因式分解练习题(平方差公式)

合集下载

八年级数学上册《因式分解》练习题

八年级数学上册《因式分解》练习题

八年级数学上册《因式分解》练习题八年级数学上册《因式分解》练题一、本节课的知识要点:1、平方差公式分解因式的公式:$a^2-b^2=(a+b)(a-b)$;1)多项式的项数有两项;平方差结构特点:2)多项式的两项的符号相反;3)多项式的两项能写成的形式。

2、完全平方公式法分解因式的公式:(1)$a^2+2ab+b^2=(a+b)^2$;(2)$a^2-2ab+b^2=(a-b)^2$。

完全平方式的特点:(1)、必须是二项式;2)、有两个的“项”;3)、有这两平方“项”底数积的两倍。

二、本节课的课堂练:一)选择题:1.下列多项式,能用平方差公式分解的是(C)。

A.-$x^2$-$4y^2$。

B.$9x^2+4y^2$。

C.-$x^2+4y^2$。

D.$x^2+(-2y)^2$2、化简$x^3(-x)^3$的结果是(A)。

A、$-x^6$。

B、$x^6$。

C、$x^5$。

D、$-x^5$3、下列运算正确的是(B)。

A、$(a+b)^2=a^2+b^2+2a$。

B、$(a-b)^2=a^2-b^2$C、$(x+3)(x+2)=x^2+6$。

D、$(m+n)(-m+n)=-m^2+n^2$4、$36x+kx+16$是一个完全平方式,则$k$的值为(B)。

A.48.B.24.C.-48.D.±485、已知$a$、$b$是$\triangle ABC$的的两边,且$a^2+b^2=2ab$,则$\triangle ABC$的形状是(B)。

A、等腰三角形。

B、等边三角形。

C、锐角三角形。

D、不确定6、下列四个多项式是完全平方式的是(D)。

1、$x^2+xy+y^2$。

2、$x^2-2xy-y^2$。

3、$4m^2+2mn+4n^2$。

4、$a^2+ab+b^2$7、把$(a+b)+4(a+b)+4$分解因式得(A)。

A、$(a+b+1)$。

B、$(a+b-1)$。

C、$(a+b+2)$。

D、$(a+b-2)$8、下面是某同学的作业题:13a+2b=5ab$○$24m^3n-5mn^3=-m^3n$○$33x^3(-2x^2)=-6x^5$○$44a^3b÷5(a^3)^2=a^5$○$6(-a)^3÷(-a)=-a^2$其中正确的个数是(3)。

北师版八年级下册数学第4章 因式分解 平方差公式(2)

北师版八年级下册数学第4章 因式分解  平方差公式(2)
解:原式=2x(x2-4)=2x(x+2)(x-2). 当x=3时,原式=2×3×(3+2)×(3-2)=2×3×5×1= 30.
15.【中考·大庆】已知x2-y2=12,x+y=3,求2x2-2xy的值.
解:∵x2-y2=12, ∴(x+y)(x-y)=12. ∵x+y=3①, ∴x-y=4②. 由①+②,得2x=7.∴2x2-2xy=2x(x-y)=7×4=28.
北师版八年级下
第四章 因式分解
3 公式法 第1课时 平方差公式
提示:点击 进入习题
1 (a+b)(a-b);和;差 2C 3A 4A 5 见习题
6A
答案显示
7C 8D
9 a(b+1)(b-1)
(x+2y)(x-2y);(2a+3)(2a 10 -3)
11 -4 12 见习题 13 见习题 14 见习题 15 见习题
(3)3a2-48; 解:原式=3(a2-16)=3(a+4)(a-4);
(4)2a2(n-m)+8(m-n). 原式=2a2(n-m)-8(n-m)=2(n-m)(a2-4)=2(n-m)(a+2)(a -2).
13.计算:
(1)25×1012-992×25;
解:原式=25×(1012-992) =25×(101+99)×(101-99) =25×200×2 =10000;
8.因式分解的结果是(x+y-z)(x-y+z)的多项式是( )
D
A.x2-(y+z)2
B.(x-y)2-z2
C.-(x-y)2+z2
D.x2-(y-z)2
9.【2020·安徽】分解因式:ab2-a=_____________a_(.b+1)(b-1)
10.【2021·江西】因式分解:x2-4y2=______________(x_+. 2y)(x-2y) 【2021·乐山】因式分解:4a2-9=________________.

公式法分解因式经典练习题分类汇编

公式法分解因式经典练习题分类汇编

【基础知识】公式法分解因式(1)平方差公式: a 2-b 2= .(2)完全平方公式:a 2+2ab +b 2= . a 2-2ab +b 2= .(3)立方和公式:3322()()a b a b a ab b +=+-+.(4)立方差公式:3322()()a b a b a ab b -=-++.【题型1】利用平方差公式分解因式分解因式:(1)4x 2-y 2; (2)-16+a 2b 2; (3)x 2100-25y 2; (4)(x +2y)2-(x -y)2.【变式训练】 1.分解因式(1)4a 2-y 2; (2)x 2y 4-49; (3)4a 2-(3b -c)2; (4)(x +y)2-4x 2; (5)x 4-16;(6)(4x -3y)2-25y 2 (7)25(a +b)2-4(a -b)2; (8)9x 2-(2x -y)2;(9)(a +b)4-(a -b)4;(10)(2x +y)2-(x -2y)2; (11)9(a +b)2-16(a -b)2; (12)9(3a +2b)2-25(a -2b)2.2.分解因式(1)a 3-9a ; (2)3x 2-12; (3)8m 3-2m ; (4)12 m 2n 2-8; (5)31a 2b 2-3.(6)3m(2x -y)2-3mn 2; (7)(a -b)b 2-4(a -b); (8)x ²-y ²-3x-3y ; (9)a 2(a-b )+b 2(b-a ).【题型2】完全平方式已知x 2+kxy +16y 2是一个完全平方式,则k 的值是 .【变式训练】1.下列式子为完全平方式的是( )A.a 2+ab +b 2B.a 2+2a +2C.a 2-2b +b 2D.a 2+2a +12.若9a 2+6(k -3)a +1是完全平方式,则 k 的值是( )A.±4B.±2C.3D.4或23.已知a 2x 2±2x+b 2是完全平方式,且a ,b 都不为零,则a 与b 的关系为( )A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数4.下列各式能组成完全平方式的个数是 .①x 6-31128x ②x 8+4x 4+4 ③3m 2+2m+3 ④m 2-2m+4 5.若x 2+8x +k 是完全平方式,则k = .6.若x 2+mx +9是完全平方式,则m 的值是 .【题型3】利用完全平方公式分解因式分解因式: (1)a 2+4a +4; (2)x 2+4y 2-4xy ; (3)9+12a +4a 2; (4)a 2-2a +1.【变式训练】1.因式分解:(1)4x 2+y 2-4xy ; (2)9-12a +4a 2; (3)(m +n)2-6(m +n)+9.2.分解因式:(1)ab2-4ab+4a;(2)-3x+12x-12;(3)4x2-8x+4;(4)2a3-8a2+8a; (5)-2x2y+12xy-18y; (6)3x2-6x+3; (7)-4a2+24a-36.(8)2a3b-8a2b+8ab; (9)4x3y-24x2y+39xy; (10)-3x2y+6xy-3y; (11)4a2b2+24ab+36.3.分解因式(1)x(x-1)-3x+4; (2)(x-2y)2+8xy;(3)(2a+b)2-4ab;(4)(x-y)2-z2+4xy;(5)ab(ab+2)+2ab+4; (6)(x+2y)2-8xy;(7)(x-y)2+4xy;(8)(2a-b)2-c2+8ab.。

因式分解公式法1——平方差公式

因式分解公式法1——平方差公式

19y
2
4x
2
21 25x
2
9 2 2 3 m 16 n 25
把 x y x y 因式分解.
2 2
因式分解:
1x y y x
2
2
216a b
2
9a b
2

x y
4
4
因式分解.
将下列多项式因式分解:
分解因式注意事项:
1、有公因式可提的要先提公因式,再用公式法。
2、分解之后要看每一项是否分解彻底。
3、答案要写成最简形式。
作业
课作:习题3.3A组第1题 家作:基训P28 1至9题
分解因式
你会做了吗?
x 25
2
解:原式=
x 5 x 5x 5
2 2
3.3 因式分解—— 公式法1 平方差公式
一、回顾旧知
2-b2 a 1、(a+b)(a-b)=_________. 平方差公式 。 这个公式叫____________
整式乘法 从左边到右边的这个过程叫___________ 。 (a+b)(a-b) 2、反过来,a2-b2=__________. 因式分解 从左边到右边的这个过程叫___________ 。 3、因此,a2-b2= (a+b)(a-b)是因式分解 中的一个公式。
1x
4
16
29x4 36y 2
把 x y x
3 2
5
因式分解.
将下列多项式因式分解:
13x
3
12x
2a
3
ab
2
交流与探讨: 归纳:因式分解的一般步骤: 1)提公因式 2)运用公式 注意:分解必须彻底。

平方差公式分解因式

平方差公式分解因式

2.原式=(x2)² -1²
=(x2+1)(x2-1)
=(x2+1)(x+1)(x-1)
例3.把下列各式因式分解 解:
1)x3y2-x5 2)ab3解: -4ab
1.原式=x3(y2-x2)
3.原式=x(x2-9) 应先提公因 =x(x+3)(x-3) 式,再用平方 差公式进行因 式分解
3)x3-9x
=(7a+2b-5c)(-3a+2b+5c)
2.原式=[2(a+b)]² -[5(a-c)]²
例2.把下列各式因式分解
1)64a8-b4
因式分解时, 必须进行到每 2 2-(y2)2 3. 原式 =(x ) 解: 一个因式都不 2)x4-1 2+y 2)(x2-y2) 能再分解为止 =(x 4 2 2 2 4 2 1.原式=(8a ) -(b ) =(8a +b )(8a4-b2) 3)x4解: -y4 = (x2 + y2)(x+y)(x-y) 解:
看谁做得最快最 正确!
观察以上式子是满足什么乘法公 式运算? 以上式子的右边的多项式有什么 共同点?
引例:
对照平方差公式怎样将下面的多项式分解因式
1)
m² - 16
2)
4x²- 9y²
m² - 16= m² - 4² =( m + 4)( m - 4) a² - b² = (a + b)( a - b )
平方差公式:
2 2 + (a b)(a b) = a - b
整式乘法
两个数的和与两个数的差的乘积, 等于这两个数的平方差.
a - b = ( a+ b)( a - b)

因式分解练习题(公式法)

因式分解练习题(公式法)

因式分解习题——公式法分解因式专题训练一:利用平方差公式分解因式题型(一):把下列各式分解因式1、24x -2、29y -3、2422a x b y - 解: 解: 解:4、224x y -5、2125b -6、222x y z - 解: 解: 解:7、2240.019m b -8、2219a x -9、2236m n - 解: 解: 解: 10、2249x y - 11、220.8116a b - 12、222549p q - 解: 解: 解: 13、41x - 15、4416a b - 16、44411681a b m - 解: 解: 解: 题型(二):把下列各式分解因式1、22()()x p x q +-+2、 22(32)()m n m n +-- 解: 解:3、2216()9()a b a b --+4、229()4()x y x y --+ 解: 解:5、22()()a b c a b c ++-+-6、224()a b c -+ 解: 解:题型(三):把下列各式分解因式1、53x x -2、224ax ay -3、322ab ab - 解: 解: 解:4、316x x -5、2433ax ay -6、2(25)4(52)x x x -+- 解: 解: 解:7、324x xy - 8、343322x y x - 9、4416ma mb - 解: 解: 解:10、238(1)2a a a -++ 11、416ax a -+ 12、2216()9()mx a b mx a b --+ 解: 解: 解:题训练二:利用完全平方公式分解因式题型(一):把下列各式分解因式1、221x x ++2、2441a a ++3、 2169y y -+ 解: 解: 解:4、214m m ++ 5、 221x x -+ 6、2816a a -+ 解: 解: 解: 7、2144t t -+ 8、21449m m -+ 9、222121b b -+ 解: 解: 解:10、214y y ++ 11、2258064m m -+ 12、243681a a ++ 解: 解: 解:13、2242025p pq q -+ 14、224x xy y ++ 15、2244x y xy +- 解: 解: 解:题型(二):把下列各式分解因式1、2()6()9x y x y ++++2、222()()a a b c b c -+++ 解: 解:3、2412()9()x y x y --+-4、22()4()4m n m m n m ++++ 解: 解:5、()4(1)x y x y +-+-6、22(1)4(1)4a a a a ++++ 解: 解:题型(三):把下列各式分解因式1、222xy x y --2、22344xy x y y --3、232a a a -+- 解: 解: 解:4、221222x xy y ++ 5、42232510x x y x y ++ 解: 解:6、2232ax a x a ++7、2222()4x y x y +- 解: 解:8、2222()(34)a ab ab b +-+ 9、42()18()81x y x y +-++ 解: 解:10、2222(1)4(1)4a a a a +-++ 11、42242()()a a b c b c -+++ 解: 解:12、4224816x x y y -+ 13、2222()8()16()a b a b a b +--+- 解: 解:题型(五):利用因式分解解答下列各题1、已知: 2211128,22x y x xy y ==++,求代数式的值。

15.4.2 因式分解(平方差公式)

15.4.2 因式分解(平方差公式)

(3) m2 - 0.01n2; (4) 4x2-9.
(1) 1-25b2 = 12-(5b)2 = (1+5b) (1-5b) (2) x2y2-z2 = (xy)2- z2 = (xy+z) (xy-z) (3) m2- 0.01n2 = m2- (0.1n)2 =(m+0.1n)(m-0.1n) (4) -9+4x2 = (2x)2 - 32 = (2x +3) (2x-3)
(1)(x+p)2-(x-q)2;
(2)16(a-b)2-9(a+b)2.
练习2 把下列各式因式分解:
(1) (m+n)2 - n2 (2) (2x-y)2 - (x+2y)2 (3) (a+b+c)2 - (a-b+c)2
例题3 把下列各式因式分解:
(1) a3b - ab (2) x4 - y4
三维课堂 P74 第十四课时
把下列各式因式分解: (1)x2-4 =(x+2)(x-2) (2) 9-y2 =(3+y)(3-y) (3) 1-a2b2 =(1+ab)(1-ab) (4) 4x2-y2 =(2x+y)(2x-y).
把下列各式因式分解:
(1)36-m2 =(6+m) (6-m) (2) 4x2-9y2 = (2x+3y) (2x-3y)
P168页 练习 :1
(3)a2-116
x2
=(a+
1 4
x)(a-
1 4
x)
(4) 0.81b2-16c2 = (0.9b + 4c) (0.9b - 4c)
例题2 把下列各式因式分解:

平方差公式法分解因式

平方差公式法分解因式

求代数式 x 2- y2-2y+2x 的值.
பைடு நூலகம்
当堂检测
把下列各式分解因式:
(1) x2 y2-36
(2)18a2-50 (3)-3ax2+3ay4
(4)(2a b) 4a
2 2 2
2 2
(5)(x 3x) x 1
6x
4
16
小结:1.具有的两式(或)两数平方差形式的多项式 可运用平方差公式分解因式。 2.公式a² - b² = (a+b)(a-b)中的字母 a , b可以是数, 也可以是单项式或多项式,应视具体情形灵活运用。 3.运用平方差公式分解因式的关键是要把分解的多 项式看成两个数的平方差,尤其当系数是分数 或小数时,要正确化为两数的平方差。 4.若多项式中有公因式,应先提取公因式,然后再
=(4m+2n)(2m+4n) =4(2m+n)(m+2n)
分解因式: xm+2-xm
解:xm+2-xm =xmx2-xm =xm(x2-1) =xm(x+1)(x-1)
(你会做 么???)
利用因式分解计算
2 2 1.1012 -988 2 2 2.73×145 -105 ×73
创新与应用
已知, x+ y =7, x-y =5,
思考:能用平方差公式因式分解的多项式有何特
①有且只有两个平方项;
②两个平方项异号;
例3分解因式: (1) 4x2 – 9 ; (2) (x+p)2 – (x+q)2.
分析: 在(1)中,4x2 = (2x)2,9=32,4x2-9 = (2x )2 –3 2, 即可用平方差公式分解因式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档