ncm三元材料结构及衰减机制
高镍三元锂离子电池高温存储性能衰退机理

高镍三元锂离子电池高温存储性能衰退机理王嗣慧;徐中领;杜锐;孟焕平;刘永;柳娜;梁成都【摘要】随着动力电池市场对长续航里程需求的不断提升,高能量密度的高镍三元材料已逐渐成为动力电池正极材料的开发热点之一.动力电池使用寿命一般要求10年以上,考虑到产品开发的时效性,目前一般采用加速寿命试验的方法来评估动力电池的长期使用寿命.本工作以共沉淀-高温烧结法自主合成的高镍NCM811材料为研究体系,将NCM811/石墨软包电池在60℃满充条件下进行存储实验,电池的高温存储寿命约为180天;采用XRD、SEM、ICP-AES、XPS和HRTEM等方法对存储前(BOL)和存储后(EOL)的极片进行表征,研究结果表明高镍材料电池高温存储失效主要与以下因素有关:存储后高镍三元材料表面副产物累积,材料表面岩盐相增加,导致电池阻抗增加;溶出的过渡金属元素在负极石墨上沉积,破坏负极表面的SEI,从而加速了活性锂的消耗.对材料进行有效的表面包覆或体相掺杂是改善高镍三元材料高温存储性能的关键.【期刊名称】《储能科学与技术》【年(卷),期】2017(006)004【总页数】6页(P770-775)【关键词】高镍材料;高温存储;衰退机理【作者】王嗣慧;徐中领;杜锐;孟焕平;刘永;柳娜;梁成都【作者单位】宁德时代新能源科技股份有限公司,福建宁德352106;宁德时代新能源科技股份有限公司,福建宁德352106;宁德时代新能源科技股份有限公司,福建宁德352106;宁德时代新能源科技股份有限公司,福建宁德352106;宁德时代新能源科技股份有限公司,福建宁德352106;宁德时代新能源科技股份有限公司,福建宁德352106;宁德时代新能源科技股份有限公司,福建宁德352106【正文语种】中文【中图分类】TM911自商用锂离子电池问世以来,锂离子电池产业迅速发展,目前已广泛应用于3C电子产品应用领域。
近年来由于环境污染和化石燃料资源日渐匮乏问题突出,以绿色能源取代日益枯竭的化石能源成为各国新能源开发方向。
三元锂与磷酸铁锂的衰减系数

三元锂与磷酸铁锂的衰减系数三元锂和磷酸铁锂是目前应用广泛的两种锂离子电池材料。
它们在电池性能、衰减系数等方面存在一定的差异。
本文将从人类的视角出发,以自然流畅的语言,对这两种材料的衰减系数进行描述。
我们来了解一下三元锂电池的衰减系数。
三元锂电池由锂镍钴锰酸(NCM)正极材料、石墨负极材料和电解液组成。
它具有高能量密度、长循环寿命和较好的安全性能。
然而,随着循环次数的增加,三元锂电池的容量会逐渐衰减。
这是因为电池在充放电过程中,正极材料和负极材料之间的锂离子迁移会导致一些不可逆的反应。
这些不可逆反应会引起正极材料的结构破坏和电解液中的溶解物增加,从而导致电池容量下降。
三元锂电池的衰减系数一般较小,可以达到每循环1000次容量衰减不超过20%的要求。
接下来,我们来看看磷酸铁锂电池的衰减系数。
磷酸铁锂电池由磷酸铁锂正极材料、石墨负极材料和电解液组成。
它具有较高的循环寿命、较低的成本和较好的安全性能。
与三元锂电池相比,磷酸铁锂电池的衰减系数较大。
这是因为磷酸铁锂电池的正极材料在锂离子的插入和脱出过程中,会发生一些不可逆的相变反应,导致结构的改变和容量的损失。
此外,磷酸铁锂电池的电解液中还会出现一些溶解物,进一步影响电池的容量。
因此,磷酸铁锂电池的衰减系数一般较大,每循环1000次容量衰减可能会超过20%。
总结起来,三元锂电池和磷酸铁锂电池的衰减系数存在一定的差异。
三元锂电池的衰减较小,而磷酸铁锂电池的衰减较大。
这是由于它们在充放电过程中不可逆反应和结构改变所引起的。
因此,在选择电池材料时,需要根据具体的应用场景和要求进行权衡和选择。
ncm三元材料衰减机制

ncm三元材料衰减机制引言:随着电动汽车的迅速发展,锂离子电池作为电动汽车的主要动力源开始受到广泛关注。
而作为锂离子电池的重要组成部分,正极材料的性能直接影响着电池的储能能力和循环寿命。
NCM(镍钴锰)三元材料作为锂离子电池正极材料的代表,具有高能量密度、较好的循环寿命和热稳定性等优势,因此备受关注。
然而,NCM三元材料也存在着一定的衰减机制,本文将就NCM三元材料的衰减机制进行详细探讨。
一、锂离子的迁移与容量衰减NCM三元材料中的镍、钴、锰与锂离子之间的相互作用是导致容量衰减的重要因素之一。
在充放电过程中,锂离子会从正极材料中插入或脱出。
然而,插入和脱出过程中锂离子与材料中的过渡金属离子发生竞争,导致锂离子的迁移受到阻碍。
同时,锂离子在充放电过程中与电解液中的溶剂和盐发生反应,形成固态电解质界面层(SEI),进一步降低了锂离子的迁移速率。
这些因素共同导致锂离子的迁移受限,从而引发容量衰减。
二、晶体结构破坏与结构稳定性下降NCM三元材料的晶体结构与容量衰减之间存在密切的关系。
在充放电循环过程中,NCM三元材料的晶体结构会发生变化,部分金属离子会从正极材料中溢出,导致晶体结构的破坏。
此外,在高温或过充电的情况下,NCM三元材料的晶体结构也容易发生相变,进一步降低了材料的结构稳定性。
晶体结构的破坏和结构稳定性的下降会导致电池的容量衰减和循环寿命的降低。
三、表面层失稳与电化学活性下降NCM三元材料的表面层也是导致容量衰减的重要因素之一。
在充放电过程中,正极材料表面会形成一层富锂的表面层。
然而,随着充放电循环的进行,表面层会发生失稳,导致富锂区域的溶解和重新沉积。
这种失稳现象会导致电池的电化学活性下降,并最终引发容量衰减。
四、氧气释放与热失控风险在过充电或高温条件下,NCM三元材料会发生氧气释放现象,产生氧气和有害气体。
这不仅会造成正极材料的损失,还会导致电池的热失控风险,甚至引发火灾或爆炸。
因此,控制氧气释放现象是保障锂离子电池安全性的重要措施之一。
ncm三元材料

ncm三元材料NCM三元材料,即镍钴锰三元材料,是一种新型的高能量密度锂离子电池正极材料。
随着新能源汽车市场的迅速发展,NCM三元材料作为锂离子电池的重要组成部分,备受关注。
本文将就NCM三元材料的结构特点、性能优势以及应用前景进行详细介绍。
首先,NCM三元材料的结构特点主要体现在其由镍、钴、锰三种金属元素组成的化学配方上。
这种特殊的化学配方使得NCM三元材料具有较高的比容量和能量密度,能够满足电动汽车对于高能量密度的需求。
同时,NCM三元材料还具有较好的循环稳定性和热稳定性,能够有效延长电池的使用寿命。
其次,NCM三元材料在性能优势方面表现突出。
相比于传统的钴酸锂正极材料,NCM三元材料在比容量、循环寿命和安全性等方面都有明显的优势。
特别是在提高电池能量密度和降低成本方面,NCM三元材料更是具备了巨大的潜力。
这也是为什么越来越多的电池制造商和汽车厂商开始采用NCM三元材料作为电池正极材料的原因之一。
最后,NCM三元材料的应用前景十分广阔。
随着新能源汽车市场的快速增长,对于高能量密度、高循环寿命和安全性能优异的锂离子电池需求不断增加。
而NCM三元材料正是能够满足这些需求的理想选择。
因此,可以预见,NCM三元材料在电动汽车、储能系统等领域的应用将会越来越广泛。
综上所述,NCM三元材料作为一种新型的高能量密度锂离子电池正极材料,具有明显的结构特点、性能优势和广阔的应用前景。
随着技术的不断进步和市场需求的持续增长,相信NCM三元材料必将在未来发展中发挥重要作用,成为新能源汽车领域的重要材料之一。
镍钴锰三元技术资料

镍钴锰三元技术资料镍钴锰三元技术是一种使用镍、钴和锰的复合材料制作而成的正极材料。
它具有很高的能量密度、较长的寿命和良好的安全性能。
相对于传统的锂铁磷酸铁锂技术,镍钴锰三元技术具有更高的放电容量和更高的能量密度,能够提供更长的续航里程和更高的功率输出。
同时,它也具有较低的自放电率和较长的循环寿命,可以有效延长电池的使用寿命。
镍钴锰三元技术的优势主要源于其材料的特性。
镍钴锰三元材料的结构是由镍、钴和锰的氧化物组成的。
镍具有高比容量和高电化学反应活性,可以提供较高的容量和较高的能量密度。
钴具有良好的导电性和很高的化学稳定性,可以提高电池的充放电效率和循环寿命。
锰是一种便宜的材料,可以降低电池的成本。
同时,镍钴锰三元材料的磷酸根结构可以减少正极材料的结构变化,并提高电池的循环寿命。
然而,镍钴锰三元技术也存在一些问题。
首先,镍钴锰三元材料对温度变化比较敏感,高温会导致材料的结构变化,降低电池的性能。
其次,镍钴锰三元材料中镍和钴的含量对电池的性能也有较大影响。
高镍含量可以提高电池的能量密度,但同时会降低电池的循环寿命和安全性能。
高钴含量可以提高电池的充放电效率和循环寿命,但同时会增加电池的成本。
因此,必须在镍、钴和锰的含量之间找到一个平衡点。
为了解决这些问题,研究者们提出了一些改进的措施。
通过在材料中引入其他金属元素,如铝、钛和镁等,可以改善材料的结构稳定性和循环寿命。
另外,通过改变材料的晶体结构和粒径分布,也可以改善材料的性能。
此外,一些新型的涂层材料和界面工程技术也被应用于镍钴锰三元技术中,以提高电池的安全性能和充放电效率。
总之,镍钴锰三元技术是一种具有潜力的正极材料技术。
通过不断的研究和改进,可以进一步优化材料的性能,并推动锂离子电池的发展。
随着电动汽车和可再生能源的普及,镍钴锰三元技术有望成为未来电池技术的主流之一。
ncm三元材料结构及衰减机制

ncm三元材料结构及衰减机制
NCM三元材料是一种由镍、钴、锰和锂组成的正极材料。
它具有
高比能量、高放电电压和优异的循环稳定性,因此在锂离子电池中得
到广泛应用。
NCM三元材料的结构由晶格构成,其中Ni、Co和Mn元素以一定
的比例结合在一起。
这种结构可以提供足够的锂离子嵌入和脱嵌空间,从而实现高能量储存和释放。
在充放电过程中,NCM三元材料会发生衰减。
衰减机制主要包括
三个方面:
第一,由于锂离子的嵌入和脱嵌过程,导致NCM三元材料的结构
发生变化。
这种结构变化可能使晶体中出现裂纹或产生应力,导致材
料失去稳定性。
第二,NCM三元材料在充放电过程中会发生锂离子和电解液的反应。
这些反应可能导致电解液中的溶液成分溶解或沉积在正极表面,
形成固体电解质界面层,从而降低了材料的电化学性能。
第三,NCM三元材料的循环过程中可能会发生氧化-还原反应。
这种反应会导致材料中的氧离子丢失或重新组合,从而影响其电化学性能。
综上所述,NCM三元材料的结构和衰减机制对于锂离子电池的性
能具有重要影响。
研究和优化这些方面对于提高锂离子电池的循环寿
命和充放电性能具有重要意义。
镍钴锰三元材料

镍钴锰三元材料镍钴锰(NCM)三元材料是一种重要的正极材料,可用于锂离子电池。
它由镍(Ni)、钴(Co)和锰(Mn)三种金属元素组成,具有较高的能量密度和较长的循环寿命,因此在电动汽车和便携式设备中得到了广泛的应用。
首先,镍钴锰三元材料具有较高的能量密度。
由于镍和钴的高比容量,NCM材料能够存储更多的锂离子,因此具有较高的能量密度。
这意味着使用NCM材料制造的电池能够储存更多的能量,从而延长设备的使用时间。
这对于电动汽车等需要长时间连续使用的设备来说尤为重要。
其次,镍钴锰三元材料具有较长的循环寿命。
通过适当的材料合成和结构设计,NCM材料可以实现优异的循环稳定性。
这意味着电池可以进行更多的充放电循环,而且在每个循环中能量衰减较小。
这使得NCM电池更加耐用,具有更长的使用寿命。
此外,镍钴锰三元材料具有较好的安全性能。
相比于其他材料,NCM材料在高温下具有较高的热稳定性,不易发生热失控等危险情况。
因此,使用NCM电池的设备相对安全可靠。
然而,镍钴锰三元材料也存在一些问题。
首先,由于钴的成本较高,NCM材料的生产成本相对较高。
另外,NCM材料的镍含量较高,导致其对环境的影响较大。
因此,研究人员正在努力降低NCM材料的成本,减少对环境的负面影响。
总的来说,镍钴锰三元材料是一种优秀的正极材料,具有较高的能量密度、较长的循环寿命和较好的安全性能。
它在电动汽车和便携式设备等领域有广泛的应用前景,并且正在不断改进和发展。
随着技术的不断进步,相信镍钴锰三元材料会为电池行业带来更大的突破和进步。
高镍三元锂离子电池循环衰减分析及改善

高镍三元锂离子电池循环衰减分析及改善本文来源:储能科学与技术在动力电池领域,随着近年来锂离子电池能量密度的不断提升,容量更高的NCM811 材料逐渐替代了中低镍NCM材料,使得动力电池的能量密度有了大幅地提升,电动汽车的续航里程也有了显著提升。
高镍含量的NCM材料虽然具有高比容量和低成本的优势,但也存在循环性能较差,热稳定性能差等缺陷[1],而这些固有缺点也限制了NCM811体系电池的产业化进程。
本文以NCM811/石墨体系电芯为研究对象,对其进行常温及45 ℃充放电循环测试,分析了不同温度条件下循环前后材料晶体结构、形貌等的变化,明确循环衰减的主要影响因素,有针对性的提出改善方案,改善后,显著提升了NCM811/石墨电芯的高温循环性能。
1 实验部分1.1 软包电池制作以N-甲基吡咯烷酮(NMP)为溶剂,将聚偏氟乙烯(PVDF)充分溶解在NMP中,将几种导电剂(super-P、CNT等)加入到PVDF 胶液中进行高速匀浆分散,制备出导电胶液。
将定量的NCM811正极材料分散加入到制备的导电胶液中,在高速搅拌机中充分混合,制成均匀的正极浆料,将浆料双面涂覆在铝箔上,经过烘干、碾压、分切、冲切等工艺获得正极片。
石墨负极的浆料以去离子水为溶剂,将羧甲基纤维素钠(CMC)溶解到水中制成CMC胶液,将石墨负极材料高速分散到CMC胶液中,最后加入黏结剂丁苯橡胶(SBR),制成负极浆料,将浆料双面涂覆在铜箔上,经过烘干、碾压、分切、冲切等工艺获得负极片。
正负极间加入隔膜以叠片方式制成极组,经极耳焊接后封装到铝塑壳中,然后经过注液、化成、排气、直封切边等工序制成软包电池,额定容量为4.8 A·h。
1.2 电池测试与分析软包电池的循环性能采用美国Arbin电池测试仪进行测试。
将电池用夹具夹紧,分别在常温及45 ℃恒温箱中进行循环测试,测试流程如下:1 C恒电流充电至4.2 V,4.2 V恒压充电至0.05 C;l C恒电流放电至2.5 V,直到容量衰减至初始容量的80%,停止测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NCM三元材料结构及衰减机制
1. 引言
NCM三元材料是一种具有重要应用前景的锂离子电池正极材料,由镍、钴和锰三种元素组成。
它具有高能量密度、长循环寿命和较低的成本等优势,因此被广泛应用于电动汽车、便携式电子设备等领域。
本文将从结构和衰减机制两个方面,对NCM 三元材料进行全面详细、完整且深入的介绍。
2. NCM三元材料结构
NCM三元材料的结构是其性能的关键之一。
一般而言,NCM三元材料主要由锂离子导电的晶体结构和锂离子储存的空隙组成。
2.1 晶体结构
NCM三元材料的晶体结构通常采用层状结构,其中镍、钴和锰元素依次排列在层状结构中。
这种结构有利于锂离子在晶体中的扩散,提高了电池的放电性能。
2.2 锂离子储存空隙
NCM三元材料中的锂离子储存空隙是指晶体中未被占据的空位,用于储存锂离子。
这些空隙的大小和分布对材料的电化学性能有重要影响。
合理的锂离子储存空隙可以提高电池的容量和循环寿命。
3. NCM三元材料衰减机制
NCM三元材料的衰减机制主要包括结构破坏、电解液分解和锂离子损失等方面。
3.1 结构破坏
在电池的充放电循环过程中,NCM三元材料的晶体结构会发生破坏。
这是因为锂离子在充放电过程中与材料发生反应,导致晶体结构的变化。
结构破坏会导致材料的容量衰减和循环寿命的降低。
3.2 电解液分解
在电池的使用过程中,NCM三元材料与电解液发生反应,导致电解液的分解。
电解液分解会产生气体和固体产物,进一步导致电池的容量衰减和循环寿命的降低。
3.3 锂离子损失
NCM三元材料中的锂离子可能会因为溶解、漏失或与其他材料发生反应而损失。
锂离子的损失会导致电池容量的衰减和循环寿命的降低。
4. 结论
NCM三元材料是一种具有广泛应用前景的锂离子电池正极材料。
其结构和衰减机制
对电池的性能有着重要影响。
通过了解NCM三元材料的结构和衰减机制,可以为材料的优化设计和电池的性能提升提供指导。
同时,深入研究NCM三元材料的结构和衰减机制,也有助于进一步提高锂离子电池的能量密度、循环寿命和安全性能。
参考文献
[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[2] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
[3] Wu F, Chen R, Wu S, et al. Nickel-based compounds as cathode materials with high energy density for Li-ion batteries[J]. Chemical Society Reviews, 2018, 47(2): 543-589.。