离散数学图论3图矩阵表示

合集下载

第六章-图的矩阵表示

第六章-图的矩阵表示

e4 e2
v2 e3 v3
v5
v4
v1 M (G) v2
v3 v4 v5
e1 e2
1 1
1
0
0 1
0
0
0 0
e3 e4
0 1
1
0
1 0
0
1
0 0
实例1
例1 求下图的完全关联矩阵。
e1 e2 e3 e4 e5 e6 v1 1 1 0 0 1 1 v2 1 1 1 0 0 0 v3 0 0 1 1 0 1 v4 0 0 0 1 1 0 v5 0 0 0 0 0 0
0 1 1 1 0 0 0
0
0
1
0
1
1
0
4
0 0 0 0 0 1 1
0
0
0
0
0
1
1
() ()
1 1 0 0 0 0 0
0 1 1 0 0 1 0
6
0
0
1
1
1
0
0
0 0 0 1 0 0 1
0
0
0
1
0
0
1
(4) (5)
1 1 0 0 0 0 0
0 1 1 0 0 1 0
0
0
1
1
1
0
0 1
0 0
0 1

0 0
1 1
0 1
1 0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
v2 e2
v3
e1
e5
e3
e2 e5

《离散数学》复习提纲(2018)

《离散数学》复习提纲(2018)

《离散数学》期末复习大纲一、数理逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价?),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论6、谓词、量词、个体词(一阶逻辑3要素)、个体域、变元(约束出现与自由出现)7、命题符号化、谓词公式赋值与解释,谓词公式的类型(永真、永假、可满足)8、谓词公式的等值式(代换实例、消去量词、量词否定和量词辖域收与扩、量词分配)和置换规则(置换规则、换名规则)9、一阶逻辑前束范式(定义、求法)本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理、谓词与量词、命题符号化、谓词公式赋值与解释、求前束范式。

[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。

2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。

3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。

4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。

5、掌握命题逻辑的推理理论。

6、理解谓词、量词、个体词、个体域、变元的概念;理解用谓词、量词、逻辑联结词描述一个简单命题;掌握命题的符号化。

7、理解公式与解释的概念;掌握在有限个体域下消去公式量词,求公式在给定解释下真值的方法;了解谓词公式的类型。

8、掌握求一阶逻辑前束范式的方法。

二、集合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补以及对称差等运算及有穷集的计数(文氏(Venn)图、包含排斥原理)3、集合恒等式(幂等律、交换律、结合律、分配律、吸收律、矛盾律、德摩根律等)及应用本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明。

图谱简介

图谱简介

图谱简介图论与组合是一门历史悠久而在近四十年又获得蓬勃发展的应用数学学科,是处理离散问题的强有力的工具,是整个离散数学的一个重要组成部分。

图论与组合包含着十分丰富的内容,按其所研究的问题的侧重点不同,可以分为图论、计数理论、组合矩阵论、最优化理论、组合设计等几个方面。

近五十年来,随着计算机科学、信息科学和系统科学的发展,图论组合及其应用的研究越来越引起人们的关注。

无论从其理论价值和实际应用的广度和深度来看,图论与组合正处于一个具有强大生命力的迅速发展的新时期。

一.图的矩阵在图论中,为了研究图的性质,人们引进了各种各样的矩阵,诸如图的邻接矩阵,拉普拉斯矩阵,规范拉普拉斯矩阵等,这些矩阵与图都有着自然的联系,代数图论的一个主要问题就是研究图的性质能否以及如何由这些矩阵的代数性质反映出来,这里所指的矩阵的代数性质,主要指矩阵的特征值。

图谱理论主要研究图的邻接矩阵、拉普拉斯矩阵和规范拉普拉斯矩阵的特征值及其特征向量,是当前代数图论、组合矩阵论和代数组合论共同关注的一个重要研究课题,极大地丰富和促进了图论和组合学的研究内容。

假设),(E V G =是一个无向无环的图(简单图或多重图),其中{}n v v v V ,,,21 =,{}m e e e E ,,,21 =。

定义1 G 的邻接矩阵是一个n n ⨯的矩阵n n ij a G A ⨯=)()(,其中ij a 是连接顶点i v 与j v 的边的条数。

图的邻接矩阵的特征值,是代数图论的一个基本研究课题,已经形成相当成熟的理论。

图谱的第一篇论文发表于1957 年,其结果是.定理1 令G 是n 个结点的简单连通图,则1)(1cos 2-≤≤+n G n ρπ,左边的等号成立,当且仅当G 是一路;右边的等号成立,当且仅当G 是一个完全图。

在国内该方面的研究直到1979年才出现了第一篇论文,该论文由李乔和冯克勤合写并发表在1979年的《应用数学学报》上。

代表人物: C. D. Cvetkovic.专 著:D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of graph-theory and applications, VEB Deutscher Verlag d. Wiss. Berlin, 1979; Acad. Press, New York, 1979. 1995注:1.)()(),(k ijk ij k a a A = 表示 G 中点 i v 到 j v 长为 k 的路的数目—数学归纳法。

离散数学图的基本概论

离散数学图的基本概论

简单通路: = v0 e1 v1 e2… ek vk为通路且边e1 e2… ek 互不相同,又称之为迹,可简用v0 v1 … vk 来表示。 简单回路 (v0 = vk)又称为闭迹。
初级通路或基本通路: = v0 e1 v1 e2… ek vk为通路 且顶点v0 v1… vk 互不相同。 基本回路: v0 = vk。 初级通路一定是简单通路,但简单通路
不一定是一条初级通路。
例8.6 就下面两图列举长度为5的通路,简 单通路,回路,简单回路,再列举长 度为3的基本通路和回路。
e3 v5
e7 v4
v1
e2
e1 v2
e6 e4
e5 v3
e1 v5 e8 e4
v4
v1
e3
e2 v2
e6 e5
e7 v3
(1)
(2)
解:试对照定义,自己做一做!如:
(1)中 v1e1v2e2v5e3v1e1v2e4v3 为v1到v3的通路;
021?01ijn11iiij??????mmjm从而?12im1jijvdm?????mmvvddmm??????i?????1i?niinmijij11从而有从而有1?im1jijvdm??????由mij的定义知?11jmvdm????????i???1i??n1inm1jij1通路数与回路数的矩阵算法
平行边:无向图中,关联一对结点的无向边 多于一条,平行边的条数为重数; 有向图中,关联一对顶点的无向边 多于一条,且始、终点相同。
多重图:包含平行边的图。
简单图:既不包含平行边又不包含环的图。
二、度
度:(1) 在无向图G = < V, E >中,与顶点v(vV) 关联的边的数目(每个环计算两次),记 作:d(v)。

离散数学实验报告

离散数学实验报告

“离散数学”实验报告目录一、实验目的 (3)二、实验内容 (3)三、实验环境 (3)四、实验原理和实现过程(算法描述) (3)1、实验原理........................................................................................................2、实验过程.......................................................................................................五、实验数据及结果分析 (13)六、源程序清单 (24)源代码 (24)七、其他收获及体会 (45)一、实验目的实验一:熟悉掌握命题逻辑中的联接词、真值表、主范式等,进一步能用它们来解决实际问题。

实验二:掌握关系的概念与性质,基本的关系运算,关系的各种闭包的求法。

理解等价类的概念,掌握等价类的求解方法。

实验三:理解图论的基本概念,图的矩阵表示,图的连通性,图的遍历,以及求图的连通支方法。

二、实验内容实验一:1. 从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、条件和双条件的真值。

(A)2. 求任意一个命题公式的真值表(B,并根据真值表求主范式(C))实验二:1.求有限集上给定关系的自反、对称和传递闭包。

(有两种求解方法,只做一种为A,两种都做为B)2. 求有限集上等价关系的数目。

(有两种求解方法,只做一种为A,两种都做为B)3. 求解商集,输入集合和等价关系,求相应的商集。

(C)实验三:以偶对的形式输入一个无向简单图的边,建立该图的邻接矩阵,判断图是否连通(A)。

并计算任意两个结点间的距离(B)。

对不连通的图输出其各个连通支(C)。

三、实验环境C或C++语言编程环境实现。

四、实验原理和实现过程(算法描述)实验一:1.实验原理(1)合取:二元命题联结词。

离散数学图的矩阵表示

离散数学图的矩阵表示

A4=
23321
01011
11010
22221
V4
v3
问每条:从vv33到到0 v0v1由1长1长0度上度0为可为22看的的路出路有A,n几中中条间元?02肯素11定a01经ij的11过10意1个义中:间结点vk,
A该 即 逐(G路个v)23=,k表遍v示历k,1为0201每=11111:个。a0101iv结每j=31100点k有1000表,v一k 示并个进v从vA1k,(,行Gv)在i3就乘到= 邻对法v接j应运长100矩一算302度阵个,111为中110v获3n110,,k取的v就从k路,1是=v3有1:到;kvv31条,k全=。1部,长vk度,1=为1,2 的路的数目:v3,1v1,1+v3,2其v中21+a3v2=3,33表v示3,1v+3到v3,v42长v4度,1+为v33,的5路v5,有1=3条v。3,ivi,1
由于,邻接矩阵的定义与关系矩阵表示定义相同,所以,可达性
矩阵P即为关系矩阵的MR+,因此P矩阵可用Warshall算法计算。
13
❖可达性矩阵的求解方法
23221 35332 58553 12111 46442
Br的任一元素bij表示的是从vi到vj长度不超过r的路的数目;
若bij 0,
若bij=0,
ij时,表示vi到vj可达, i=j时,表示vi到vi有回路;
ij时,表示vi到vj不可达, i=j时,表示vi到vi无回路;
在许多实际问题中,我们关心的往往是vi和vj之间是否存在路的 问题,而对路的数目不感兴趣,为此,引出可达矩阵。
由7.2.1推论,若从vi到vj存在一条路,则必存在一条边数小于n 的通路,(或边数小于等于n的回路)。即:如果不存在一条小

第7章 图论 [离散数学离散数学(第四版)清华出版社]

第7章 图论 [离散数学离散数学(第四版)清华出版社]

6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e

2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)

《离散数学》第6章 图的基本概念

《离散数学》第6章  图的基本概念

E ' E )。
生成子图—— G ' G 且 V ' V 。
导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。
(3) 平行边——关联于同一对顶点的若干条边 称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。
简单图——不含平行边和环的图。
如例1的(1)中,
第六章 图的基本概念 第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义, 2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
4、简单图,完全图,子图, 补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E E V & V , E 中元素为无向边,简称边。 有向图 D V , E E V V , E 中元素为有向边,简称边。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当l=1时, A1=A, 由A的定义, 定理显然成立。
若l=k时定理成立, 则当l=k+1时, A k+1= A · Ak ,
所以
n aij (l+1) = aik × akj (l)
k=1
长度=1
aij (1)等于G中 联结vi与vj的长 度为1的路径条 数。
长度=l
共akj (l)条
vi
vk
vj
va
vb
vc
vd
图G2
12 3 4
ab c d
A1=
0 1 11 1 0 11 1 1 01 1 1 10
A2=
0 1 11 1 0 11 1 1 01 1 1 10
❖ 判别定理:图G1 ,G2同构的充要条件是:存在置换矩阵P,使得: A1=PA2P。
❖ 其中A1,A2分别是G1 ,G2的邻接矩阵。 ❖ 如何判断两图同构是图论中一个困难问题
返回 结束
7.3.1 邻接矩阵
7
❖ 结论:
(1) 如果对l=1, 2, …, n-1, Al的(i, j)项元素 (i≠j)都为零, 那么vi和vj之间无任何路相连接, 即vi和 vj不连通。 因此, vi和vj必属于G的不同的连通分支。
(2) 结点vi 到vj (i≠j)间的距离d(vi, vj)是使Al(l= 1, 2, …, n-1 )的(i, j)项元素不为零的最小整数l。
0 2 0 0 0 2 0 2 0 0 A3 0 2 0 0 0 0 0 0 0 1 0 0 0 1 0
1 0 1 0 0 0 2 0 0 0 A2 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0
2 0 2 0 0 0 4 0 0 0 A4 2 0 2 0 0 0 0 0 1 0 0 0 0 0 1
返回 结束
7.3.1 邻接矩阵
9
(1) 由A中a(1)12=1知, v1和v2是邻接的; 由A3中a(3)12= 2知, v1到v2长度为3的路有两条, 从图中可看出是v1 v2 v1 v2和v1 v2 v3 v2 。 (2) 由A2的主对角线上元素知, 每个结点都有长度为2 的回路, 其中结点v2有两条: v2 v1 v2和v2 v3 v2 , 其余 结点只有一条。
内容:关联矩阵,邻接矩阵,可达矩阵。 重点:1、有向图,无向图的关联矩阵,
2、有向图的邻接矩阵。 了解:有向图的可达矩阵。
返回 结束
7.3.1 图的矩阵表示
3
存储原则: 存储结点集和边集的信息.
(1)存储结点集; (2)存储边集:
存储每两个结点是 否有关系。
邻接矩阵
返回 结束
7.3.1 邻接矩阵
4
1.无向图的邻接矩阵 定义 1.6.2设 G (V , E)的顶点集为 V v1,v2 ,L ,vp,用 a表ij 示
G 中顶点vi与v j 之间的边数。称矩阵MA((GG)) (aij ) pp为 G 的邻
接矩阵。
例2下图所示 G 的邻接矩阵为: v3
e1
e2
v1 v2 v3 v4 v5
(3) Al的(i, i)项元素a(l)ii表示开始并结束于vi长度为l
的回路的数目。
返回 结束
7.3.1 邻接矩阵
8
例1 图G=(V, E)的图形如图, 求邻接矩阵A和A2, A3, A4, 并分析其元素的图论意义。

0 1 0 0 0 1 0 1 0 0 A 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
10
设图G=<V,E>如下图所示
0100
A
0011 1101
讨论
1000
(1)图G的邻接矩阵中的元素为0和1,∴又称为布尔矩阵;
(2)图G的邻接矩阵中的元素的次序是无关紧要的,进行行和行、
列和列的交换,则得到相同矩阵。
∴若有二个简单有向图,则可得到二个对应的邻接矩阵,若对某一
矩阵进行行和行、列和列之间的交换后得到和另一矩阵相同的矩阵,
矩阵
(2) 若MA((GG))为无环图。则MA((GG)) 中第i 行(列)的元素之和等于顶点 vi 的度数;
(3) 两个图G与H 同构的充要条件是存在一个置换矩阵P,使得
MA((GG)) PT M (H )P 。

返回 结束
7.3.1 邻接矩阵
5
❖ 同构图 v1
v3
v2
v4
图G1
v1<->va v2<->vb v3<->vc v4<->vd
第七章 图论
1
引言
7.1 图的基本概念 7.2 路与连通 7.3 图的矩阵表示 7.4 最短路径问题 7.5 图的匹配 8.1 Euler图和Hamilton图 8.2 树 8.3 生成树 8.4 平面图
返回 结束
7.3 图的矩阵表示
2
❖ 图的矩阵表示
图的数学抽象是三元组,其形象直观的表 示即图的图形表示。为便于计算,特别为便 于用计算机处理图,下面介绍图的第三种表 示方法—图的矩阵表示。利用矩阵的运算还 可以了解到它的一些有关性质。
返回 结束
7.3.1 邻接矩阵
6
❖ 在邻接矩阵A的幂A2, A3, …矩阵中, 每个元素有特 定的含义。
❖ 定理 :设G是具有n个结点集{v1, v2, …, vn} 的图, 其邻接矩 阵为A, 则Al(l=1, 2, …)的(i, j)项元素a(l)ij是从vi到vj的长 度等于l的路的总数。
证明 : 归纳法
(3) 由于A3的主对角线上元素全为零, 所以G中没有长 度为3的回路。
(4) 由于a(1)34=a(2)34=a(3)34=a(4)34=0, 所以 结点v3和v4间无路, 它们属于不同的连通分支。
(5) d(v1, v3)=2。 对其他元素读者自己可以找出它的意义。
返回 结束
7.3.1 邻接矩阵
则此二图同构。
(3)当有向图中的有向边表示关系时,邻接矩阵就是关系矩阵;
(4)零图的邻接矩阵称为零矩阵,即矩阵中的所有元素均为0;
(5)在图的邻接矩阵中,
①行中1的个数就是行中相应结点的引出次数
②列中1的个数就是列中相应结点的引入次数
返回 结束
7.3.1 邻接矩阵
❖ 矩阵的计算:
0100
A
v1
e9
v2
e3
e5
e8
e7 e 6
v1
0
1
0
1
1
对应的邻接矩阵
v4 e4
AM(G(G))
v2 v3
1 0
0 2
2 0
1 0
1
0
v4
1
1
0
1
1
v5
v5 1 1 0 1 0
从图的邻接矩阵的定义容易得出以下性质:
(1) MA((GG)) 是一个对称矩阵;
相当于将单位 矩阵中相应的 行与行,或者 列与列互换的
相关文档
最新文档