平方差公式法分解因式(1)
因式分解之四大基本解法

因式分解之四大基本解法知识锦囊经典例题【必会考点1】提取公因式1.因式分解:2281012x y xy --【解答】解:原式222(456)x y xy =--2(43)(2)xy xy =+-.2.因式分解:324824m m m -+-.【解答】解:32248244(26)m m m m m m -+-=--+.3.因式分解:325()10()x y y x -+-.【解答】解:325()10()x y y x -+-325()10()x y x y =-+-25()[()2]x y x y =--+25()(2)x y x y =--+.4.因式分解:3()3()a x y b y x ---.【解答】解:3()3()a x y b y x ---3()3()a x y b x y =-+-3()()x y a b =-+.【必会考点2】公式法1.因式分解:(1)22169x y - (2)22222()4x y x y +-. 【解答】解:(1)原式22(4)(3)(43)(43)x y x y x y =-=+-;(2)原式222222(2)(2)()()x y xy x y xy x y x y =+++-=+-.2.分解因式:22(23)m m -+.【解答】解:原式(23)(23)m m m m =++--(33)(3)m m =+--3(1)(3)m m =-++.3.因式分解:2()6()9x y y x -+-+【解答】解:2()6()9x y y x -+-+2()6()9x y x y =---+2(3)x y =--.【必会考点3】提取公因式与公式法综合1.因式分解:(1)2x xy -; (2)329189x x x -+; 【解答】解:(1)22(1)(1)(1)x xy x y x y y -=-=+-;(2)322291899(21)9(1)x x x x x x x x -+=-+=-;2.因式分解:(1)244am am a -+; (2)22()()a x y b y x -+-. 【解答】解:(1)22242(44)(2)am am a a m m a m -+=-+=-;(2)2222()()()()()()()a x y b y x x y a b x y a b a b -+-=--=-+-.【必会考点3】分组分解法1.因式分解:2m my mx yx -+- 【解答】解:(3)2m my mx yx -+-2()()m my mx yx =-+-()()m m y x m y =-+-()()m y m x =-+.2.因式分解:2221b bc c -+-【解答】解:2221b bc c -+-2()1b c =--(1)(1)b c b c =-+--.【必会考点4】十字相乘法1.因式分解:(1)256x x +- (2)2234a ab b -- 【解答】解:(1)256(1)(6)x x x x +-=-+(2)2234a ab b --(4)()a b a b =-+.2.分解因式:2231x x -+【解答】解:2231(1)(21)x x x x -+=--.巩固练习1.因式分解:(1)2()3()m a b n b a ---; (2)2282()x x y --.2.分解因式:(1)()()x x a y a x -+- (2)321025x y x y xy -+3.因式分解:53242357a b c a b c a bc +-4.分解因式:222(4)16m m +-.5.分解因式(1)222(1)4a a +- (2)229()25()a b a b +--.6.因式分解:22436x xy x y -+-7.因式分解:22144a ab b -+-8.分解因式(1)2249x y - (2)2221x y y -+-9.分解因式:22221x y x y -+-.10.分解因式①226x x -- ②332x x -+11.分解因式:2228x xy y --.12.十字相乘法因式分解:(1)256x x ++ (2)256x x --(3)2231x x -+ (4)2656x x +-.13.因式分解:(1)23a b b -; (2)1n m mn -+-;(3)2221x x y -+-; (4)2()()()x y x y x y -++-14.把下列各式分解因式:(1)225x -; (2)2816a a -+;(3)2()9()x x y x y +-+; (4)3222a a b ab -+-.15.因式分解:(1)236x xy x -+; (2)3241628m m m -+-;(3)2318()12()a b b a ---.巩固练习解析1.因式分解:(1)2()3()m a b n b a ---; (2)2282()x x y --.【解答】解:(1)2()3()m a b n b a --- 2()3()m a b n a b =-+- ()(23)a b m n =-+;(2)2282()x x y --222[4()]x x y =-- 2(3)()x y x y =-+.2.(1)分解因式()()x x a y a x -+- (2)分解因式321025x y x y xy -+ 【解答】(1)解:()()x x a y a x -+- (x =x a -)(y -x a -) (=x a -)(x y -);(2)解:321025x y x y xy -+ (xy =21025)x x -+ (xy =25)x -.3.因式分解:53242357a b c a b c a bc +- 【解答】解:原式322(57)a bc a b c ab =+-; 4.分解因式:222(4)16m m +-. 【解答】解:222(4)16m m +-22(44)(44)m m m m =+++- 22(2)(2)m m =+-.5.分解因式 (1)222(1)4a a +- (2)229()25()a b a b +--. 【解答】解:(1)222(1)4a a +-22(12)(12)a a a a =+++- 2(1)a =+2(1)a -; (2)229()25()a b a b +--[3()5()][3()5()]a b a b a b a b +=+--+- .4(4)(4)a b b a =--.6.因式分解:22436x xy x y -+- 【解答】解:原式2(2)3(2)x x y x y =-+- (2)(23)x y x =-+.7.22144a ab b -+-【解答】解:22144a ab b -+-221(44)a ab b =--+ 21(2)a b =--(12)(12)a b a b =+--+.8.分解因式 (1)2249x y - (2)2221x y y -+-【解答】解:(1)原式(23)(23)x y x y =-+; (2)原式22(21)x y y =--+22(1)x y =--(1)(1)x y x y =+--+.9.分解因式:22221x y x y -+-.【解答】解:原式222222(1)1(1)(1)(1)(1)(1)x y y y x y y x =-+-=-+=+-+. 10.分解因式 ①226x x -- ②332x x -+【解答】解:①226(23)(2)x x x x --=+-; ②332x x -+ 342x x x =-++ (2)(2)(2)x x x x =+-++2(2)(21)x x x =+-+ 2(2)(1)x x =+-.11.分解因式:2228x xy y --. 【解答】解:2228x xy y -- (4)(2)x y x y =-+.12.十字相乘法因式分解: (1)256x x ++ (2)256x x -- (3)2231x x -+ (4)2656x x +-.【解答】解:(1)原式(2)(3)x x =++; (2)原式(6)(1)x x =-+; (3)原式(21)(1)x x =--; (4)原式(23)(32)x x =+-. 13.因式分解: (1)23a b b -; (2)1n m mn -+-; (3)2221x x y -+-;(4)2()()()x y x y x y -++-【解答】解:(1)原式22()()()b a b b a b a b =-=-+;(2)原式(1)()(1)(1)(1)(1)n m mn n m n m n =-+-=-+-=+-;(3)原式2222(21)(1)(1)(1)x x y x y x y x y =-+-=--=---+;(4)原式()()2()x y x y x y x x y =--++=-.14.把下列各式分解因式:(1)225x -;(2)2816a a -+;(3)2()9()x x y x y +-+;(4)3222a a b ab -+-.【解答】解:(1)原式(5)(5)x x =+-;(2)原式2(4)a =-;(3)原式2()(9)x y x =+-()(3)(3)x y x x =++-;(4)原式22(2)a a ab b =--+2()a a b =--.15.因式分解:(1)236x xy x -+;(2)3241628m m m -+-;(3)2318()12()a b b a ---.【解答】解:(1)236(361)x xy x x x y -+=-+;(2)322416284(47)m m m m m m -+-=--+;(3)23218()12()6()(322)a b b a a b a b ---=-+-.。
部编人教版七年级下册数学3.3第1课时《利用平方差公式进行因式分解》教案

第1课时 利用平方差公式进行因式分解1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解 【类型一】 判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】 利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4. 解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b ); (2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止. 【类型三】 利用因式分解整体代换求值 已知x 2-y 2=-1,x +y =12,求x -y 的值. 解析:已知第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可. 解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000. 方法总结:一些比较复杂的计算,如果通过变形可转化为平方差公式的形式,则可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+42-32+22-12=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简;二是分解因式时,每个因式都要分解彻底。
因式分解公式平方差公式

因式分解公式平方差公式因式分解公式中的平方差公式,那可是数学世界里的一个超级实用的工具!咱们先来看看啥是平方差公式。
简单说,就是 a² - b² = (a + b)(a - b) 。
这公式看着简单,用起来可厉害着呢!就拿我曾经教过的一个学生小明的例子来说吧。
有一次课堂练习,题目是分解因式 x² - 25 。
小明一开始抓耳挠腮,不知道从哪儿下手。
我就提醒他,看看这式子像不像平方差公式的样子?他眼睛一亮,马上反应过来,25 不就是 5 的平方嘛,这式子不就是 x² - 5²嘛。
然后,他迅速写下 (x + 5)(x - 5) ,那脸上的表情,别提多得意了。
再比如,遇到 9m² - 4n²这样的式子。
咱们一看,9m²就是 (3m)²,4n²就是 (2n)²,那这就可以用平方差公式分解为 (3m + 2n)(3m - 2n) 。
平方差公式在解决实际问题中也大有用处。
比如说,要计算一个长方形场地的面积,已知它的长是 (x + 3) 米,宽是 (x - 3) 米,那面积就是 (x² - 9) 平方米。
这时候用平方差公式一分解,就能更清楚地知道具体数值。
而且啊,平方差公式还能帮我们在做数学证明题的时候找到思路。
有些看起来特别复杂的式子,一旦发现能用平方差公式分解,就好像找到了打开难题大门的钥匙。
我还记得有一次考试,有一道题是分解 16a⁴ - b⁴。
很多同学都被难住了,但那些真正掌握了平方差公式的同学,很快就把它分解为 (4a²+ b²)(2a + b)(2a - b) ,轻松拿下分数。
在数学的学习中,平方差公式就像是我们的得力助手,只要用对了地方,就能让难题变得简单。
所以同学们一定要好好掌握这个公式,多做练习,让它成为我们解题的神器!总之,平方差公式虽然简单,但是用处多多。
2020年八年级数学下册因式分解专题02 平方差公式(提升教师版)

专题02 平方差公式(提升版)【典型例题】类型一、公式法——平方差公式 例1、分解因式:(1); (2); (3).【思路点拨】(1)把看做整体,变形为后分解.(2)可写成,可写成,和分别相当于公式里的和.(3)把、看作一个整体进行分解. 【答案与解析】解:(1). (2).(3).【总结升华】注意套用公式时要注意字母的广泛意义,可以是字母,也可以是单项式或多项式. 举一反三:【变式】将下列各式分解因式:(1); (2)(3); (4);【答案】解:(1)原式(2)原式=2()4x y +-2216()25()a b a b --+22(2)(21)x x +--x y +22()2x y +-216()a b -2[4()]a b -225()a b +2[5()]a b +4()a b -5()a b +a b (2)x +(21)x -222()4()2(2)(2)x y x y x y x y +-=+-=+++-222216()25()[4()][5()]a b a b a b a b --+=--+[4()5()][4()5()]a b a b a b a b =-++--+(9)(9)a b a b =+--(9)(9)a b a b =-++22(2)(21)[(2)(21)][(2)(21)]x x x x x x +--=++-+--(31)(3)x x =+-()()22259a b a b +--()22234x y x --33x y xy -+32436x xy -()()()()5353a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()8228444a b a b a b a b =++=++()()232232x y x x y x -+--= (3)原式 (4)原式例2、分解因式: (1); (2); (3); (4) 【答案与解析】 解:(1). (2).(3). (4).【总结升华】(1)如果多项式的各项中含有公因式,那么先提取公因式,再运用平方差公式分解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止. 举一反三:【变式】先化简,再求值:(2a +3b )2﹣(2a ﹣3b )2,其中a =.【答案】解:原式=(2a +3b +2a ﹣3b )(2a +3b ﹣2a +3b ) =4a ×6b =24ab ,当a =,即ab =时,原式=24ab =4. 类型二、平方差公式的应用例3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如x 4﹣y 4=(x ﹣y )(x +y )(x 2+y 2),当x =9,y =9时,x ﹣y =0,x +y =18,x 2+y 2=162,则密码018162.对于多项式4x 3﹣xy 2,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式4x 3﹣xy 2进行因式分解,得到4x 3﹣xy 2=x (2x +y )(2x ﹣y ),然后把x =10,y =10代入,分别计算出2x +y =及2x ﹣y 的值,从而得出密码. 【答案与解析】解:原式=x (4x 2﹣y 2)=x (2x +y )(2x ﹣y ), 当x =10,y =10时,x =10,2x +y =30,2x ﹣y =10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型,考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.()343y x y --()()()22xy x y xy x y x y =--=-+-()()()2249433x x y x x y x y =-=+-2128x -+33a b ab -516x x -2(1)(1)a b a -+-221112(16)(4)(4)888x x x x -+=--=-+-3322()()()a b ab ab a b ab a b a b -=-=+-5422216(16)(4)(4)(4)(2)(2)x x x x x x x x x x x -=-=+-=++-222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-例4、阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.【思路点拨】(1)原式变形后,利用平方差公式化简,计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果.【答案与解析】解:(1)原式=2(1﹣)(1+)(1+)(1+)…(1+)=2(1﹣)(1+)(1+)…(1+)=2(1﹣)(1+)…(1+)=2(1﹣)=;(2)原式=(3﹣1)(3+1)(32+1)(34+1)…(332+1)﹣=(32﹣1)(32+1)(34+1)…(332+1)﹣=(364﹣1)﹣=﹣.【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.同步练习一.选择题1.分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )22.下列多项式相乘,不能用平方差公式的是( ) A.(﹣2y ﹣x )(x +2y ) B.(x ﹣2y )(﹣x ﹣2y )C.(x ﹣2y )(2y +x )D.(2y ﹣x )(﹣x ﹣2y )3. 下列因式分解正确的是( ).A. B.C.D. 4. 下列各式,其中因式分解正确的是( ) ①;② ③ ④ A.1个 B.2个 C.3个 D.4个5. 若能被60或70之间的两个整数所整除,这两个数应当是( ) A .61,63 B .61,65 C .63,65 D .63,676. 乘积应等于( ) A .B .C .D .二.填空题 7. ; .8. 若,将分解因式为__________.9. 分解因式:_________.10. 若,则是_________.11.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 . 12.已知|x ﹣y +2|+=0,则x 2﹣y 2的值为 .三.解答题13. 用简便方法计算下列各式:(1) -1998×2000 (2) (3)()()2292323a b a b a b -+=+-()()5422228199a ab a a bab -=+-()()2112121222a a a -=+-()()22436223x y x y x y x y ---=-+-22933422x y x y x y ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭()()2933x x x -=-+()()()()2212121m n m n m n +--+=+-()()()()2294252a b a c a b c a b c +-+=+-++4821-22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭5121211202311_________m m aa +--=()2211x x x --+=)2|4|50m -+=22mx ny -2121()()=m m p q q p +--+-()()()216422nx xx x -=++-n 219992253566465⨯-⨯222222221009998979695......21-+-+-++-14.已知(2a +2b +3)(2a +2b ﹣3)=72,求a +b 的值.15.设,,……,(为大于0的自然数).(1)探究是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出,,……,这一列数中从小到大排列的前4个完全平方数,并指出当满足什么条件时,为完全平方数.【答案与解析】 一.选择题 1. 【答案】A ;【解析】16﹣x 2=(4﹣x )(4+x ).2. 【答案】A ;【解析】解:A 、两项都是互为相反数,不符合平方差公式.B 、C 、D 中的两项都是一项完全相同,另一项互为相反数,符合平方差公式.故选:A .3. 【答案】C ;【解析】;;. 4. 【答案】C ;【解析】①②③正确. . 5. 【答案】C ;【解析】6. 【答案】C ; 【解析】 22131a =-22253a =-()()222121n a n n =+--n n a 1a 2a n a n n a ()()22933a b b a b a -+=+-()()()()()542222228199933a ab a a bab a a b a b a b -=+-=++-()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--()()()()229433223322a b a c a b a c a b a c +-+=++++--()()53232a b c a b c =+++-()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212121216563=+++-=++⨯⨯22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭二.填空题 7. 【答案】;【解析】.8. 【答案】;【解析】.9. 【答案】;【解析】原式=. 10.【答案】4; 【解析】.11.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1, =(24﹣1)(24+1)(28+1)+1, =(28﹣1)(28+1)+1, =216﹣1+1,=216因为216的末位数字是6, 所以原式末位数字是6.12. 【答案】-4;【解析】∵|x ﹣y +2|+=0,∴x ﹣y +2=0,x +y ﹣2=0,∴x ﹣y =﹣2,x +y =2,∴x 2﹣y 2=(x ﹣y )(x +y )=﹣4. 三.解答题 13.【解析】解:(1)-1998×2000 =(2)111111111111 (11112233991010314253108119) (2233449910101111121020)⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=()()111m aa a -+-()()211x x -+()()()()()()()22222211111111x x x x x x x x x x --+=---=--=-+()()2525x y x y +-4,25,m n ==()()222525mx ny x y x y -=+-21()(1)(1)m p q p q p q ---+--()22121()1()(1)(1)m m p q p q p q p q p q --⎡⎤---=--+--⎣⎦()()()()()22244224416x x x x x x++-=+-=-21999()()222199919991199911999199911--+=-+=()2222535664656535465⨯-⨯=-(3)14.【解析】解:已知等式变形得:[2(a +b )+3][2(a +b )﹣3]=72,即4(a +b )2﹣9=72, 整理得:(a +b )2=,开方得:a +b =±. 15.【解析】解:(1) 又为非零的自然数, ∴是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数. (2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.为一个完全平方数的2倍时,为完全平方数.()()65354655354656100070420000=+-=⨯⨯=222222221009998979695......21-+-+-++-()()()()()()100991009998979897......2121100999897 (21)5050=+-++-+++-=++++++=()()222121(2121)(2121)8n a n n n n n n n =+--=++-+-+=n n a n n a学法指导: 怎样学好数学☆人生是一种体验,一种经历,一种探索,一种生活,而人生目标,则是一种自我的设定。
用完全平方差公式因式分解

x2 x1
4
(4)4x2 2xy y2
练一练:按照完全平方公式填空:
(1) a2 10a ( 25 ) ( a 5 )2
(2) ( a2 y2) 2ay 1 ( ay 1 )2
(3) 1 ( rs ) r 2s2 ( 1 rs )2
4
2
平方差公式法和完全平方公式法统称公式法。 平方差公式法:适用于平方差形式的多项式 完全平方公式法:适用于完全平方式
用完全平方公式分解因式的关键是:在判断一个多项式 是不是一个完全平方式。 做一做:下列多项式中,哪些是完全平方式?
(1) a2 4a 4 (2) (3) m2n2 4 4mn
2 (3)a 2a 1
2 (4)4 x 4 x 1
(5)ax2 2a2 x a3
(6) 3x2 6xy 3y2
(7) (a+b)4-10(a+b)2+25
例2.用简便方法运算。
(1)2006 2 62 (2)132 213 3 9 (3)112 39 2 66 13
分解因式4x2-9 =(2x)2-32=(2x+3)(2x-3)
能用平方差公式进行因式分解的多项式有 什么特点?
(1)两项 (2)平方差
下面的多项式能用平方差公式分解因式吗? (1) a2+2ab+b2 (2) a2-2ab+b2
完全平方公式: 完全平方公式
(a+b)2 = a²+2ab+ b² 反过来就是:
已知a、b、c是三角形的三边,请你判断 a2-b2+c2-2bc的值的正负
解: a2-b2+c2-2bc=a2-(b+c)2
平方差公式分解因式(一)

4)(x + + =[2(a+b)]² z)² - (x -[5(a-c)]² – y – z )² 2.y 原式
=(7a+2b-5c)(-3a+2b+5c)
3.原式=4a(a² -1)=4a(a+1)(a-1)
=[2(a+b)+ 5(a-c)][2(a+b)- 5(a-c)]
2.分解因式:
(1) 9 4 x (2 x 3)(2 x 3) 1 2 1 1 2 2 ( 2) x y z ( xy z )( xy z ) 4 2 2 2 2 (3)0.25q 121p (0.5q 11p)(0.5q 11p)
2
2
( a b )( a b )
3(m n)
( m n)
结论: 公式中的a、b无论表示数、单项式、还是多 项式,只要被分解的多项式能转化成平方差 的形式,就能用平方差公式因式分解。
(3)4 x 9 xy
3
2
解:原式
x( 4 x 2 9 y 2 ) x(2 x 3 y)(2 x 3 y)
(2) 公式右边:
(是分解因式的结果)
★分解的结果是两个底数的和乘以两个底数 的差的形式。
公式归纳
运用平方差公式分解因式的特点: ⑴ 左边应是一个二项式(如: 1 25b2 )
⑵ 二项式的每项(不含符号)都是一个平方的形式。
⑶二项是异号( 如: 25 x 2 4 y 2
)
符合上述特点的式子,可以用平方差公式分解因式。
2
2
整式乘法
a b (a b)(a b)
2 2
因式分解
平方差公式因式分解

4、请在例4中(2)题的每个步骤后面写出解题方法,并总结做因 式分解题的解题步骤。
第1步,提公因式法;第2步,因式分解法。
请同学们结合上面内容,自学5分钟,再用1分钟小组讨论;
6分钟后,比谁能正确地做出完与整版例pt 题类似的习题。
(3) -x2+y2 能,-x2+y2=(y+x)(y-x)
(4) -x2 - y2 不能,这是平方和的相反数
2、因式分解:
(1)
(2)9a2-25b2
(3)x2y-4y
(4)-a4+16
完整版pt
6
1.如果多项式各项含有公因式,则第一步是 提出这个公因式 。
2.如果多项式各项没有公因式,则第一步考 虑用公式分解因式。
3.第一步分解因式以后,所含的多项式还可 以继续分解,则需要进一步分解因式。直到 每个多项式都不能分解为止。
完整版pt
7
必做题:课本171页第2题 选做题:P171第4(2)题
完整版pt
8
完整版pt
9
完整版pt
3
例题自学指导 :认真看课本167页-----168页练习上面的例3、例4:
1、例3中(1)题分别是哪两个数的平方差。 2x和3
2、例3中(2)题那些分别是公式中的a和b,注意“思考云图”的
提示。 x+p表示公式的a,x+q表示公式的b。
3、例4中(1)题的第2步你是如何理解的?请注意“黄色书签”的
4
例3:分解因式 (1)4x2-9 (2)(x+p)2-(x+q)2
分析:在(1)中,4x2=(2x)2,9=32,4x2-9=(2x)2-32, 即可用平方差公式分解因式。 在(2)中,把(x+p)和(x+q)各看成一个整体。
平方差公式因式分解

2.下列多项式可不可以可不可以用平方差公式? 2.下列多项式可不可以可不可以用平方差公式?如 下列多项式可不可以可不可以用平方差公式 果可以,应分解成什么式子?如果不可以, 果可以,应分解成什么式子?如果不可以,说明为 什么? 什么? x2+y2 -x2+y2 -x2 -y2 a4 -b2
练习3、下列多项式中, 练习 、下列多项式中,哪些可以运用平 方差公式来分解因式? 方差公式来分解因式?可以的把它分解因 式。
( )
3
)
2
2
口答: 口答:
1.填空: 填空: 填空
4x2=(2x )2 36a4=( 6a2 )2 81n6=( 9n3 )2
10p 100p4q2=( 2q )2
25m2=( 5m )2 0.49b2=(0.7b )2 64x2y2=(8xy 9 c 2 =( 16 )2 3 _ c)2 4
例1把下列各式因式分解(1 ) x Nhomakorabea2
+ 12 x + 36
x + y
2 2
2
( 2 ) − 2 xy +
(3) ( a + b ) − 6 ( a + b ) + 9
(4 ) − a
2
− 4 b + 4 ab
2
例2把下列各式因式分解 把下列各式因式分解
(1)3ax2+6ax+3ax ) )(a+b)2-12(a+b)2+36 (2)( )( ) ( ) )(a+b)4-18(a+b)2+81 (3)( )( ) ( )
练习2、把下列各题的括号内, 练习 、把下列各题的括号内,填入适当 的单项式, 的单项式,使等式成立
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方差公式法分解因式(1)
一 选择题
1.下列代数式中能用平方差公式分解因式的是( )A .a 2+b 2 B .-a 2-b 2 C .a 2-c 2-2ac D .-4a 2+b 2
2.-4+0.09x 2分解因式的结果是( )
A .(0.3x+2)(0.3x-2)
B .(2+0.3x )(2-0.3x )
C .(0.03x+2)(0.03x-2)
D .(2+0.03x )(2-0.03x )
3.已知多项式x+81b 4可以分解为(4a 2+9b 2)(2a+3b )(3b-2a ),则x 的值是( )
A .16a 4
B .-16a 4
C .4a 2
D .-4a
2 4.分解因式2x 2-32的结果是( )
A .2(x 2-16)
B .2(x+8)(x-8)
C .2(x+4)(x-4)
D .(2x+8(x-8)
5.下列各式中,能用平方差公式分解因式的是( )A.22b a +- B.22b a -- C.22b a + D.33b a -
6.(x +1)2-y 2分解因式应是( )
A. (x +1-y)(x +1+y)
B. (x +1+y)(x -1+y)
C. (x +1-y)(x -1-y)
D. (x +1+y)(x -1-y)
7.下列各式中,能用平方差公式分解因式的是( )
A .a 2+b 2
B .-a 2+b 2
C .-a 2-b 2
D .-(-a 2)+b 2
8.下列二项式中,能用平方差公式分解因式的是( )A 、x 2+4y 2 B 、-4y 2+x 2 C 、-x 2-4y 2 D 、x -4y 2
9.平方差公式(a+b )(a -b )=a 2-b 2中字母a ,b 表示( )
A .只能是数
B .只能是单项式
C .只能是多项式
D .以上都可以
10.下列多项式的乘法中,可以用平方差公式计算的是( )
A .(a+b )(b+a )
B .(-a+b )(a -b )
C .(13a+b )(b -13
a ) D .(a 2-
b )(b 2+a ) 二 填空题
1.已知一个长方形的面积是a 2-b 2(a>b ),其中长边为a+b ,则短边长是_______
2.代数式-9m 2+4n 2分解因式的结果是_________
3.25a 2-__________=(5a+3b )(5a-3b )
4.已知a+b=8,且a 2-b 2=48,则式子a-3b 的值是__________
5.分解因式:①29a -= ;②3x x -= ③22
49a b -= ;
④2422516a y b -+= ;⑤3375a a -= ;⑥39a b ab -=
⑦44x y -= ;⑧2224m m n -= ;⑨42(53)x x -+= ; ⑩225(21)n -+= ;○114481x y -= ;○122199
a -+= 6.若1004,2a
b a b +=-=,则代数式22
a b -的值是
7.式子851-能被20~30之间的整数 整除
8.已知x 2-y 2=-1, x+y=0.5,则x -y=
9.两个连续偶数的平方差能可以被偶数 整除
10.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为 三 解答题
1.分解因式
(1)24x - (2)29y - (3)21a - (4)224x y - (5)2125b - (6)222
x y z -
(7)
2240.019m b - (8)2219
a x - (9)2236m n - (10)2249x y - (11)220.8116a
b -
(12)222549p q - (13)2422a x b y - (14)41x - (15)4416a b - (16)44411681
a b m -
(17)224()a b c -+ (18)22()()x p x q +-+ (19)22(32)()m n m n +-- (20)22
16()9()a b a b --+
(21)53x x - (22)224ax ay - (23)229()4()x y x y --+ (24)22()()a b c a b c ++-+-
(25)416ax a -+ (26)322ab ab - (27)316x x - (28)2433ax ay - (29)2(25)4(52)x x x -+-
(30)x 3-4xy 2 (31)32x 3y 4-2x 3 (32)ma 4-16mb 4 (33)-8a (a+1)2+2a 3 (34)16mx (a-b )2-9mx (a+b )2
2.计算 (1)22758258- (2)22
3.59 2.54⨯-⨯ (3)
22200120031001-
(4)22429171- (5) 492-512 (6)22222
11111(1)(1)(1)(1)(1)234910---⋅⋅⋅--
3.证明:两个连续奇数的平方差是8的倍数
4.已知4m+n=90,2m -3n=10,求(m+2n)2-(3m -n)2的值
5.广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?。