第5章振动和波动习题解答

合集下载

第5章 习题解答

第5章 习题解答

第5章 习题与答案5-1 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则[ ] (A) 其振幅为3 m(B) 其周期为s 31(C) 其波速为10 m/s (D)波沿x 轴正向传播 [答案:B]5-2 一平面简谐波,波速u =5m · s -1. t = 3 s 时波形曲线如题5-2图所示. 则x =0处的振动方程为[ ](A)y =2×10-2cos(πt /2-π/2) ( S I ) . (B) y =2×10-2cos(πt +π ) ( S I ) . (C) y =2×10-2cos(πt /2+π/2) ( S I ) .(D) y =2×10- 2cos(πt -3π/2) ( S I ) .[答案:A]5-3 如题5-3图所示,两相干波源s 1和s 2相距λ/4(λ为波长), s 1的位相比s 2的位相超前π/2 ,在s 1、s 2的连线上, s 1外侧各点(例如P 点)两波引起的两谐振动的位相差是[ ](A) 0 . (B) π . (C) π /2 . (D) 3π/2 . [答案:B]5-4 一平面简谐波沿ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形如题5-5图中的哪一个? [ ][答案:B]5-5 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如题5-5图所示.则该时刻 [ ](A) A 点振动速度大于零 (B) B 点静止不动ux (m)y (10-2m)· · · · · · · 0 51015 20 25 -2题5-2图题5-4图题5-5图-(C) C 点向下运动 (D) D 点振动速度小于零 [答案:D]5-6 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形如题5-6图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是[ ][答案:A]5-7 一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如题5-7图所示.若振动以余弦函数表示,且此题各点振动的初相取-π 到π 之间的值,则 [ ] (A) O 点的初相为00=φ(B) 1点的初相为π-=211φ(C) 2点的初相为π=2φ (D) 3点的初相为π-=213φ [答案:D]5-8 在驻波中,两个相邻波节间各质点的振动[ ](A) 振幅相同,相位相同 (B) 振幅不同,相位相同 (C) 振幅相同,相位不同 (D) 振幅不同,相位不同 [答案:B]5-9 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:[ ](A) 它的动能转化为势能. (B) 它的势能转化为动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [答案:D]ωS A O ′ωSA O ′ωωSAO ′(A)(B)(C)(D)S题5-6图5-10 一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是__________,波长是__________,频率是__________,波的传播速度是__________。

5第五章习题解答

5第五章习题解答

习题解答5-1 电路中存在有正反馈,且AF >1,是否一定会发生自激振荡?说明理由。

解答:不一定。

因为AF>1仅满足了自激振荡的振幅起振条件,此时,只有当πϕϕn F A 2=+即同时满足相位起振条件时才会发生自激振荡。

5-2 为什么晶体管LC 振荡器总是采用固定偏置与自生偏置混合的偏置电路?解答:晶体管LC 振荡器采用固定的正向偏置是为了使振荡器起振时为软激励状态,无须再外加强的激励下能起振,也不致停振。

而采用自生反向偏置则可以稳幅。

若两者不结合,则两个优点不可兼而有之。

5-3 什么是间歇振荡现象?试分析间歇振荡产生的原因?简述如何防止和消除间歇振荡。

解答:间歇振荡是指振荡器工作时,时而振荡,时而停振的现象。

原因是振荡器的自偏压电路参数选择不当。

防止和消除间歇振荡的方法是正确选择工作点以及ReCe 的数值。

5-4 反馈式自激振荡器由哪几部分组成?各自的功能是什么? 解答:反馈型自激振荡器的电路由三部分组成:(1) 包含两个或两个以上储能元件的振荡回路,完成能量交换。

(2) 直流电源,补充振荡回路电阻产生的损耗,维持等幅振荡。

(3) 有源器件和正反馈电路,控制能量在正确的时间内补充到电路中。

5-5 LC 振荡器的工作频率是严格等于调谐回路的谐振频率吗?为什么?解答:LC 振荡器的工作频率近似等于调谐回路的谐振频率,严格说,它的工作频率还应该与管子的参数有关,如0h 、i h 等。

5-6 LC 振荡器的静态工作点应如何选择?根据是什么?解答:振荡器静态工作点设计在甲类工作状态,采用自给偏压电路,如下图所示:随着振荡幅度的增加,振荡管便由线性状态很快地过渡到甲乙类乃至丙类的非线性状态,这时放大器的增益会下降,最终达到平衡状态。

5-7 一个振荡器,因为某种原因,使反馈电压v f 比输入信号v s 滞后于340︒,试问该振荡器还能否振荡?若能振荡,则振荡频率比原来相比是升高了,还是降低了? 解答:若此时反馈电压分量,使得反馈系数F>A1时,即可振荡,因v f 滞后v s 340︒,即产生一个负相角ϕ∆,频率与相位的关系为dtd ϕω=,因此频率降低了。

大物第五章课后习题答案

大物第五章课后习题答案

简答题5.1 什么是简谐运动?说明下列运动是否是简谐运动?(1)活塞的往复运动;(2)皮球在硬地上的跳动;(3)一小球在半径很大的光滑凹球面底部的来回滑动,且经过的弧线很短;(4)锥摆的运动。

答:质点的简谐振动一定要有平衡位置,以平衡位置作为坐标原点,如果以x 表示质点偏离平衡位置的位移,质点所受合外力一定具有F kx =-的形式。

(1)活塞的往复运动不是简谐运动,因为活塞受力的方向和它的位移是同一方向,任一时刻所受的合外力不具有F kx =-的形式,所以活塞的往复运动是简谐运动。

(2)皮球在硬地上的跳动不是简谐运动,因为忽略空气阻力,皮球在上升和下落阶段,始终受到竖直向下的重力的作用,任一时刻所受的合外力不具有F kx =-的形式,所以皮球的运动不是简谐运动。

(3)一小球在半径很大的光滑凹球面底部的来回滑动,且经过的弧线很短是简谐运动。

符合简谐运动的定义。

(4)锥摆的运动不是简谐运动,此时锥摆受到重力和绳的拉力的作用,这两个力的合力的大小为恒量,而方向在不断的改变,任一时刻所受的合外力不具有F kx =-的形式,所以锥摆的运动不是简谐运动。

5.2(1)试述相位和初相的意义,如何确定初相?(2)在简谐振动表达式)cos(ϕω+=t A x 中,t = 0是质点开始运动的时刻,还是开始观察的时刻?初相20/,πϕ=各表示从什么位置开始运动?答:1)相位是决定谐振动运动状态的物理量,初相是确定振动物体初始时刻运动状态的物理量。

由初始条件可以确定初相。

2)在简谐振动表达式)cos(ϕω+=t A x 中,t = 0是质点开始计时时刻的运动状态,是开始观察的时刻。

初相0ϕ=是物体处于正最大位移处开始运动,初相/2ϕπ=是物体处于平衡位置且向初相x 轴负向开始运动。

5.3 一质点沿x 轴按)cos(ϕω+=t A x 作简谐振动,其振幅为A ,角频率为ω,今在下述情况下开始计时,试分别求振动的初相:(1)质点在x = +A 处;(2)质点在平衡位置处、且向正方向运动;(3)质点在平衡位置处、且向负方向运动;(4)质点在x =A /2处、且向正方向运动;(5)质点的速度为零而加速度为正值。

大学物理学上册(赵近芳)第5章习题解答

大学物理学上册(赵近芳)第5章习题解答

习题5
5.1选择题
(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时
刻的动能与8/T t =(T 为振动周期)时刻的动能之比为:
(A)1:4 (B )1:2 (C )1:1 (D) 2:1
[答案:D]
(2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为
(A)kA 2 (B) kA 2/2
(C) kA 2//4 (D)0
[答案:D]
(3)简谐振动过程中,动能和势能相等的位置的位移等于
(A)4A ± (B) 2
A ± (C) 2
3A ± (D) 2
2A ± [答案:D]
5.2 填空题
(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。

若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。

[答案:23
s ]
(2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。

振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。

振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。

题5.2(2) 图
[答案:b 、f ; a 、e]
(3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

大学物理课后习题答案第五章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示.[解答](1)与标准波动方程2cos()xy A t πωλ=-比较得:2π/λ = 0.6,因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1). 且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为0.03cos(4)2A y t ππ=-(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:cos[()]Ax x y A t uωϕ-=-+;即 0.050.03cos[4()]0.22x y t ππ-=--= 0.03cos[4π(t – 5x ) + π/2].(2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt - π/2).5.3 已知平面波波源的振动表达式为20 6.010sin 2y t π-=⨯(m).求距波源5m处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:26.010sin ()2xy t u π-=⨯- 50.06sin()24t ππ=-,位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少?[解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m . 由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π.当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2.原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:0.03cos[50()]2x y t u ππ=-+= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:(1)P 点的振动表达式; (2)波动方程; (3)画出O 点的振动曲线. [解答](1)设P 点的振动方程为 y P = A cos(ωt + φ),其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m), 所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程; (2)画出x = λ/2处质点的振动曲线; (3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为:图5.5cos[2()]t xy A T πϕλ=++,当t = T /4时的波形方程为:cos(2)2x y A ππϕλ=++sin(2)xA πϕλ=-+.在x = 0处y = 0,因此得sin φ = 0, 解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0.因此波动方程为:cos 2()t xy A T πλ=+.(2)在x = λ/2处质点的振动方程为:cos(2)cos 2t t y A A T Tπππ=+=-, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为 cos(2)2a t y A T ππ=+; x b = λ处的质点的振动方程为 cos(22)b t y A Tππ=+. 波线上a 和b 两点的位相差φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点( 2)画出t = 4.2s 时的波形曲线. [解答]波的波动方程可化为:y = A cos2π(2t – x ), 与标准方程cos[2()]t xy A T πϕλ=-+比较, 可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1.(1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…),各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示.(1)写出时x = 0处质点的振动方程; (2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1). (1)设x = 0处的质点的振动方程为y = A cos(ωt + φ),其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3). (2)波的表达式为:cos[2()]t xy A T πϕλ=-+ cos[()]23t x ππ=-+. (3)t = 1s 时刻的波形方程为 5cos()26y x ππ=-,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:cos[2()]t xy A T πϕλ=-+,那么A 和B 两点的振动方程分别为:cos[2()]A A xt y A T πϕλ=-+,cos[2()]B B xt y A T πϕλ=-+.两点之间的位相差为:2(2)6B A x x πππλλ---=-,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程; (2)如以距A 点5m 处的B 点为坐标原点,写出波动方程;(3)写出传播方向上B ,C ,D 点的振动方程.[解答](1)以A 点为坐标原点,波动方程为3cos 4()3cos(4)5x xy t t u πππ=+=+.(2)以B 点为坐标原点,波动方程为3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-.(3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为3cos 4()3cos(4)B B xy t t u πππ=+=-,33cos 4()3cos(4)5C C x y t t u πππ=+=-,93cos 4()3cos(4)5D D x y t t u πππ=+=+.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1),波的平均能量密度为:2212w A ρω== 158(J·m -3),平均能流密度为:I wu == 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强此时声强相当于多少分贝已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),声波的平均能量密度为:2212w A ρω== 6.37×10-6(J·m -3),平均能流密度为:I wu == 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2),图5.10此声强的分贝数为:010lgIL I == 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为BB S Su u u u νν-=-,其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为33060033030B S S u u u νν==--= 660(Hz).火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为33060033030B S S u u u νν==-+= 550(Hz).(2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν-+==--= 680(Hz).当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν--==-+= 533(Hz).[注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m);在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m);在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为1033165108033130B S u u u u νν++==⨯--= 1421(Hz). 将反射面作为波源,其频率为ν1,反射声音的频率为`11331142133165B u u u νν==⨯--= 1768(Hz).反射声音的波长为`1111331651421B B uu u u λννν--=-===0.1872(m).或者 `1`13311768u λν=== 0.1872(m).[注意]如果用下式计算波长`111650.27871768B u λλν=-=-=0.2330(m),结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为 1cos[2()]t xy A T πϕλ=++, 那么S 2在S 1左侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为1cos[2()]t xy A T πϕλ=-+,那么S 2在其右侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为1 2121/2cos[2()]x l y A t u πνϕ+=-+ 5cos(2)24A t x πππνϕ=-+-,那么S 2在其左侧产生的波的波动方程为2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-.两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17 设入射波的表达式为1cos 2()t xy A T πλ=+,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为2cos 2()t xy A T πλ=-.(2)合成波为y = y 1 + y 2,将三角函数展开得222cos cos y A x t Tππλ=,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:1 6.0cos (0.028.0)2y x t π=-,2 6.0cos(0.028.0)2y x t π=+,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:1 6.0cos 2()0.5200t x y π=-,2 6.0cos 2()0.5200t xy π=+,可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).。

光学第五章习题解答

光学第五章习题解答
A1 Acos30sin10

( A1 )2 0.0933
A2
5.8 平面偏振光垂直于射到一块光轴平行于表面 的方解石晶片上,光的振动面和晶片的主截面成300。 (a)试问透射出来的两束平面偏振光的相对强度为 多少;(b)用钠光时,如要产生900的位相差,晶 片的厚度应为多少?( 5890A )
kz


x

sint

kz


y
当 A A A时,有
1
2


E


E左

E右

2 A cost

kz


x
此即为线偏振光。
5.15 设一方解石晶片沿平行于光轴切出,其 厚度为0.0343mm,放在两个正交的尼科耳棱镜间。 平行光束经过第一尼科耳棱镜后,垂直地射到波片 上,对于钠光(589.3nm)而言,晶体的折射率为 n0 1.658, ne 1.486 。问通过第二个尼科耳棱镜后 光束发生的干涉是加强还是减弱?如果两个尼科耳 棱镜的主截面是互相平行的,结果又如何?


A' s1

0.5

0.5A0.5故:I r

A0 ' s1

0.5I i
A' 0.5 s1
0.56A.25故 :Ir 6
0
I
i
I
r

5.6 如图所示,一块折射率n=1.50的平面玻璃浸 在n =1.33水中,已知一束光入射到水面上时反射光 是完全偏振光,若要使玻璃表面的反射光也是完全 偏振光,则玻璃表面与水平面的夹角θ 应是多大?
无吸收,试问N3和N1主截面的夹角为何值时,通过系 统的光强最大?设入射光强为I0,求此时所能通过 的最大光强。

第五章晶格振动习题和答案

第五章晶格振动习题和答案

第五章 晶格振动习题和答案1.什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?[解答] 为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线性项忽略掉的近似称为间谐近似。

在间谐近似下,由N 个原子构成的晶体的晶格振动,可等效成3N 个独立的谐振子的振动。

每个谐振子的振动模式称为间正振动模式,它对应着所有的原子都以该模式的频率做振动,它是晶格振动模式中最简单最基本的振动方式。

原子的振动,或者说格波振动通常是这3N 个简正振动模式的线性迭加。

简正振动数目、格波数目或格波振动模式数目是一回事,这个数目等于晶体中所有原子的自由度数之和,即等3N 。

2.长光学支格波与长声学支格波本质上有何差别?[解答] 长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频略较高,它包含了晶格振动频率最高的振动模式。

长声学支格波的特征原胞内的不同原子没有相对位移,原胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数。

任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波。

3. 温度一定,一个光学波的声子数目多呢,还是声学波的声子数目多? [解答] 频率为ω的格波的(平均)声子数为11)(/-=T k B e n ωω因为光学波的频率0ω比声学波的频率A ω高,(1/0-Tk B eω )大于(1/-T k B A e ω ),所以在温度一定情况下,一个光学波的声子数目少于一个声学波的声子数目。

4. 对同一个振动模式,温度高时的声子数目多呢,还是温度低时的声子数目多呢?[解答] 设温度H T 〉L T ,由于(1/-HB T k eω )大于(1/-L B T k e ω ),所以对同一个振动模式,温度高时的声子数目多于温度低时的声子数目。

5. 高温时,频率为ω的格波的声子数目与温度有何关系?[解答] 温度很高时,T k eB Tk B /1/ωω +≈ ,频率为ω的格波的(平均)声子数为ωωω Tk e n B T k B ≈-=11)(/ 可见高温时,格波的声子数目与温度近似成正比。

大学物理第五章机械振动习题解答和分析

大学物理第五章机械振动习题解答和分析

5-1 有一弹簧振子,振幅m A 2100.2-⨯=,周期s T 0.1=,初相.4/3πϕ=试写出它的振动位移、速度和加速度方程。

分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。

解:振动方程为:]2cos[]cos[ϕπϕω+=+=t TA t A x 代入有关数据得:30.02cos[2]()4x t SI ππ=+ 振子的速度和加速度分别是:3/0.04sin[2]()4v dx dt t SI πππ==-+ 2223/0.08cos[2]()4a d x dt t SI πππ==-+5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.分析 通过与简谐振动标准方程对比,得出特征参量。

解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。

解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N =5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量.分析 根据简谐振动频率公式比较即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 振动和波动5-1 一个弹簧振子 m=:0.5kg , k=50N ;'m ,振幅 A = 0.04m ,求 (1) 振动的角频率、最大速度和最大加速度;(2) 振子对平衡位置的位移为 x = 0.02m 时的瞬时速度、加速度和回复力; (3) 以速度具有正的最大值的时刻为计时起点,写出振动方程。

频率、周期和初相。

A=0.04(m) 二 0.7(rad/s) 二-0.3(rad)⑷10.11(Hz) T 8.98(s)2 n、5-3证明:如图所示的振动系统的振动频率为1 R +k 2式中k 1,k 2分别为两个弹簧的劲度系数,m 为物体的质量V max 二 A =10 0.04 = 0.4(m/s) a max 二 2A =102 0.04 =4(m/s 2) ⑵设 x =Acos(,t :;;■『),贝Ud x vA sin(,t 「)dtd 2xa一 dt 2--2Acos(「t 亠 ^ ) - - 2x当 x=0.02m 时,COS (;:, t :忙)=1/ 2, sin( t 「)= _、一3/2,所以 v ==0.2、.3 ==0.346(m/s) 2a = -2(m/s )F 二 ma = -1(N)n(3)作旋转矢量图,可知:2x =0. 0 4 c o st(1 0)25-2弹簧振子的运动方程为 x =0.04cos(0.7t -0.3)(SI),写出此简谐振动的振幅、角频率、严...U ・」|1岛解:以平衡位置为坐标原点,水平向右为 x 轴正方向。

设物体处在平衡位置时,弹簧 1的伸长量为Xg ,弹簧2的伸长量为x 20,则应有_ k ] X ]0 ■木2乂20 = 0当物体运动到平衡位置的位移为 X 处时,弹簧1的伸长量就为x 10 X ,弹簧2的伸长量就为X 20 -X ,所以物体所受的合外力为F - -k i (X io X )k 2(X 20 -x)- -(匕 k 2)x2d x (k i k 2)dt 2 m上式表明此振动系统的振动为简谐振动,且振动的圆频率为5-4如图所示,U 形管直径为d ,管内水银质量为 m ,密度为p 现使水银面作无阻尼 自由振动,求振动周期。

由牛顿第二定律得d 2xm —2 dt 2 二-(k i k 2)x 即有 =0习题5-4图解:以平衡时右液面位置为坐标原点,向上为 x 轴正方向,建立坐标系。

右液面偏离原点为至x 时,振动系统所受回复力为:空 2x Tgx4 2振动角频率;叮R ,转动惯量为J ,轻弹簧劲度系数为 k ,物体质量为m ,现将物体从平衡位置拉下一微小距离后放手, 不计一切摩擦和空气阻力。

试证明该系统作简谐振动,并求其作微小振动的周期。

解:弹簧、滑轮、物体和地球组成的系统不受外力作用,非保守内力作功之和为零,系统机 械能守恒,以物体的平衡位置为坐标原点向下为 x 轴正方向,建立坐标系。

设平衡时弹簧伸1 2 1 v 2k (x %)存h对上式两边求导:v a k(x l 0)v Jmva -mgv = 0R R从上式消去V ,且将(1)式代入,得到k 2ax xJm R 2R 2k J mR 2振动周期T =2n2m n d 2rg5-5如图所示,定滑轮半径为长 l o ,有:mg 二 kl o(1)物体位于x 位置时 (以原点为重力势能零点)说明系统作简谐振动。

振动周期为:丁吞實25-6如图所示,轻弹簧的劲度系数为k ,定滑轮的半径为 R 、转动惯量为J ,物体质量为m ,将物体托起后突然放手,整个系统将进入振动状态,用能量法求其固有周期。

解:设任意时刻t ,物体m 离平衡位置的位移为 X ,速率为V ,则振动系统的总机械能式中C 为滑轮的重力势能,为一常量,上式两边对t 求导得v a kxv Jmva = 0R Rk2a = - --- ----- x x+ m R 2R 2k J mR 25-7如图所示,质量为10g 的子弹,以% =1000m ;s 速度射入木块并嵌在木块中,使弹 簧压缩从而作简谐运动, 若木块质量为4.99kg ,弹簧的劲度系数为8 103 N m ,求振动的振解:先讨论子弹与木块的碰撞过程, 在碰撞过程中,子弹与木块组成的系统的动量守恒,C 2J R 2mV二恒量于是=2J mR 2 n R 2k幅。

(设子弹射入木块这一过程极短)习题5-6图mv o 二(m m)vmv ov =m m然后系统做简谐振动,因为简谐振动过程中机械能守恒,所以振幅 统的机械能确定,已知初始时刻系统的势能为零,所以有1 .2 1 2 (m m )v kA 2 25-8如图所示,在一个倾角为 二的光滑斜面上,固定一个原长为I 。

、劲度系数为k 、质量可以忽略不计的弹簧,在弹簧下端挂一个质量为 m 的重物,求重物作简谐运动的平衡位置和周期。

解: 设物体处在平衡位置时弹簧伸长量为 x 0 ,则• a , mg sin 日 mg sin J - kx 0 x 0 二 k平衡位置距O1点为:|0 x 0 =l 0 mgSin " k以平衡位置为坐标原点,如图建立坐标轴Ox ,当物体运动到离开平衡位置的位移为x处时,弹簧的伸长量就是x ° x ,所以物体所受的合外力为F 二 mg sin - k(x 0 x)即 F 二-kx物体受力与位移成正比而反向,即可知物体做简谐振动国,此简谐振动的周期为5-9两质点分别作简谐振动, 其频率、振幅均相等,振动方向平行。

在每次振动过程中,它们在经过振幅的一半的地方时相遇,而运动方向相反。

求它们相差,并用旋转矢量图表示=2(m/s) A 可由初始时刻系0.01 4.99I 8 1032 = 0.05mT =2习题5-9图5-10 一简谐振动的振幅 A = 24 c m 、周期T = 3s ,以振子位移x = 12cm 、并向负方向运动时为计时起点,作出振动位移与时间的关系曲线,并求出振子运动到 最短时间。

2 n 2 nn解:依题意可得,•‘二〒=§,又由旋转矢量法可知‘飞 所以振动方程为: x = 0.24cos(— t )(m)33质点运动到x = -12c m 处最小相位变化为 n 3,所以需要最短时间为醴n 3t T3 = 0.5(s)2 n2 n5-11如图所示,一轻弹簧下端挂着两个质量均为 m = 1.0kg 的物体B 和C ,此时弹簧伸长2.0c m 并保持静止。

用剪刀断连接 B 和C 的细线,使C 自由下落,于是 B 就振动起来。

选B 开始运动时为计时起点,B 的平衡位置为坐标原点,在下列情况下,求B 的振动方程(1) x 轴正向向上; (2) x 轴正向向下。

出来。

解:根据题意,两质点分别在A A和---处相向通过,由此可以画出相应的旋转矢量图,从旋转矢量图可得两个简谐振动的相位差为2 4n 或nx = -12c m 处所需的习题5-11图解:已知 m=1kg,l BC = 0.02m ,可得 k = 2mg/l BC = 1000(N/m )k—10d0(rad/s) m当以B 的平衡位置为坐标原点,振动振幅为A=0.02-mgk =0.02-0.01 =0.01(m)由题意知,振动初速度 v 0 =0⑴x 轴正向向上时:x 0二-0.01(m)= ■■:⑵x 轴正向向下 时:X o =0.01(m) 即=0振动方程为 x =0.01cos(10、10t)(m)5-12劲度系数为k 的轻弹簧,上端与质量为m 的平板相联,下端与地面相联。

如图所 示,今有一质量也为 m 的物体由平板上方h 高处自由落下,并与平板发生完全非弹性碰撞。

以平板开始运动时刻为计时起点,向下为正,求振动周期、振幅和初相。

振动方程为x0.01cos (10.10t 二)(m )习题5-12图解:物体下落与平板碰撞前速度:v = 2ghmv 二(m m )v 0所以物体与平板碰撞后共同运动的速度:在x 处,物体和平板受力:F = 2mg _k (x= -kx见旋转矢量图,有:|xo |<P =兀 +arccos (』)=兀 +arccosAm 2g 2 mgkh5-13在一平板上放一重 9.8N 的物体,平板在竖直方向作简谐振动,周期 T =0.50s ,振幅A =0.020m ,试求(1) 重物对平板的压力 F ;(2) 平板以多大振幅运动时,重物将脱离平板 ?解:以平衡位置为坐标原点,向下为x 轴正方向,物体在 x 处时,习题5-13图以平衡位置为坐标原点,向下为x 轴正方向,建立坐标系。

依题意:则:T =222V oX 。

• 2om 2g 2 2gh/4 k 2 k/2m=丄 Jm 2g 2 +mgkh k mg Omg 一 N = ma - -m 2x2 2N 二 mg m ■ x = 9.8 16二 x2⑴重物对平板的压力 F -9.8 16二x(2)当N=0时重物将脱离平板,由N =9.8 - 16: "x ^a^O ,得X max = -0.062(m), A = x max| = 0.062(m)5-14 —木块在水平面上作简谐运动,振幅为 5.0c 频率为, 一块质量为 m 的较小 木块叠在其上,两木块间最大静摩擦力为 0.4m g ,求振动频率至少为多大时, 上面的木块将 相对于下面木滑动?解:以平衡位置为坐标原点,向右为 x 轴正方向,建立坐标系,小木块在 x 处:22 n F - -m • x2二'T在最大位移处,F 最大,F max =m 2x当F max ■ f s ,即m 「2A —\mg 时小木块开始相对于大木块滑动,由此得:5-15 一台摆钟的等效摆长 L = 0.995m ,摆锤可上下移动以调节其周期。

该钟每天快1分27秒。

假如将此摆当作一个质量集中在摆锤中心的一个单摆来考虑,则应将摆锤向下移 动多少距离,才能使钟走得准确?解:设原摆钟周期为 T ,钟走时准确时,其钟摆长为L ,周期为T ,则T _ 24 60 60 87 _ 86487 T 24 60 60 86400工L " 「2 『86487弓而 (一)2L0.995 = 0.997(m)L T 86400。

Fx。

1 匚Axx'习题5-14图振动频率至少应略大于8.85= 1.4(Hz)1.4Hz 时,上面小木块相对于下面木块滑动。

L -L =0.002(m) =2(mm) 应将摆锤下移2mm。

5-16 一弹簧振子,弹簧的劲度系数 k = 25N m ,当物体以初动能 0.2J 和初势能0.6J振动时,求(1) 振幅;(2) 位移是多大时,势能和动能相等 ? (3) 位移是振幅的一半时,势能多大 ?解:(1)E =E k0E p 0 =0.2 0.6 = 0.8(J)x ,A=0.179(m)211 A 21121⑶当 x A 时,E p k( )kA E = 0.2( J) 2 p2 24 2 45-17 一质点同时参与两个在同一直线上的简谐振动,两个振动的振动方程为人=0.04cos(2t) (SI)x 2 =0.03cos(2t -巧(SI)6求合振动的振幅和初相。

相关文档
最新文档