初二下分式混合计算练习1(附答案)

合集下载

初二分式练习题及答案

初二分式练习题及答案

初二分式练习题及答案在初二阶段,分式是一个重要的数学概念。

掌握分式的运算方法对学生的数学学习至关重要。

下面是几道初二分式练习题及其答案,希望能帮助同学们巩固和加深对分式的理解和运用能力。

练习题一:计算下列分式的值,并将结果化简到最简形式:1. $\frac{3}{4} + \frac{5}{8}$2. $\frac{2}{3} - \frac{1}{6}$3. $\frac{3}{2} + \frac{1}{4} - \frac{1}{8}$4. $\frac{a}{2} - \frac{2a}{3}$5. $\frac{x-1}{5} - \frac{x+2}{3}$练习题二:将下列分数改写为带分数,并化简到最简形式:1. $\frac{11}{4}$2. $\frac{8}{3}$3. $\frac{12}{5}$4. $\frac{25}{6}$5. $\frac{10a}{3}$练习题三:将下列带分数改写为分数,并化简到最简形式:1. $1\frac{1}{2}$2. $2\frac{2}{3}$3. $5\frac{1}{4}$4. $3\frac{5}{6}$5. $4\frac{2a}{3}$练习题四:计算下列表达式的值,并将结果化简到最简形式:1. $\frac{2}{3} \times \frac{6}{5}$2. $\frac{3}{4} \div \frac{2}{5}$3. $\frac{1}{2} \times \frac{4}{7} \div \frac{2}{5}$4. $\frac{a}{2} \times \frac{3a}{4}$5. $\frac{x-1}{5} \times \left(\frac{x+2}{3}+\frac{3}{2}\right)$练习题五:解下列方程:1. $\frac{2x-1}{3} = \frac{x+4}{2}$2. $\frac{1}{x} + \frac{1}{2x} = \frac{3}{4}$3. $\frac{1}{2a} - \frac{1}{3a} = \frac{1}{6}$4. $\frac{3}{x-1} - \frac{1}{3} = \frac{2}{x}$5. $\frac{1}{x+2} + \frac{1}{2} = \frac{x}{2} - \frac{1}{x+2}$答案如下:练习题一:1. $\frac{13}{8}$2. $\frac{1}{2}$3. $\frac{21}{8}$4. $\frac{a}{6}$5. $\frac{-3x-3}{15}$练习题二:1. $2\frac{3}{4}$2. $2\frac{2}{3}$3. $2\frac{2}{5}$4. $4\frac{1}{6}$5. $\frac{10a}{3}$练习题三:1. $\frac{3}{2}$2. $\frac{8}{3}$3. $\frac{21}{4}$4. $\frac{23}{6}$5. $\frac{10a+8}{3}$练习题四:1. $\frac{4}{5}$2. $\frac{15}{8}$3. $\frac{2}{7}$4. $\frac{3a^2}{8}$5. $\frac{x^2+x-3}{10}$练习题五:1. $x = \frac{5}{2}$2. $x = \frac{2}{3}$3. $a = \frac{1}{4}$4. $x = \frac{5 \pm \sqrt{37}}{2}$5. 方程无解以上是初二分式练习题及答案,通过做题的过程,希望同学们能够熟练掌握分式的运算规则,提高数学解题能力。

分式的运算练习题及答案

分式的运算练习题及答案

分式的运算练习题及答案分式的运算是数学中的基本内容之一,掌握好分式的运算方法对于提高数学水平具有重要的作用。

本文将为您提供一些分式的运算练习题及答案,帮助您巩固分式运算的知识。

一、基础练习题1. 计算:$\frac{1}{2} + \frac{3}{4}$答案:$\frac{5}{4}$2. 计算:$\frac{2}{3} \times \frac{3}{5}$答案:$\frac{2}{5}$3. 计算:$\frac{5}{6} \div \frac{1}{2}$答案:$\frac{5}{3}$4. 计算:$\frac{3}{4} + \frac{2}{9} - \frac{1}{3}$答案:$\frac{1}{36}$5. 计算:$(\frac{2}{3} + \frac{1}{4}) \times \frac{3}{5}$答案:$\frac{13}{30}$二、复杂练习题1. 计算:$\frac{3}{4} \div \frac{2}{5} \times \frac{1}{3}$答案:$\frac{15}{8}$2. 计算:$(\frac{7}{8} - \frac{3}{4}) \div (\frac{2}{3} \times\frac{5}{6})$答案:$\frac{7}{20}$3. 计算:$\frac{1}{2} + \frac{1}{3} - \frac{1}{4} \times \frac{1}{5}$答案:$\frac{2}{15}$4. 计算:$\frac{2}{3} \div \frac{3}{4} + \frac{4}{5} - \frac{5}{6}$答案:$\frac{7}{6}$5. 计算:$(\frac{3}{4} + \frac{1}{5}) \div \frac{2}{3} - \frac{5}{6}$答案:$-\frac{17}{36}$三、应用题1. 甲、乙两人一起做数学题,甲做的时间是乙的$\frac{2}{3}$,若乙做完题所需时间为1小时,问甲需要多长时间做完这些题?答案:$\frac{4}{3}$小时解析:设甲需要x小时做完这些题,则根据题意可得$\frac{x}{1}=\frac{2}{3}$,解得x=$\frac{4}{3}$。

初二分式混合运算练习题

初二分式混合运算练习题

初二分式混合运算练习题混合运算是数学基础中的重要内容之一,它涉及到各种运算符号的组合和运用。

而分式是数学中常见的一种形式,也是混合运算中常常出现的类型。

在初二的学习中,我们需要掌握分式的基本概念和运算规则,并能灵活应用于混合运算中。

为了帮助同学们巩固这方面的知识,下面给出一些初二分式混合运算的练习题,希望能够帮助大家更好地理解和掌握。

1. 简化以下分式:a) $\frac{6x^2}{3x}$b) $\frac{8xy}{4y}$c) $\frac{15a^2}{5ab}$d) $\frac{12m^2}{4mn}$2. 将以下分式化简为整数或带分数:a) $\frac{9}{3}$b) $\frac{18}{6}$c) $\frac{15}{5}$d) $\frac{28}{7}$3. 计算以下混合运算:a) $2 + \frac{5}{2} \times 3$b) $4 \div \frac{1}{5} + 3$c) $(2 + \frac{1}{2}) \times 3$d) $6 \div (2 + \frac{1}{3})$4. 计算下列分式的和:a) $\frac{1}{4} + \frac{1}{8}$b) $\frac{5}{6} + \frac{1}{2}$c) $\frac{2}{3} + \frac{4}{9}$d) $\frac{3}{5} + \frac{2}{10}$5. 计算下列分式的积:a) $\frac{2}{3} \times \frac{4}{5}$b) $\frac{1}{6} \times \frac{6}{7}$c) $(\frac{1}{2})^2$d) $\frac{3}{4} \times (\frac{1}{2})^3$6. 计算下列混合运算:a) $2 \div \frac{1}{3} - 4$b) $\frac{4}{9} \times (\frac{3}{4} - \frac{1}{2})$c) $5 + \frac{2}{3} \div \frac{1}{6}$d) $\frac{12}{5} - \frac{2}{3} \times \frac{15}{4}$7. 用分数表示下列混合数:a) $3\frac{2}{5}$b) $7\frac{3}{4}$c) $5\frac{1}{3}$d) $1\frac{7}{8}$8. 按照指定的运算关系,计算下列混合运算:a) $3 \times (2 + 1)$b) $4 + (3 - 2)$c) $(7 + 4) \times 2$d) $(5 - 2) \times 6$以上就是一些初二分式混合运算的练习题,可以帮助大家巩固和提高分式和混合运算的能力。

八年级数学下册综合算式专项练习题分式的四则运算

八年级数学下册综合算式专项练习题分式的四则运算

八年级数学下册综合算式专项练习题分式的四则运算分式的四则运算是八年级数学下册中的一个重要知识点,它是在分式的基础上进行加减乘除运算的方法。

下面将通过综合算式专项练习题的形式,来详细介绍分式的四则运算。

【题1】计算下列各题:(1)$1\frac{2}{3}+\frac{4}{9}$(2)$2\frac{3}{4}-\frac{5}{6}$(3)$3\frac{1}{5}\times\frac{2}{3}$(4)$2\frac{2}{3}\div\frac{4}{5}$【解析】:(1)运算:$1\frac{2}{3}+\frac{4}{9}$将整数部分和分数部分分别计算,然后合并。

整数部分:$1+0=1$分数部分:$\frac{2}{3}+\frac{4}{9}$分母的最小公倍数为$3\times9=27$,同时将两个分数的分母都变为$27$。

$\frac{2}{3}\times\frac{9}{9}=\frac{2\times9}{3\times9}=\frac{18}{2 7}$$\frac{4}{9}\times\frac{3}{3}=\frac{4\times3}{9\times3}=\frac{12}{2 7}$合并分数部分:$\frac{2}{3}+\frac{4}{9}=\frac{18}{27}+\frac{12}{27}=\frac{18+12}{27 }=\frac{30}{27}$将$\frac{30}{27}$化简为最简分数:$\frac{30}{27}\div3=\frac{10}{9}$答案:$1\frac{2}{3}+\frac{4}{9}=1\frac{10}{9}$(2)运算:$2\frac{3}{4}-\frac{5}{6}$将整数部分和分数部分分别计算,然后合并。

整数部分:$2-0=2$分数部分:$\frac{3}{4}-\frac{5}{6}$分母的最小公倍数为$4\times6=24$,同时将两个分数的分母都变为$24$。

初二分式的混合运算练习题

初二分式的混合运算练习题

初二分式的混合运算练习题
首先,让我们来回顾一下初二分式的混合运算。

在分式的混合运算中,我们需要进行加、减、乘、除等运算,并且考虑到分式的化简和
约分。

下面是一些练习题,帮助你巩固这方面的知识。

1. 计算以下各式的值:
a) 3/4 + 1/2
b) 5/6 - 1/3
c) 2/3 × 4/5
d) 3/4 ÷ 1/2
2. 化简以下各式:
a) (2/3) × (6/10)
b) (1/2) ÷ (2/4)
c) 4/6 + 2/3 - 1/2
d) (3/8) ÷ (1/4) × (2/5)
3. 解决以下问题:
a) 如果一个苹果馅饼有16块,你吃了其中的3/4块,还剩下多少块?
b) 你用1/3小时跑完了1/2公里的距离,以相同的速度再跑2/3小时,你总共跑了多少公里?
c) 小明有1/4公斤的巧克力,他分给了3个朋友,每人得到多少公
斤的巧克力?
d) 如果12本书总共有3/4公斤,每本书的重量是多少?
4. 填空:
a) 5/6 + 3/4 = ___
b) 2/3 - 1/5 = ___
c) 2/5 × 3/4 = ___
d) 3/4 ÷ 2/5 = ___
以上就是初二分式的混合运算的练习题。

希望通过这些题目的练习,你能够更好地理解和掌握分式的混合运算。

如果有任何疑问,请随时
向老师或同学寻求帮助。

加油!。

八年级数学下册16.2分式的运算第2课时分式的混合运算练习(含答案)

八年级数学下册16.2分式的运算第2课时分式的混合运算练习(含答案)

第 2 课时分式的混淆运算1. 化简 :(-) · (x-3) 的结果是 ( B )(A)2(B)(C)(D)2. 计算 :(1+) ÷(1+)的结果是 ( C )(A)1(B)a+1(C)(D)3. 当 x=6,y=3 时 , 代数式 (+) ·的值是( C )(A)2(B)3(C)6(D)94. 化简 (y- ) ÷ (x- ) 的结果是 ( D )(A)-(B)-(C)(D)5. 若 x=-1, 则÷-2+x 的值是0.6.化简:·÷+=.7.( 整体求解法 ) 若 x+ =2, 则 (x 2+2+ ) · (x 2- ) ÷ (x- )+2 019的值是 2 027.8.化简:(+)÷.解:(+)÷=·=·=.9. 先化简 :·+, 再在 -3,-1,0,,2 中选择一个适合的x 值代入求值 .解:·+=·+=+===x,为使原分式存心义x≠-3,0,2,因此 x 只好取 -1 或.当 x=-1 时 , 原式 =-1.或当 x=时,原式=.( 选择此中一个即可)10.( 分类议论题 ) 若 a 的立方等于它的自己, 求 (+) ÷·的值.解:原式=÷·=· (a+2)(a-2)·=a3 .由于 a 的立方等于它的自己,因此 a=0 或 1 或 -1.因此当 a=0 时 , 原式 =03=0;当 a=1 时 , 原式 =13=1;当 a=-1 时 , 原式 =(-1) 3=-1.因此(+)÷·的值是0或1或-1.11.( 拓展题 )(2018德州)先化简,再求值:÷- (+1), 此中 x 是不等式组的整数解 .解:原式=·-(+)=-=.由于不等式组的解集是3<x<5,因此不等式组的整数解是x=4.因此当 x=4 时, 原式 == .。

初中八年级下册数学基础习题练习:12分式的混合运算

初中八年级下册数学基础习题练习:12分式的混合运算

分式的混合运算例1、计算题(1)(2)(3)(4)(5)(6)计算题心得:例2求值.已知x=4,y=-3,求的值.例3.先化简,再求值(1),且y=2x(2),其中(3)已知,求的值课堂小测: 一、填空1. 化简:=÷⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--43222)(·ab a b ba __________; 2. 对于分式392+-x x ,当x__________时,分式无意义;当x__________时,分式的值为0;3. 分式xy x 713-,)(322x y x y-,yx 221-的最简公分母为________________; 4. 计算=-----n m z m n y n m x _________;=-++--b c c b cb c 11222_______________; 5. 若21111D D D +=,则D=___________;若5922=-+b a b a ,则a :b =__________; 6. 已知13a a -= ,那么221a a+=_________ ; 7. 若分式的值为负数,则x 的取值范围为_______________;8. 若=+)1(1n n _______-________,则=⨯++⨯+⨯+⨯100991431321211Λ_________;9. 若已知132112-+=-++x x x B x A (其中A 、B 为常数),则A=__________,B=__________; 二、化简或求值:(1)若21<<x ,化简xx xx x x +-----1122 ;(2)已知0=++c b a ,求:⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+b a c a c b c b a 111111的值。

732-x x课后作业一、选择题:1.计算)21(22x xx -÷-的结果为 ( ) A .x B .x1- C .x 1 D .x x 2--2.不改变分式y x yx +-32352的值,把分子、分母各项系数化为整数,结果为 ( )A .yx yx +-4152B .yx yx 3256+-C .yx yx 2456--D .yx yx 641512+-3.下面各式,正确的是( )A.B.C.D.1. 如果m 为整数,那么使分式13++m m 的值为整数的m 的值有( ) (A )2个 (B )3个 (C )4个 (D )5个2. 已知,则的值为( ) A.B.C.D.3.在正数范围内定义一种运算☆,其规则为a ☆b =b a 11+,则x ☆23)1(=+x 的解为( )A .32=x B .1=xC .32-=x 或1D .32=x 或1-二.计算:(1) (2))9(2316212-+-++x xx x326x x x =b ac b c a =++1=++b a ba 0=--b a ba 1=ab ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-b b a a 1122a 22b 22a b -22b a -x x x -+-++1111112。

分式混合运算(习题及答案)

分式混合运算(习题及答案)

分式混合运算(习题及答案)混合运算(题)例1:混合运算:解:原式可以化简为:frac{4-x}{x-2} \div \frac{12}{x+2-x^2}$$frac{4-x}{x-2} \times \frac{x+2-x^2}{12}$$frac{-(x-4)}{(x-2)(x+4)}$$例2:先化简,然后在$-2\leq x\leq 2$的范围内选取一个合适的整数$x$代入求值.解:先化简原式:frac{x(x+1)}{(x-1)(1-x)} \div \frac{2x}{x+1}$$frac{x(x+1)}{(x-1)(x-1)} \times \frac{x+1}{2x}$$frac{1}{2}$$由于$-2\leq x\leq 2$,且$x$为整数,因此使原式有意义的$x$的值为$-2$,$-1$或$2$。

代入计算可得:当$x=2$时,原式为$-2$。

巩固练1.计算:1)$$\frac{x-y}{x+2y} \div \frac{1}{2x+4y}$$化简原式:frac{x-y}{x+2y} \times \frac{2x+4y}{1}$$frac{2(x-y)}{x+2y}$$2)$$\frac{\frac{a}{a-1}-1}{a^2-2a+1} \div \frac{1}{a+1}$$ 化简原式:frac{\frac{a}{a-1}-1}{(a-1)^2} \times (a+1)$$frac{a-2}{(a-1)^2}$$3)$$\frac{2a-2ab}{a^2-b^2} \div \frac{a+b}{a+b}$$化简原式:frac{2a-2ab}{a^2-b^2} \times \frac{a+b}{a+b}$$frac{2a-2ab}{(a-b)(a+b)} \times \frac{a+b}{1}$$frac{2(1-b)}{a-b}$$4)$$\frac{y-1-\frac{8}{y-1}}{y^2+y} \div\frac{1}{y(y+1)}$$化简原式:frac{y-1-\frac{8}{y-1}}{y(y+1)} \times \frac{y(y+1)}{1}$$ frac{(y-1)^2-8}{y(y+1)^2}$$5)$$\frac{a^2-2ab+b^2}{b}\div \frac{1}{a-b}-1$$化简原式:frac{(a-b)^2}{b} \times \frac{a-b}{1}-1$$frac{(a-b)^3}{b}-1$$6)$$\frac{x^2-4x+4}{x(x-1)} \div \frac{x+2}{x-1}$$化简原式:frac{(x-2)^2}{x(x-1)} \times \frac{x-1}{x+2}$$frac{(x-2)^2}{x(x+2)}$$7)$$\frac{2}{(x-1)^2} - \frac{1}{(x-1)^2(x+1)}$$化简原式:frac{2(x+1)-1}{(x-1)^2(x+1)}$$frac{2x+1}{(x-1)^2(x+1)}$$8)$$\frac{3-x}{2(x-2)} \div \frac{5}{x-2}-\frac{5}{x-3}$$ 化简原式:frac{3-x}{2(x-2)} \times \frac{x-2}{5} - \frac{5}{x-3}$$ frac{(x-3)(x-1)}{2(x-2)5} - \frac{5}{x-3}$$frac{x^2-4x+7}{10(x-2)(x-3)}$$9)$$\frac{x-1}{x+1} \div \frac{x-3}{x-2} - \frac{5}{x^2-3x}$$化简原式:frac{(x-1)(x-2)}{(x+1)(x-3)} - \frac{5}{x(x-3)}$$frac{x^2-3x-2}{x(x-3)(x+1)(x-3)} - \frac{5(x+1)}{x(x-3)(x+1)(x-3)}$$frac{x^2-3x-2-5x-5}{x(x-3)(x+1)(x-3)}$$frac{x^2-8x-7}{x(x-3)(x+1)^2}$$10)$$\frac{1}{(x-1)(x+1)}-\frac{1}{x(x-1)}$$化简原式:frac{x-(x-1)}{x(x-1)(x+1)}$$frac{1}{x(x+1)}$$11)$$\frac{2}{x+y} - \frac{1}{y-x} \times \frac{y^2-x^2}{11}$$化简原式:frac{2(y-x)}{(y-x)(x+y)} - \frac{y+x}{11(x+y)}$$frac{y-x-2}{11(x+y)}$$2.化简求值:1)先化简,再求值:$\frac{x^2+2x+1}{x+2x+2} \div \frac{1}{x+2}$,其中$x=3-1$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二下分式混合计算练习1一.解答题(共40小题)1.计算:(1)(﹣1)2016+x0﹣+(2)÷.2.化简:(a2﹣4)÷.3.(1)计算()﹣1+|1﹣|﹣(π﹣3)0﹣;(2)化简•÷.4.计算:÷•.5.计算:.6.化简分式:.7.化简:.8.计算:•.9.计算:.10.计算:÷(x+5)•.11.计算:÷(x+y).12.计算:(1)(2)(+)÷.13.计算:(1)÷;(2)(﹣)•(x﹣y)2.14.计算:(1)(xy﹣x2)÷(2).15.计算:•.16..17.化简:(xy﹣x2)÷÷.18.化简:+.19.计算﹣.20.化简:.21.化简:a﹣b﹣.22.化简:(a+1﹣)•.23.计算:(﹣).24.计算:(1)(x﹣y)2﹣(x﹣2y)(x+y)(2)÷(2x﹣)25.化简:(x﹣5+)÷.26.先化简,再求值:÷(1+),其中x=﹣1.27.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.28.先化简再求值:,其中x满足x2+x﹣2=0.29.先化简:÷+,再求当x+1与x+6互为相反数时代数式的值.30.先化简,再求值:(+)÷,其中x=6.31.先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.32.先化简,再求值:(﹣1)÷,其中x=2+.33.先化简,再求值:÷•,其中a=2016.34.先化简,再求值:(﹣)÷,其中x满足2x+4=0.35.先化简,再求值:(),其中x=2.36.先化简,再求值:(﹣)÷,其中x=﹣.37.先化简,再求值:(﹣x﹣1)÷,其中x=,y=.38.化简+,并代入原式有意义的数进行计算.39.化简:.40.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).初二下分式混合计算练习1参考答案与试题解析一.解答题(共40小题)1.(2016•徐州)计算:(1)(﹣1)2016+x0﹣+(2)÷.【分析】(1)先计算负整数指数幂、零指数幂、化简二次根式然后计算加减法;(2)利用完全平方公式、平方差公式、化除法为乘法进行约分化简.【解答】解:(1)原式=1+1﹣3+2=1;(2)原式=×=x.【点评】本题考查了分式的乘除法、实数的运算以及负整数指数幂等知识点,属于基础题.2.(2016•市南区一模)化简:(a2﹣4)÷.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=(a+2)(a﹣2)•=a(a﹣2)=a2﹣2a.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.3.(2016•如皋市校级二模)(1)计算()﹣1+|1﹣|﹣(π﹣3)0﹣;(2)化简•÷.【分析】(1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及立方根定义计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2+﹣1﹣1﹣2=﹣2;(2)原式=﹣••(a+1)(a﹣1)=﹣(a﹣2)(a+1)=﹣a2+a+2.【点评】此题考查了分式的乘除法,以及实数的运算,熟练掌握运算法则是解本题的关键.4.(2016秋•金平区期末)计算:÷•.【分析】原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.【解答】解:原式=÷•=••=.【点评】此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找公因式.5.(2015•眉山)计算:.【分析】将每个分式的分子、分母分解因式后将除法变为乘法后约分即可.【解答】解:=•=.【点评】本题考查了分式的乘除法,解题的关键是能够对分式的分子、分母进行因式分解,难度不大.6.(2015•深圳模拟)化简分式:.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.7.(2015秋•怀集县期末)化简:.【分析】两个分式相除,先根据除法法则转化为乘法运算.然后再进行约分、化简即可.【解答】解:==.【点评】解答分式的除法运算,关键把除法运算转化成乘法运算,然后进行约分.8.(2015春•绿园区期末)计算:•.【分析】先进行因式分解,再约分即可求解.【解答】解:•=•=.【点评】本题主要考查了分式的乘除法,解题的关键是正确因式分解.9.(2015秋•台山市期末)计算:.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.10.(2015秋•仙游县期末)计算:÷(x+5)•.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=••=2.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.11.(2015秋•祁阳县校级期中)计算:÷(x+y).【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=••=.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.12.(2015秋•北京校级期中)计算:(1)(2)(+)÷.【分析】(1)先对分子分母因式分解,再约分,把除法化为乘法,再约分即可;(2)先算括号里面的,再把除法化为乘法,再约分即可.【解答】解:(1)原式=••,=﹣2;(2)原式=•=.【点评】本题考查了分式的乘除法,分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.13.(2015春•陕西校级月考)计算:(1)÷;(2)(﹣)•(x﹣y)2.【分析】(1)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简;(2)首先把括号里的进行通分,然后进行乘法运算.【解答】解:(1)原式=•(2分)=;(4分)(2)原式=•(x﹣y)2(6分)=•(x﹣y)2(7分)=x﹣y.(8分)【点评】(1)是分式的除法运算,分式的除法和实数的除法一样,均是转化为乘法来完成的;(2)是分式的混合运算,本题中分式的减法运算作为因式,一定要先运算减法,再做乘法,同时将分子、分母中能够分解因式的部分进行因式分解.14.(2015秋•夏津县校级月考)计算:(1)(xy﹣x2)÷(2).【分析】(1)原式利用除法法则变形,约分即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=﹣x(x﹣y)•=﹣x2y;(2)原式=•=.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.15.(2014•滨州)计算:•.【分析】把式子中的代数式进行因式分解,再约分求解.【解答】解:•=•=x【点评】本题主要考查分式的乘除法,解题的关键是进行因式分解再约分.16.(2014春•常宁市校级月考).【分析】把式子中的代数式进行因式分解,再约分求解.【解答】解:÷=×=.【点评】本题主要考查分式的乘除法,解题的关键是进行因式分解再约分.17.(2013•广东模拟)化简:(xy﹣x2)÷÷.【分析】先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母中的多项式分解因式,然后约分化简.【解答】解:原式=﹣x(x﹣y)•=﹣y.【点评】本题主要考查了分式的除法运算,做题时把除法运算转化为乘法运算,然后进行解答.18.(2016•甘孜州)化简:+.【分析】先通分变为同分母分式,然后再相加即可解答本题.【解答】解法一:+=+==.解法二:+=+=+=.【点评】本题考查分式的加减法,解题的关键是明确分式的加减法的计算方法.19.(2016•南京)计算﹣.【分析】首先进行通分运算,进而合并分子,进而化简求出答案.【解答】解:﹣=﹣==.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.20.(2016•十堰)化简:.【分析】首先把第一个分式的分子、分母分解因式后约分,再通分,然后根据分式的加减法法则分母不变,分子相加即可.【解答】解:=++2=++2=++==【点评】本题考查了分式的加减法法则、分式的通分、约分以及因式分解;熟练掌握分式的通分是解决问题的关键.21.(2016•福州)化简:a﹣b﹣.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.22.(2016•泸州)化简:(a+1﹣)•.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.23.(2016•聊城)计算:(﹣).【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.24.(2016•重庆)计算:(1)(x﹣y)2﹣(x﹣2y)(x+y)(2)÷(2x﹣)【分析】(1)根据平方差公式、多项式乘多项式法则进行计算;(2)根据分式混合运算法则进行计算.【解答】解:(1)(x﹣y)2﹣(x﹣2y)(x+y)=x2﹣2xy+y2﹣x2+xy+2y2=﹣xy+3y2;(2)÷(2x﹣)=×=.【点评】本题考查的是整式的混合运算、分式的混合运算,掌握平方差公式、多项式乘多项式法则、分式的混合运算法则是解题的关键.25.(2016•陕西)化简:(x﹣5+)÷.【分析】根据分式的除法,可得答案.【解答】解:原式=•=(x﹣1)(x﹣3)=x2﹣4x+3.【点评】本题考查了分式混合运算,利用分式的除法转化成分式的乘法是解题关键.26.(2016•抚顺)先化简,再求值:÷(1+),其中x=﹣1.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.27.(2016•安顺)先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=•=,当x=3时,原式==3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.28.(2016•乐山)先化简再求值:,其中x满足x2+x﹣2=0.【分析】原式通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x+1)=x2+x,∵x2+x﹣2=0,∴x2+x=2,则原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2016•曲靖)先化简:÷+,再求当x+1与x+6互为相反数时代数式的值.【分析】先把分子分母因式分解和除法运算化为乘法运算,再约分得到原式=,然后利用x+1与x+6互为相反数可得到原式的值.【解答】解:原式=•+=+=,∵x+1与x+6互为相反数,∴原式=﹣1.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.30.(2016•江西)先化简,再求值:(+)÷,其中x=6.【分析】先算括号里面的,再算除法,最后把x=6代入进行计算即可.【解答】解:原式=÷=÷=•=,当x=6时,原式==﹣.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.31.(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【分析】先算括号里面的,再算除法,最后算减法,根据x2+2x﹣15=0得出x2+2x=15,代入代数式进行计算即可.【解答】解:原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.32.(2016•营口)先化简,再求值:(﹣1)÷,其中x=2+.【分析】首先通分计算小括号里的算式,然后把除法转化成乘法进行约分计算,最后再把x=2+代入计算即可.【解答】解:(﹣1)÷=(﹣)÷=×==x﹣2当x=2+时,原式=2+﹣2=.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,解答此题的关键是要明确:在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.33.(2016•黄石)先化简,再求值:÷•,其中a=2016.【分析】先算除法,再算乘法,把分式化为最简形式,最后把a=2016代入进行计算即可.【解答】解:原式=••=(a﹣1)•=a+1,当a=2016时,原式=2017.【点评】本题考查的是分式的化简求值,在解答此类问题时要注意把分式化为最简形式,再代入求值.34.(2016•广安)先化简,再求值:(﹣)÷,其中x满足2x+4=0.【分析】原式括号中利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到x的值,代入计算即可求出值.【解答】解:原式=•=,由2x+4=0,得到x=﹣2,则原式=5.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.35.(2016•常德)先化简,再求值:(),其中x=2.【分析】先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.【点评】本题考查的是分式的化简求值,在解答此类问题时要注意把分式化为最简形式,再代入求值.36.(2016•益阳)先化简,再求值:(﹣)÷,其中x=﹣.【分析】先括号内通分,然后计算除法,最后代入化简即可.【解答】解:原式==.当时,原式=4.【点评】本题考查分式的化简求值,解题的关键熟练掌握分式的混合运算法则,注意运算顺序,属于基础题,中考常考题型.37.(2016•烟台)先化简,再求值:(﹣x﹣1)÷,其中x=,y=.【分析】首先将括号里面进行通分,进而将能分解因式的分解因式,再化简求出答案.【解答】解:(﹣x﹣1)÷,=(﹣﹣)×=×=﹣,把x=,y=代入得:原式=﹣=﹣1+.【点评】此题主要考查了分式的化简求值,正确因式分解是解题关键.38.(2016•南昌校级自主招生)化简+,并代入原式有意义的数进行计算.【分析】先分解因式化简分式,再利用分式有意义的条件求原式即可.【解答】解:简+=+=+=1,当取x≠1或﹣1时,原式=1.【点评】本题主要考查了分式的化简求值,解题的关键是熟记分式有意义的条件.39.(2015•长乐市一模)化简:.【分析】原式第二项约分后,去括号合并即可得到结果.【解答】解:原式=a+b﹣=a+b﹣(a+b)=a+b﹣a﹣b=0.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.40.(2016•重庆校级模拟)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.第21页(共21页)。

相关文档
最新文档