 0.解得a 1.05,b 4.81(取三位有效数字)§8 酉空间介绍教学目的:了解酉空间的定义与性质及与欧几里得空间相类似的概念与结论教学重点:酉空间的定义与性质 . 教学难点:对与欧几里得空间相类似的概念与结论的理解 . 教学内容:定义14设V 是复数域上一个线性空间,在V 上定义了一个二元复函数,称 为内积,记作(,),它具有以下性质:1) (,) m ,u~r )是(,)的共轭复数; 2) (k , ) k(,); 3) (,)(,)(,);4) (,)是非负实数且(,)0当且仅当 0这里,,是V 中任意的向量,k 是任意复数,这样的线性空间称为酉空间.例1在线性空间c n ,对向量ai ,a 2, ,an !定义内积为(,)3^ a2^显然内积(1 )满足定义14中的条件•这样C n就成为一个酉空间•由于酉空间的讨论与欧氏空间的讨论很相似, 有一套平行的理论,因此在这 只简单地列出重要的结论,而不详细论证.1) ( ,k ) k(,). 2)(, )(,)(,).3) .,(,)叫做向量的长度,记为||.4) 柯西-布涅柯夫斯基不等式仍然成立,即对于任意的向量,有I , I I II I ,db, ,b n3n b n , (1)当且仅当,线性相关时等号成立•注意:酉空间中的内积(,)一般是复数,故向量之间不易定义夹角但仍引5) 向量,,当(,)0时称为正交的或互相垂直.在n 维酉空间中,同样可以定义正交基和标准正交基,并且关于标准正交基 也有下述一些重要性质:6) 任意一组线性无关的向量可以用施密特过程正交化,并扩充为一组标准 正交基.7) 对门级复矩阵A ,用A 表示以A 的元素的共轭复数作元素的矩阵.如A 满足A A AA E ,就叫做酉矩阵.它的行列式的绝对值等于1.两组标准正交基的过渡矩阵是酉矩阵.8) 酉空间V 的线性变换A ,满足(A ,A )=(,),就称为V 的一个酉变换.酉变换在标准正交基下的矩阵是酉矩阵.9)如矩阵A 满足X n(A , )=( ,A ).A 也是对称变换.10)V 是酉空间,V i 是子空间,V i 是V i 的正交补,则V V i V i又设V i 是对称变换的不变子空间,则 V i 也是不变子空间.ii )埃尔米特矩阵的特征值为实数.它的属于不同的特征值的特征向量必正则叫做埃尔米特(Hermite ) 矩阵.在酉空间 C n 中令X i A X 2 X iA X 212 )若A 是埃尔米特矩阵,则有酉矩阵 C,使1 —C 1AC C AC 是对角形知阵.13)设A 为埃尔米特矩阵,二次齐次函数叫做埃尔米特二次型.必有酉矩阵C ,当时X CYf (X 1,X 2, ,X n )小“孑 d 2y 2?2d n y n%. 第九章欧几里得空间(小结)一、 欧氏空间1. 内积、欧氏空间的概念及其简单性质• f(X i ,X 2, ,X n ) n na j X i X j i 1 j 1XAX2. 柯西一布涅可夫斯基不等式:(,)2 (,)(,).3. 向量的长度:| | 7(,).4. 两个非零向量与的夹角:arccos( , ). (0 ).I II I若(,)0,则与正交.二、标准正交基1. 标准正交基的概念.2. 标准正交基的求法一施密特正交化方法.3. 由标准正交基到标准正交基的过渡矩阵是正交矩阵.反过来,假如两个基之间的过渡矩阵是正交矩阵,而且其中一个基是标准正交基,那么另一个基也是标准正交基.三、正交补内射影1. 向量与集合正交的概念.2. 欧氏空间的子空间y的正交补的概念.3. 设V是V的子空间,则V V i V i ,且V可以唯一写成 1 2,其中,则称1是在V上的内射影.1 V1,2 V1四、欧氏空间的线性变换1. 正交变换(1) V的线性变换是正交变换①保持向量的长度不变②保持向量的内积不变 .③把规范正交基仍变为规范正交基 .④关于规范正交基的矩阵是正交矩阵 .(2) 正交矩阵的性质①正交矩阵为可逆矩阵 , 其逆仍为正交矩阵 .②正交矩阵的行列式为 1 或 -1.③正交矩阵的伴随矩阵是正交矩阵 .2. 对称变换(1) 假如欧氏空间 V 的线性变换满足 :( ( ), ) ( , ( )), , V那么叫做对称变换 .(2) n维欧氏空间V的线性变换是对称变换在V的标准正交基下的矩阵是对称矩阵 .(3) 设是欧氏空间V的对称变换若W是的不变子空间,则W 也是的不变子空间 .(4) 实对称矩阵的特征值都是实数 ,相应地有对称变换的特征值都是实数 .(5) 设A是实对称矩阵,则属于A的不同特征值的特征向量是正交的.(6) 任一个n阶实对称矩阵 A都可以正交对角化,即存在正交矩阵 U,使得U AU U 1AU 是对角形式 ,相应地有对于欧氏空间 V 的任一个对称变换,存在 V 的标准正交基 , 在这个标准正交基下的矩阵是对角形式 . 六、欧氏空间的同构1. 欧氏空间同构的概念2. 两个有限维欧氏空间同构它们的维数相同 .3. 每个n维欧氏空间都与R n同构.本章的重点是欧氏空间的基本概念、标准正交基、正交变换和正交矩阵、对称变换与对称矩阵 .难点是正交变换、正交补、对称变换 .。
高等代数欧氏空间的定义与基本性质

. .. . . ..
欧几里得空间的概念
注 在欧几里得空间的定义中, 对它作为线性空间的维数并无要 求,可以是有限维的,也可以是无限维的. 由内积的对称性可知,内积也满足 右齐次性 (α, kβ) = k(α, β);
因而我们也称内积满足齐次性、可加性,这两条性质合在一 起称为内积的双线性性. 即内积是实线性空间中的一个正定 对称双线性函数.
. .. . . ..
欧氏空间的度量
由欧氏空间定义中内积的正定性,有 √
(α,
α)
≥
0.
所以对于任意
的向量 α, (α, α) 是有意义的. 在几何空间中,向量的长度为
√ (α, α).
类似地,我们在一般的欧氏空间中引进:
定义 √
非负实数 (α, α) 称为向量 α 的长度,(或称范数,或称模)记 为 |α|.
. .. . . ..
欧几里得空间的概念
注 在欧几里得空间的定义中, 对它作为线性空间的维数并无要 求,可以是有限维的,也可以是无限维的. 由内积的对称性可知,内积也满足
因而我们也称内积满足齐次性、可加性,这两条性质合在一 起称为内积的双线性性. 即内积是实线性空间中的一个正定 对称双线性函数.
. . . .... .... .... . . . . .... .... .... . .
显然,向量的长度一般是正数,只有零向量的长度才是零,这样 定义的长度符合熟知的性质:
|kα| = |k||α|,
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
欧氏空间的度量
这里,k ∈ αR, α ∈ V. 事实上,
√
高代第9章讲义

(α,α) 第九章Euclid(欧几里得)空间知识点考点精要一、欧几里得空间的基本概念1、设V 是实数域 R 上的线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β) ,它具有以下性质:(1) (α,β) = (β,α) ; (2) (k α,β) = k (α,β) ; (3) (α+ β,γ) = (α,γ) + (β,γ) ;(4) (α,α) ≥ 0, 当且仅当α= 0 时, (α,α) = 0 。
这里α,β,γ是V 中任意向量, k 是任意实数,这样的线性空间V 称为欧几里得空间。
2、向量的长度 α= 。
3、柯西 - 布涅柯夫斯基不等式对于欧氏空间V 中的任意向量α,β,有 (α,β) ≤ αβ。
当且仅当α,β线性相关时,等号成立。
4、非零向量α, β的夹角< α,β> 规定为 < α,β>= arccos (α,β),0 ≤< α,β>≤ π。
αβ5、如果(α,β) = 0, 称α与β正交,记为α⊥ β。
6、度量矩阵 设V 是 n 维欧氏空间,ε1 ,ε2 , ,εn 是⎨ V 的一组基,令 a ij= (εi ,εj )(i ,j = 1,2,.., n ) 矩阵 A= (a ij )n ⨯n 称为基ε1 ,ε2 , ,εn 的度量矩阵,⎛ (ε1 ,ε1 ) (ε1 ,ε2 ) (ε ,ε)(ε ,ε ) (ε1 ,εn ) ⎫ (ε ,ε ) ⎪A = 2 1222n⎪ ⎪ (ε ,ε) (ε ,ε )(ε ,ε ) ⎪⎝ n 1n2 n n ⎭1) 度量矩阵为正定矩阵; 2) 不同基的度量矩阵是合同的。
7、标准正交基1) ε1 ,ε2 , ,εn 是欧氏空间 V 的一组基,如果(ε,ε ) = ⎧1 (i = j )ij ⎩0 (i ≠ j ) ,那么称ε1 ,ε2 , ,εn 是V的一组标准正交基。
2) 标准正交基的度量阵是单位阵。
euclid第v公设的等价命题

欧几里德公设是几何学中的重要概念,其中第V公设是公设体系中的第五条公设,它涉及平行线的性质和性质之间的等价关系。
在本文中,我们将探讨欧几里德第V公设的等价命题,分析其在几何学中的重要性和应用。
一、欧几里德第V公设的表述欧几里德几何公设体系中的第V公设是指:如果一条直线与两条平行线相交,那么这两条平行线之间的对应角相等。
如果有一条直线与两条平行线相交,那么它们所形成的对应角是相等的。
二、欧几里德第V公设的等价命题1. 等角定理欧几里德第V公设的等价命题之一是等角定理。
等角定理指出,如果两条直线被一条直线所截,使得同侧内角相加等于180度,那么这两条直线是平行的。
这个定理可以用来证明平行线的存在性和性质。
2. 垂直补角定理另一个与欧几里德第V公设等价的命题是垂直补角定理。
垂直补角定理指出,如果两条直线相交,使得相邻的两对内角相互补,那么这两条直线是垂直的。
这个定理也可以被用来证明平行线的性质和存在性。
3. 同位角定理同位角定理是欧几里德第V公设的等价命题之一,它指出如果一条直线与两条平行直线相交,那么同位角相等。
这个定理在证明平行线的性质和存在性时起着重要作用。
三、欧几里德第V公设在几何学中的重要性欧几里德第V公设在几何学中具有重要的意义和应用价值。
它为平行线的性质和存在性提供了重要的基础。
通过等价命题,我们可以推导出一系列关于平行线的性质和定理,进而应用到各种几何问题的证明和解决中。
欧几里德第V公设也为角的性质和测量提供了重要依据。
通过等价命题的推论,我们可以得到关于角的性质和测量的定理,从而扩展了我们对角的认识和理解。
欧几里德第V公设还为其他几何概念的研究和应用提供了重要的启示和指导。
它在平行线、角的性质、图形的性质等方面具有广泛的应用。
四、欧几里德第V公设的证明和推论欧几里德第V公设的证明和推论是几何学中的重要内容。
通过严密的逻辑推理和几何运算,我们可以证明欧几里德第V公设的正确性,进而得到一系列重要的推论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!
收稿日期: "&&)
万方数据 , 男, 陕西合阳县人, 延安大学副教授# 作者简介: 刘兴祥 ( !/%+ )
&.
&.
(% ( ! !, ; ")
延安大学学报 ( 自然科学版)
第 (% 卷
则有定义 ( 成立) 定义 ’ : 定义 ) , 显然成立) 定义 ) : 定义 ’ 只需证明下式成立即可: -* , , , -%、 ! , ’, 有( ! *%, ( %, !) & *! !)也即需逐次证明以下式子成 立) (’) 对于任意正整数 *, 有( ! *%, ( %, ; !) & *! !) ( ( )对于整数 & , 有( ! & %, ! %, !) & &( !) & & ; ( ! )对于整数 - ’ , 有( ! ( - ’) ! %, %, !) & - ( ; !) (%) 对于任意负整数 *, 有( ! *%, ( %, ; !) & *! !) 由 (’) 、 (() 、 (!) 、 ( % )综合即知 有( ! *%, ( %, ; -* , . , -%、 ! , ’, !) & *! !) ()) 有 -/ , . 且 / + & , -%、 ! , ’, ( ! %, !(/ 0 !) & ( 即: ( ! ’ ’ ) ( %, %, !) & /! !) / / & ", "! ( #, $) & "#$( ! # $ #, $) &
!"
欧氏空间的几个等价定义
定义 !" 设 # 是实数域 $ 上的一个向量空间, 如
果对于 # 中任意一对向量 !、 有一个唯一确定的记 ", 作为 〈 !, 并且确定的实数 〈 !, "〉的实数与它们对应, "〉如果满足下列条件: (!) 有 〈 !, ; -!、 " , #, "〉 %〈 ", !〉 (") 有 〈 ! & ", -!、 "、 # , #, #〉 %〈 !, #〉&〈 ", ; #〉 (.) 有 〈 ’!、 ’ !, ; -’ , $ , -!、 " , #, "〉 % 〈 "〉 (+) 〈 !, -! , # 且 ! + & 时有 !〉 ( & ; 则称 〈 !, 为向量 ! 与 " 的内积" 定义了这种内积的 "〉 实数域上的向量空间称为欧氏空间" 定义 #" 设 # 是实数域 $ 上的一个向量空间, ) 是 # * # 到 $ 上的一个映射, 即 ): # *#%$
[ ( ]北京大学数学系几何与代数教研室代数小组+ 高等代数 [ ,] + 北京: 高等教育出版社, ’--/+ [ ! ]曹锡皓, 等+ 高等代数 [ ,] + 北京师范大学出版社, ’-/.+
〔 责任编辑0 贺小林〕
万方数据
!"
欧氏空间等价定义的证明
定义 ’ 9 定义 ( 证明: 定义 ’ 与定义 ( 只是形式叙述的不同) 定义 ( 9 定义 ! 证明: 如若定义 ( 成立, 则有定义 ! 中的下式也
成立: ( ! *% + !, ! *%, ! !, ( %, %) & ( ")+ ( ") & *! ")+ ! !, ( ; ") 则定义 ! 成立) 定义 ! : 定义 % 证明: 如若定义 ! 成立, 则由 ( ’ )当 % & ! & & 时, 有( ! &, ") & & ; (() 当 ! & & 时, 有( ! *% + & , -%、 " , ’, ") & *! ( %, ! &, ( %, ( %, ; ")+ ( ") & *! ")+ & & *! ") (!) * & ’ 时, 则有 -%、 有( ! % + !, !、 " , ’, ") &( ! %, ! !, ; 则有定义 ( 成立) ")+ ( ") 定义 ( : 定义 % 证明: 如若定义 ( 成立, 则 -& 、 ’ , ,, -%、 !、 " ’ , 有 , ( ! &% + ’!, ! &%, ! ’!, ! %, " )& ( ")+ ( ")& &( ") + ’( ! !, ) 则有定义 % 成立) ") 定义 % : 定义 ( 取 & & ’ & ’, 有( ! % + !, ! %, ! !, ") & ( ")+ ( ; 当 & 取任意实数, 有( ! &% + & !, ") ’ & &, ") & ! &%, ( ! & !, ! %, ! !, ! %, ")+ ( ") & &( ")+ &( ") & &( , 也即: ( ! &%, ! %, ; ") -& , , , -%、 " , ’, ") & &( ") 参考文献:
$% % $% % $% %
"#$( ! # $ %, !) & "#$ # $( ! %, !) &
*! ( %, !) 即 -* , , , 有( ! *%, ( %, -%, ! , ’, !) & *! !) 也即定义 ’ 成立) 当然我们也可设想: 若把定义 ’ 中的条件 (!) 删去, 还能定义欧氏空间吗? 如若能, 如何证明; 如若 不能, 能举出反例吗?
[ ’ ]张禾瑞, 等+ 高等代数 [ ,] + 北京: 高等教育出版社, ’--.+
$% %
’ ’ ! %, ; %, !) & ( !) / / $ $ ቤተ መጻሕፍቲ ባይዱ , 有( ! ! %, %, !) & ( !) / / /
也即对于任意有理数
即: 有( ! *%, ( %, -* , 1, -%、 ! , ’, !) & *! !) 存 在 有 理 数 列{# $ } , 使得 (*) -, , , - 1, "#$ # $ & , , 有 -* , , - 1, -%、 ! , ’, ( ! *%, ) & ( ! "#$ # , ) & ! $% !
欧几里得空间的几个等价定义
刘兴祥! ,徐秋霞"
!
( !# 延安大学 数学与计算机科学学院, 陕西 延安 $!%&&& ; "# 陕西铜川师范学校, 陕西 铜川 $"$&&$ )
摘’ 要: 给出了欧几里得空间的几个等价定义, 证明了它们之间相互等价性# 旨在于激发教师和学 生在教授学习新知识的同时, 注意新旧知识之间的衔接以及各学科的相关性# 关键词: 内积; 向量空间; 欧几里得空间 中图分类号: (!)!’ ’ ’ 文献标识码: *’ ’ ’ 文章编号: !&&+,%&"( "&&) ) &",&&".,&" ! ! 在向量空间的定义中, 向量之间的基本运算只 ): ( $, ) $, %)% ( %) 映射 ) 如果满足以下条件: (!) 有〈 ) !, ) ", ; -!、 " , #, "〉 % 〈 !〉 (") 有( ) ! & ", ) !, -!、 "、 # , #, #) % ( #) & ( ) ", ; #) (.) 有( ) ’!、 ( !, -’ , $ , -!、 " , #, ") % ’) ; ") (+) 有( ) !, -! , # 且 ! + & , !) ( & ; 则称( ) $, 为向量 $ 与 % 的内积, 记为 〈 $, " 定义 %) %〉 了这种内积的实数域上的向量空间称为欧氏空间" 定义 $" 设 # 是实数域 $ 上的一个向量空间, ) 是 # * # 到 $ 上的一个映射, 即 ): # *#%$ ): ( $, ) $, %)% ( %) 映射 ) 如果满足以下条件: (!) 有( ) !, ) ", ; -!、 " , #, ") % ( !) (") 有( ) ’! & ", -’ , $ , -!、 "、 # , #, #) % ’) ( !, ) ", ; #)& ( #) (.) ) !、 -! , # 且 ! + & 有 ( !) ( & ; 则称 ( ) $, 〈 $, " %)为向量 $ 与 % 的内积记为 %〉 定义了这种内积的实数域上的向量空间称为欧氏空 间" 定义 %" 设 # 是实数域 $ 上的一个向量空间, ) 是 # * # 到 $ 上的一个映射, 即 ): # *#%$ ): ( $, ) $, %)% ( %) 映射 ) 如果满足以下条件: (!) ( ) !, ) ", ; -!、 " , #, ") % ( !) (") 有( ) ! & ", ) !, -!、 "、 # , #, #) % ( #) &