概率论考试题以及解析汇总

合集下载

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。

因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。

解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

概率论习题及答案习题详解

概率论习题及答案习题详解

222习题七( A )1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自X 的一个样本,试求参数p 的矩估计量与极大似然估计量.解:由题意,X 的分布律为: ()(1),0k N kN P X k p p k N k -⎛⎫==-≤≤⎪⎝⎭. 总体X 的数学期望为(1)(1)011(1)(1)1NNk N k k N k k k N N EX k p p N p p p k k ----==-⎛⎫⎛⎫=-=- ⎪ ⎪-⎝⎭⎝⎭∑∑ 1((1))N N p p p N p -=+-=则E X p N=.用X 替换E X 即得未知参数p 的矩估计量为ˆX pN=.设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为111211(,,;)()(1)nniii i n nx nN x n i i i i NL x x x p P Xx pp x ==-==∑∑⎛⎫===⋅- ⎪⎝⎭∏∏取对数111ln ln ln ()ln(1)nn ni i i i i iN L x p nN x p x ===⎛⎫=+⋅+-⋅- ⎪⎝⎭∑∑∑,11ln (1)nnii i i xnN x d L dpp p ==-=--∑∑.223令ln 0d L dp=,解得p 的极大似然估计值为11ˆnii x npN==∑.从而得p 的极大似然估计量为11ˆnii X X npNN===∑.2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为22,0(;)0,x x f x θθθ⎧<<⎪=⎨⎪⎩其它.其中参数0θ>,求θ的矩估计.解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则222()3xE X xf x dx x dx θθθ+∞-∞==⋅=⎰⎰32E X θ⇒=用X 替换E X 即得未知参数θ的矩估计量为3ˆ2X θ=.3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为⎪⎩⎪⎨⎧≤>=--0,0,0,);(1x x ex x f xαλαλαλ其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计.解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为2241()1121(),0(,,,;)0,ni i n x n n i i n i x e x L x x x αλαλαλ=--=⎧∑⎪⋅≥=⎨⎪⎩∏ 其他 取对数 11ln ln ln (1)(ln )()n ni i i i L n n x x αλααλ===++--∑∑解极大似然方程1ln 0ni i d L nx d αλλ==-=∑得λ的极大似然估计值为1ˆnii nxαλ==∑从而得λ的极大似然估计量为1ˆnii nXαλ==∑.4、设总体X 服从几何分布,10,,2,1,)1()(1<<=-==-p k p p k X P k 试利用样本值n x x x ,,,21 ,求参数p 的矩估计和最大似然估计.解:因11111(1)(1)k k k k EX k p p p k p p∞∞--===⋅-=⋅-=∑∑,用X 替换E X 即得未知参数p 的矩估计量为1ˆpX=.在一次取样下,样本值12(,,,)n x x x 即事件1122{},{},,{}n n X x X x X x === 同时发生,由于12,,,n X X X 相互独立,得联合分布律为121122(,,,;)()(),,()n n n L x x x p P X x P X x P X x ====22512111(1)(1)(1)n x x x p p p p p p ---=-⋅-- ,即得极大似然函数为1()(1)ni i x nnL p p p =-∑=-取对数 1ln ()ln ()ln(1)ni i L p n p x n p ==+--∑解极大似然方程1ln ()01nii xnd L p n dppp=-=-=-∑得p 的极大似然估计值为11ˆ1nii pxn==∑从而得p 的极大似然估计量为111ˆ1nii pXXn===∑.5、设总体X 的概率密度为()1;exp ,2x f x σσσ⎧⎫=-⎨⎬⎩⎭0σ>为未知参数, n X X X ,,,21 为总体X 的一样本,求参数σ的最大似然估计.解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为121111(,,,;)(;)(;)exp{||}(2)nn n ini L x x x f x f x xσσσσσ====-∑取对数1211ln (,,,;)ln(2)||nn ii L x x x n xσσσ==--∑226解极大似然方程21ln 1||0nii d L nxd σσσ==-+=∑得σ的极大似然估计值11ˆ||nii x nσ==∑从而得σ的极大似然估计量为11ˆ||nii Xnσ==∑.6、证明第5题中σ的最大似然估计量为σ的无偏估计量.证明:由第5题知σ的最大似然估计量为11ˆ||nii X nσ==∑故 1111ˆ(||)||nniii i E E XE X nnσ====∑∑又1||||||exp{}2i x E X x dx σσ+∞-∞=⋅-⎰12exp{}exp{}()2x x x x dx x d σσσσ+∞+∞=⋅-=⋅-⎰⎰[exp{}|exp{}]xxx dx σσσ+∞+∞=-⋅---=⎰从而 ˆE σσ=,即ˆσ是σ的无偏估计. 7,、设总体X 的概率密度为()222220;0x x e x f x σσσ-⎧⎪>=⎨⎪⎩,,,其它.,20σ>为未知参数, n X X X ,,,21 为总体X 的一个样本,求参数2σ的的矩估计量和最大似然估计量.解:因22222(;)2xxE X x f x dx x e dx σσσ-+∞+∞-∞=⋅=⋅⎰⎰222222222002()[2|2]xxxxd exeedx σσσ---+∞+∞+∞=-=--⎰⎰22722222202xxedx edx σσ--+∞+∞===⎰⎰用X 替换E X 即得未知参数σ的矩估计量为ˆX σ=从而得未知参数2σ的估计量为22ˆ)X σ=设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为21211()222211212(,,,;)(;)(;)ni nix i n n nx L x x x f x f x eσσσσσ=-=∑==∏取对数222111ln ln ln 2nniii i L xn xσσ===--∑∑解极大似然方程22241ln 102nii d L nxd σσσ==-+=∑得2σ的极大似然估计值2211ˆ2nii x nσ==∑从而得未知参数2σ的估计量为2211ˆ2nii xnσ==∑.8、设总体),(~2σμN X ,μ已知,σ为未知参数, n X X X ,,,21 为X 的一个样本,∑=∧-=ni i X c 1||μσ, 求参数c ,使∧σ为σ的无偏估计.解:由无偏估计的定义,要使∧σ为σ的无偏估计,则ˆE σσ=228又11ˆ(||)||n ni i i i E E c X u c E X u σ===-=-∑∑由题意知总体),(~2σμN X ,从而22()2||||x u i E X u x u dx σ--+∞-∞-=-⎰2222()()2211[()]()x u x u u ux u dx x u dx σσ----+∞-∞=--+-⎰⎰且2222()220()x u yx u yux u dxydy σσ--=--+∞+∞-=⎰⎰22222()2yyed σσ-+∞=--=⎰由对称性有||i E X u -=从而有cnσ=,即2c n=.9、设θˆ是参数θ的无偏估计量,且有0)ˆ(>θD ,试证22)ˆ(ˆθθ=不是2θ的无偏估计量.证明:因为θˆ是参数θ的无偏估计量,故ˆE θθ=,且0)ˆ(>θD有22222ˆˆˆˆˆ()()()()E E D E D θθθθθθθ==+=+>即22)ˆ(ˆθθ=不是2θ的无偏估计量.10、设总体),(~2σμN X ,321,,X X X 是来自X 的样本,试证:估计量32112110351ˆX X X ++=μ;32121254131ˆX XX ++=μ;3213216131ˆX XX ++=μ229都是μ的无偏估计,并指出它们中哪一个最有效.证明:总体),(~2σμN X ,321,,X X X 是来自X 的样本,则1123123131131ˆ()51025102E E X X X E X E X E X u μ=++=++= 2123123115115ˆ()34123412E E X X X EX EX EX u μ=++=++=3123123111111ˆ()362362E E X X X EX EX EX u μ=++=++=即估计量123ˆˆˆ,,μμμ都是μ的无偏估计. 又211231231311911ˆ()510225100450D D X X X D X D X D X μσ=++=++=22123123115112525ˆ()341291614472D D X X X D X D X D X μσ=++=++=231231231111117ˆ()362936418D D X X X D X D X D X μσ=++=++=有 213ˆˆˆD D D μμμ<<,从而估计量2ˆμ最有效. 11,、设12,,,n X X X 是总体()20,X N σ 的一个样本,20σ>,证明:211ni i X n=∑是2σ的相合估计量.证明:由题意,总体()20,X N σ ,则220,EXEXσ==由样本的独立同分布性知2221111()nniii i E X EX nnσ====∑∑,即211ni i X n=∑是2σ的无偏估计.2221111()()nniii i D X D Xnn===∑∑又2422()()i i i D X E X E X =-,且23022222224432222|3]xxxi EX xdx x ex edx σσσ---+∞+∞+∞-∞-∞-∞==-⎰⎰2222423xx edx σσσ-+∞-∞==故2422444()()32i i i D X EX EX σσσ=-=-=,有42112()0()nii D X n nnσ==→→∞∑故211ni i X n=∑是2σ的相合估计量12、设总体X 的数学期望为μ,方差为2σ,分别抽取容量为1n 和2n 的两个独立样本,1X ,2X 分别为两样本均值,试证明:如果,a b 满足1a b +=,则12Y aX bX =+是μ的无偏估计量,并确定,a b ,使得()D Y最小.解:由题意,2,EX u D X σ==,且1X ,2X 分别为容量为1n 和2n 的两个独立样本得样本均值,故2111,E X u D X n σ==,2222,E X u D X n σ==.当1a b +=时,有12()EY aEX bEX a b u u=+=+=,即12Y aX bX =+是μ的无偏估计量.222221212()abD Y a D X b D X n n σ=+=+令2212(1)()aa g a n n -=+,由()0g a '=知函数()g a 的稳定点为231112n a n n =+,且1121211()2()0n g n n n n ''=+>+,故112n a n n =+为函数唯一极小值点,即当121212,n n a b n n n n ==++时,()D Y 最小.13、设12,,,n X X X 是总体X 的一个样本, X 的概率密度为();f x θ,0θ>,未知,已知()222nXn χθ,试求θ的置信水平为1α-的置信区间.解:由题意,统计量()222nXn χθ,则给定置信度为1α-时,有()()22122(22)1nXP n n ααχχαθ-≤≤=- ()()221222()122nXnXP n n ααθαχχ-⇔≤≤=-由置信区间的定义知,θ的置信水平为1α-的置信区间为()()221222,22nX nX n n ααχχ-⎛⎫⎪⎪ ⎪⎝⎭. 14、从大批彩色显像管中随机抽取100只,其平均寿命为10000小时,可以认为显像管的寿命X 服从正态分布.已知均方差40=σ小时,在置信水平0.95下求出这批显像管平均寿命的置信区间.解:设12,,,n X X X 是母体X 的样本容量为n 的子样,则显像管平均寿命(10000,16)X N构造统计量(0,1)X uU N -=,有232111222(||)1(1P U UP X UU X Uααααα---<=-⇔-<<+=-由题意10.950.05αα-=⇒=,查表可得0.975 1.96U =,故显像管平均寿命X 的置信度为95%的置信区间为:4040(10000 1.96 1.96(100007.84)-+=±.15、设随机地调查26年投资的年利润率(%),得样本标准差(%)15=S ,设投资的年利润率X 服从正态分布,求它的方差的区间估计(置信水平为0.95).解:由题意,构造统计量2222(1)(1)n Sn χχσ-=- ,则给定置信水平为1α-,有2222122(1)((1)(1))1n SP n n ααχχασ---<<-=-22222122(1)(1)()1(1)(1)n Sn SP n n αασαχχ---⇔<<=---取26,0.15,10.95n S α==-=,查表可得20.025(25)13.120χ=,20.975(25)40.616χ=,故方差的置信度为95%的置信区间为2222122(1)(1)(,)(0.014,0.043)(1)(1)n Sn Sn n ααχχ---=--.16,、从一批钉子中抽取16枚,测得其长度为(单位:厘米)2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10, 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11.设钉子的长度X 服从正态分布,试求总体均值μ的置信水平为0.90的置信区间.233解:设1216,,,X X X 是母体X 的样本容量为16的子样,由题意知2.215X =,242.933310S -=⨯.构造统计量(1)X u t t n -=- ,有111222(||)1(1P t tP X tu X tααααα---<=-⇔-<<+=-由题意10.900.10αα-=⇒=,查表可得0.95(15) 1.7459t =,故显像管平均寿命X的置信度为90%的置信区间为:(2.1175,2.1325)=±. 17、生产一个零件所需时间(单位:秒)),(~2σμN X ,观察25个零件的生产时间得5.5=x ,73.1=s .试求μ和2σ的置信水平为0.95的置信区间.解:设1225,,,X X X 是母体X 的样本容量为25的子样,由题意知5.5X =, 1.73S =.构造统计量(1)X u t t n -=- ,有111222(||)1(1P t tP X tu X tααααα---<=-⇔-<<+=-由题意10.950.05αα-=⇒=,查表可得0.975(24) 2.0639t =,故参数μ的置信度为95%的置信区间为:(4.786,6.214)(5.50.714)=±.234构造统计量2222(1)(1)n Sn χχσ-=- ,则给定置信水平为1α-,有2222122(1)((1)(1))1n SP n n ααχχασ---<<-=-22222122(1)(1)()1(1)(1)n Sn SP n n αασαχχ---⇔<<=---取16, 1.73,0.05n S α===,查表可得20.025(15) 6.2621χ=,20.95(15)27.4884χ=,故方差的置信度为95%的置信区间为(1.825,5.. 18、产品的某一指标),(~2σμN X ,已知04.0=σ,μ未知.现从这批产品中抽取n 只对该指标进行测定,问n 需要多大,才能以95%的可靠性保证μ的置信区间长度不大于0.01?19、设A 和B 两批导线是用不同工艺生产的,今随机地从每批导线中抽取5根测量其电阻,算得721007.1-⨯=A s ,62103.5-⨯=B s ,若A 批导线的电阻服从),(211σμN ,B 批导线的电阻服从),(222σμN ,求2221σσ的置信水平为0.90的置信区间.20,、从甲乙两个蓄电池厂的产品中分别抽取6个产品,测得蓄电池的容量(A.h)如下:甲厂 140 , 138 , 143 , 141 , 144 , 137;乙厂135 , 140 , 142 , 136 , 138 , 140设蓄电池的容量服从正态分布,且方差相等,求两个工厂生产的蓄电池的容量均值差的95%置信区间.( B )1、设总体X 的概率分别为235其中102θθ⎛⎫<<⎪⎝⎭是未知参数,利用总体X 的如下样本值: 3, 1, 3, 0, 3, 1, 2, 3求θ的矩估计值和最大似然估计值.解:由题意可知总体X 为离散型随机变量,则总体X 的数学期望为()32()2123(12)34k EX kP Xk θθθθθ====-++-=-∑有34E X θ-=,由样本值可知2X =,用X 替换E X 即得未知参数θ的矩估计量为3ˆ4X θ-=,矩估计值1ˆ4θ=.设12340,1,2,3x x x x ====是相应于样本1234,,,X X X X 的样本值,则似然函数为12341234(,,,;)(0)(1)(2)(3)L x x x x P X P X P X P X θ=====462(12)4(1)θθθ=--取对数 ln 4ln(12)6ln 42ln(1)L θθθ=-++- 解极大似然方程ln 8620121d L d θθθθ-=+-=--有2121430θθ-+=,从而7ˆ12θ±=又当ˆ12θ=712106θ+-=-<矛盾,故舍去.所以θ的最大似然估计值ˆ12θ=2、设()111ˆˆ ,,n X X θθ= 和()221ˆˆ,,n X X θθ= 是参数θ的两个相236互独立的无偏估计量,且方差()()12ˆˆ2D D θθ=,试确定常数,a b ,使得12ˆˆa b θθ+是θ的无偏估计量,且在一切这样的线性估计类中方差最小.解:由题意,1ˆ θ和2ˆθ是参数θ的两个相互独立的无偏估计量,则 12ˆˆ,E E θθθθ==.要使得12ˆˆa b θθ+是θ的无偏估计量,有 1212ˆˆˆˆ()()E a b aE bE a b θθθθθθ+=+=+=恒成立,即1a b +=.又1ˆ θ,2ˆθ相互独立,且()()12ˆˆ2D D θθ=,则222212122ˆˆˆˆˆ()()()(2)()D a b a D b D a b D θθθθθ+=+=+令2222()22(1)g a a b a a =+=+-,由()0g a '=知函数()g a 的稳定 点为13a =,且1()03g ''>,故线性估计类中方差最小时13a =,23b =.3、在测量反应时间中,一心理学家估计的标准差为0.05秒,为了以0.95的置信水平使他对平均反应时间的估计误差不超过0.01秒,应取多大的样本容量.习题八1.在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)X N σ .一日测得5炉铁水含碳量如下:4.48,4.40,4.42,4.45,4.47在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化. 解:设铁水含碳量作为总体X ,则2(4.55,)X N σ ,从中选取容量为5的样本,测得24.444,0.0011X S ==.由题意,设原假设为0: 4.55H u =237构造检验统计量||(4)X u t t -=,则7.051t ==在显著性水平0.05α=下,查表可得0.97512(4)(4) 2.77647.051tt α-==<,拒绝原假设0H ,即认为有显著性变化.2.根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm.该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x .经计算得知15148ii x==∑, 1521156.26i i x ==∑.试判断该厂是否符合环保法的规定.(该有毒化学物质含量X 服从正态分布)解:设有毒化学物质含量作为总体X ,则2(,)X N u σ ,从中选取容量为15的样本,测得1511 3.215ii X x===∑,22221111()()0.1911nnii i i S x x x nx n n ===-=-=--∑∑.由题意,设原假设为0:3H u <,备择假设为1:3H u >.构造检验统计量||(14)X u t t -=,则|3.23| 1.777t -==,在显著性水平0.05α=下,查表可得10.95(14)(14) 1.7613 1.777t t α-==<,即拒绝原假设0H ,接受备择假设1H ,认为该厂不符合环保的规定.3.某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率238不应低于65.已知该指标服从正态分布2(,)N μσ,5.5σ=.从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸?解:设玻璃纸的横向延伸率为总体X ,则2(,5.5)X N u ,从中选取容量为100的样本,测得55.06x =.由题意,设原假设为0:65H u >,备择假设为1:65H u <.构造检验统计量||(0,1)X u U N -=,则|55.0665|18.07275.5U -==在显著性水平0.05α=下,查表可得10.95 1.644918.0727U U α-==<,即拒绝原假设0H ,接受备择假设1H ,不能接受该批玻璃纸..4.某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根.现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)? 解:设经纱断头率为总体X ,则9.73u EX ==, 1.6σ==,从中选取容量为200的样本,测得9.89x =.由题意,设原假设为0:9.73H u =,备择假设为1:9.73H u ≠.构造检验统计量||(0,1)X u U N -=,则|9.899.73|1.4142U -==在显著性水平0.05α=下,查表可得0.975121.96 1.4142UU α-==>,即接受原假设0H ,认为断头率没有受到显著影响.2395. 某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布2(100,)N σ.某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9.问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(显著性水平α=0.05)解:设每箱重量为总体X ,则2(100,)X N σ ,从中选取容量为10的样本,测得99.9x =,20.34S =.由题意,设原假设为0:100H u =,备择假设为1:100H u ≠.构造检验统计量||(9)X u t t -=,则|99.9100|0.5423t -==,在显著性水平0.05α=下,查表可得0.97512(9)(9) 2.26220.5423tt α-==>,即接受原假设0H ,认为每箱重量无显著差异.6.某自动机床加工套筒的直径X 服从正态分布.现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到51124i i x ==∑, 5213139i i x ==∑.试问这批套筒直径的方差与规定的27σ=有无显著差别?(显著性水平0.01α=)解:设这批套筒直径为总体X ,则2(,)X N u σ ,从中选取容量为5的样本,测得151124.815ii X x===∑,22221111()()15.9511nnii i i S xx x nx n n ===-=-=--∑∑.由题意,设原假设为24020:7H σ=,备择假设为21:7H σ≠.构造检验统计量2222(1)(4)n Sχχσ-=,则2415.959.11437χ⨯==,在显著性水平0.01α=下,查表可得220.99512(4)(4)14.86αχχ-==,220.0052(4)(4)0.2070αχχ==,从而222122(4)(4)ααχχχ-<<,即接受原假设0H ,认为这批套筒直径的方差与规定的27σ=无显著差别.7.甲、乙两台机床同时独立地加工某种轴,轴的直径分别服从正态分布211(,)N μσ、222(,)N μσ(12,μμ未知).今从甲机床加工的轴中随机地任取6根,测量它们的直径为16,,x x ,从乙机床加工的轴中随机地任取9根,测量它们的直径为19,,y y ,经计算得知:61204.6ii x==∑, 6216978.9i i x ==∑91370.8i i y ==∑92115280.2i i y ==∑问在显著性水平0.05α=下,两台机床加工的轴的直径方差是否有显著差异?解:设两台机床加工的轴的直径分别为总体,X Y ,则211(,)X N μσ 、222(,)Y N μσ ,从总体X 中选取容量为6的样本,测得61134.16ii X x ===∑222211111()()0.40811nnii i i S x x x nx n n ===-=-=--∑∑241从总体Y 中选取容量为9的样本,测得91141.29i i Y y ===∑222221111()()0.40511nnii i i S y y y ny n n ===-=-=--∑∑ 由题意,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,8)S F F S = ,则0.408 1.0070.405F ==,在显著性水平0.05α=下,查表可得0.97512(5,8)(5,8) 6.76FF α-==,0.0252(5,8)(5,8)0.1479F F α==,从而122(5,8)(5,8)F F Fαα-<<,即接受原假设0H ,认为两台机床加工的轴的直径方差无显著差异.8.某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的标准差为0.048.某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44.问该日所生产得维尼龙纤度的均方差是否有显著变化(显著性水平α=0.1)?解:设维尼龙纤度为总体X ,则2(,0.048)X N u ,从中选取容量为5的样本,测得5111.4145ii X x ===∑,2211()0.00781nii S x x n ==-=-∑.由题意,设原假设为0:0.048H σ=,备择假设为1:0.048H σ≠.构造检验统计量2222(1)(4)n Sχχσ-=,则2240.007813.542(0.048)χ⨯==在显著性水平0.1α=下,查表可得220.9512(4)(4)9.487713.542αχχ-==<即拒绝原假设0H ,认为维尼龙纤度的均方差有显著变化.9.某项考试要求成绩的标准差为12,先从考试成绩单中任意抽出15份,计算样本标准差为16,设成绩服从正态分布,问此次考试的标准差是否符242合要求(显著性水平α=0.05)?解:设考试成绩为总体X ,则2(,12)X N u ,从中选取容量为15的样本,测得16S =.由题意,设原假设为0:12H σ=,备择假设为1:12H σ≠.构造检验统计量2222(1)(14)n Sχχσ-=,则222141619.055612χ⨯==.在显著性水平0.05α=下,查表可得220.97512(14)(14)26.1189αχχ-==,220.0252(14)(14) 5.6287αχχ==,从而222122(14)(14)ααχχχ-<<,即接受原假设0H ,认为此次考试的标准差符合要求.10.某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,获得样本观察值为:甲:25,28,23,26,29,22;乙:28,23,30,25,21,27.假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著性水平α=0.05,)?对这两种香烟的尼古丁含量,检验它们的方差有无显著差异(显著性水平α=0.1)?解:设这两种烟的尼古丁含量分别为总体,X Y ,则211(,)X N μσ 、222(,)Y N μσ ,从中均选取容量为6的样本,测得61125.56ii X x ===∑,22111()7.51nii S x x n ==-=-∑,61125.66676i i Y y ===∑,22211()11.06671nii S y y n ==-=-∑,由题意,在方差相等时,设原假设为012:H u u =,备择假设为112:H u u ≠.243构造检验统计量12(2)t t n n =+- ,其中222112212(1)(1)9.2834(2)wn S n S Sn n -+-==+-.则0.0948t ==,在显著性水平0.05α=下,查表可得120.97512(2)(10) 2.22810.0948tn n t α-+-==>,即接受原假设0H ,认为这两种香烟的尼古丁平均含量无显著差异.由题意,在方差待定时,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,5)S F F S=,则7.50.677711.0667F ==,在显著性水平0.1α=下,查表可得0.9512(5,8)(5,5) 5.0503FF α-==,0.052(5,8)(5,5)0.1980F F α==,从而122(5,5)(5,5)F F Fαα-<<,即接受原假设0H ,认为它们的方差无显著差异.。

概率论考试题以及解析汇总

概率论考试题以及解析汇总

.试题一一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。

A. A,B 互不相容B. A,B 相互独立C.A ⊂BD. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( )A. 1/2B. 1/12C. 1/18D. 1/93、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( )A.919910098.02.0CB.i i i i C-=∑100100910098.02.0C.ii i i C-=∑1001001010098.02.0 D.i i i i C-=∑-100910098.02.014、设)3,2,1(39)(=-=i i X E i ,则)()31253(321=++X X X EA. 0B. 25.5C. 26.5D. 95、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25242321XX X X X c +++⋅服从t 分布。

( )A. 0B. 1C. 26D. -16、设X ~)3,14(N ,则其概率密度为( )A.6)14(261--x e πB.32)14(261--x eπC.6)14(2321--x eπD.23)14(261--x eπ7、321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ的无偏估计()A.3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X ++ D. 321613131X X X ++ 8 、设离散型随机变量X 的分布列为X123.PC 1/4 1/8则常数C 为( )(A )0 (B )3/8 (C )5/8 (D )-3/89 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X近似的服从( )(A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01下,( )A. 必接受0HB. 可能接受,也可能拒绝0HC. 必拒绝0HD. 不接受,也不拒绝0H 二、填空题(每空1.5分,共15分)1、A, B, C 为任意三个事件,则A ,B ,C 至少有一个事件发生表示为:_________;2、甲乙两人各自去破译密码,设它们各自能破译的概率为0.8,0.6,则密码能被破译的概率为_________;3、已知分布函数F(x)= A + Barctgx )(+∞<<-∞x ,则A =___,B =____;4、随机变量X 的分布律为k C k XP )31()(==,k =1,2,3, 则C=_______;5、设X ~b (n,p )。

概率论练习题与解析

概率论练习题与解析

概率论练习题与解析十、概率论与数理统计一、填空题1、设在一次试验中,事件A 发生的概率为p 。

现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1()1(--+-n n p np p 。

2、 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子有3个黑球5个白球。

现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。

已知取出的球是白球,此球属于第二个箱子的概率为 。

解:用iA 代表“取第i 只箱子”,i =1,2,3,用B 代表“取出的球是白球”。

由全概率公式⋅=⋅+⋅+⋅=++=12053853*********)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P由贝叶斯公式⋅=⋅==5320120536331)()|()()|(222B P A B P A P B A P3、 设三次独立试验中,事件A 出现的概率相等。

若已知A 至少出现一次的概率等于19/27,则事件A 在一次试验中出现的概率为 。

解:设事件A 在一次试验中出现的概率为)10(<<p p ,则有2719)1(13=--p ,从而解得31=p4、已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A Y 的概率)(B A P Y = 。

7.08.05.06.05.0)|()()()()()()()(=⨯-+=-+=-+=A B P A P B P A P AB P B P A P B A P Y 5、 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5。

现已知目标被命中,则它是甲射中的概率为 。

用A 代表事件“甲命中目标”,B 代表事件“乙命中目标”,则B A Y 代表事件“目标被命中”,且8.06.05.06.05.0)()()()()()()()(=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P Y所求概率为75.08.06.0)()()|(===B A P A P B A A P Y Y6、 设随机事件A ,B 及其和事件B A Y 的概率分别是0.4,0.3和0.6。

概率基础测试题及答案解析

概率基础测试题及答案解析

概率基础测试题及答案解析一、选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,那么P(X>0)等于多少?A. 0.5B. 0.6826C. 0.8413D. 0.5000答案:A解析:标准正态分布的均值为0,标准差为1,对称轴为X=0,因此P(X>0)等于0.5。

2. 已知随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 1.5B. 3C. 2.7D. 0.3答案:B解析:二项分布的期望值E(X)=np,所以E(X)=10*0.3=3。

3. 一组数据的平均数是5,方差是4,那么这组数据的中位数是多少?A. 4B. 5C. 6D. 无法确定答案:B解析:平均数是所有数据的总和除以数据的个数,而中位数是将数据按大小顺序排列后位于中间的数。

在没有具体数据的情况下,无法确定中位数,但根据平均数的定义,可以推断中位数为5。

4. 已知随机变量X和Y相互独立,且P(X=1)=0.5,P(Y=1)=0.3,那么P(X=1且Y=1)等于多少?A. 0.15B. 0.5C. 0.3D. 0.6答案:A解析:由于X和Y相互独立,所以P(X=1且Y=1)=P(X=1)*P(Y=1)=0.5*0.3=0.15。

5. 一组数据的样本容量为100,样本均值为50,样本方差为25,那么这组数据的标准差是多少?A. 5B. 10C. 20D. 25答案:A解析:标准差是方差的平方根,所以标准差=√25=5。

6. 已知随机变量X服从泊松分布,其参数λ=4,那么P(X=3)等于多少?A. 0.182B. 0.273C. 0.409D. 0.546答案:B解析:泊松分布的概率质量函数为P(X=k)=e^(-λ)λ^k/k!,代入λ=4和k=3,计算得到P(X=3)=e^(-4)4^3/3!=0.273。

7. 已知随机变量X服从均匀分布U(0,1),那么P(0.5<X<0.6)等于多少?A. 0.1B. 0.05C. 0.15D. 0.2答案:B解析:均匀分布的概率等于区间长度,所以P(0.5<X<0.6)=0.6-0.5=0.1,但因为题目中区间长度为0.1,所以答案为0.05。

高等数学(概率论)习题及解答

高等数学(概率论)习题及解答

高等数学(概率论)习题及解答高等数学(概率论)题及解答
1. 题一
1.1. 题目
已知事件A和B的概率分别为P(A) = 0.2,P(B) = 0.3,且P(A∪B) = 0.4,求P(A∩B)。

1.2. 解答
根据概率的加法定理,有:
P(A∪B) = P(A) + P(B) - P(A∩B)
代入已知数据得:
0.4 = 0.2 + 0.3 - P(A∩B)
P(A∩B) = 0.1
所以,P(A∩B)的概率为0.1。

2. 题二
2.1. 题目
已知某城市一天中的天气分为晴天、阴天和雨天三种情况,其中晴天的概率为0.4,阴天的概率为0.3。

现已知,当下为晴天时,随后一天也是晴天的概率为0.7;当下为阴天时,随后一天为晴天的概率为0.5。

求当下为晴天时,随后一天为阴天的概率。

2.2. 解答
设事件A为当下为晴天,事件B为随后一天为阴天。

根据条件概率的定义,有:
P(B|A) = P(A∩B) / P(A)
已知 P(A) = 0.4,P(B|A) = 0.5,代入并整理得:
0.5 = P(A∩B) / 0.4
P(A∩B) = 0.5 * 0.4
P(A∩B) = 0.2
所以,当下为晴天时,随后一天为阴天的概率为0.2。

以上是高等数学(概率论)习题及解答的部分内容,如有更多问题或需要补充,请随时告知。

概率论习题及答案详解

概率论习题及答案详解

一、填空题1. 掷21n +次硬币,则出现正面次数多于反面次数的概率是0.52. 把10本书任意的放到书架上,求其中指定的三本书放在一起的概率1153. 6.一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率274. 已知()0.7,()0.3,P A P A B =-= 则()0.6.P AB =5. 已知()0.3,()0.4,()0.5,P A P B P A B === 则(|)0.8.P B A B ⋃=6. 掷两枚硬币,至少出现一个正面的概率为34.7. 设()0.4,()0.7,P A P A B =⋃= 若,A B 独立,则()0.5.P B =8. 设,A B 为两事件,11()(),(|),36P A P B P A B === 则7(|).12P A B =9. 设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是7.2710.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为0.104二、选择题1. 下面四个结论成立的是(B ).()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A--=-⋃=∅⊂=∅⋃-=-⋃=若且则2. 设()0,P AB =则下列说法正确的是( D ) ...()0()0.()()A AB B ABC P A P BD P A B P A ==-=和不相容 是不可能事件或3. 掷21n +次硬币,正面次数多于反面次数的概率为( C )1..21211.0.5.21nn A B n n n C D n -++++ 4. 设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( A ).()()..()().()()A P AB P A B B AC P A P BD P AB P A ⋃=⊂==5. 设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( B ).A .P (AB )=0 .B P (A -B )=P (A )P (B ).C P (A )+P (B )=1 .D .P (A |B )=06.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( A ).A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ).D P (A ∪B )=17. 已知()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =( D ).A 0.2 .B 0.45 .C 0.6 .D 0.758.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( C ).A 0.125 .B 0.25 .C 0.375 .D 0.509.设事件,A B 互不相容,已知()0.4P A =,()0.5P B =,则()P AB =( B ).A 0.1 .B 0.4 .C 0.9 .D 110.已知事件A ,B 相互独立,且()0P A >,()0P B >,则下列等式成立的是( B ).A ()()()P A B P A P B ⋃=+ .B ()1()()P A B P A P B ⋃=- .C ()()()P A B P A P B ⋃=.D ()1P A B ⋃=三、 计算题1. 一宿舍内住有6位同学,求他们之中至少有2个人的生日在同一个月份概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——第1页——系名____________班级____________姓名____________学号____________密封线内不答题试题一一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。

A. A,B 互不相容B. A,B 相互独立C.A ⊂BD. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( )A. 1/2B. 1/12C. 1/18D. 1/93、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( )A.919910098.02.0CB.i i i i C-=∑100100910098.02.0C.ii i i C-=∑1001001010098.02.0 D.i i i i C-=∑-100910098.02.014、设)3,2,1(39)(=-=i i X E i ,则)()31253(321=++X X X EA. 0B. 25.5C. 26.5D. 95、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25242321XX X X X c +++⋅服从t 分布。

( )A. 0B. 1C. 26D. -16、设X ~)3,14(N ,则其概率密度为( )A.6)14(261--x e πB.32)14(261--x eπC.6)14(2321--x eπD.23)14(261--x eπ7、321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ的无偏估计()A.3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X ++ D. 321613131X X X ++ 8 、设离散型随机变量X 的分布列为则常数C 为( )(A )0 (B )3/8 (C )5/8 (D )-3/89 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X近似的服从( )(A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01下,( )——第2页——A. 必接受0HB. 可能接受,也可能拒绝0HC. 必拒绝0HD. 不接受,也不拒绝0H 二、填空题(每空1.5分,共15分)1、A, B, C 为任意三个事件,则A ,B ,C 至少有一个事件发生表示为:_________;2、甲乙两人各自去破译密码,设它们各自能破译的概率为0.8,0.6,则密码能被破译的概率为_________;3、已知分布函数F(x)= A + Barctgx )(+∞<<-∞x ,则A =___,B =____;4、随机变量X 的分布律为k C k XP )31()(==,k =1,2,3, 则C=_______;5、设X ~b (n,p )。

若EX=4,DX=2.4,则n=_________,p= _________。

6、X 为连续型随机变量,1 , 0<x<1f (x )= ,则P(X ≤1) = _______。

0 , 其他7、在总体均值的所有线性无偏估计中,_______是总体均值的无偏估计量。

8、当原假设H0为假而接受H0时,假设检验所犯的错误称为_______。

三、判断题(只判断对错,无须改错。

正确的划√,错误的划×,每题1分,共5分) 1、如果事件A 、B 互不相容,那么A 、B 必相互独立。

()2、随机变量的取值个数为无限个,则该随机变量的类型即为连续型。

3、记)(x Φ为标准正态分布的分布函数,则)(1)(x x Φ-=-Φ。

() 4、对区间估计)(θθθ<<P =α-1,α-1是估计的置信度。

() 5、对任一假设检验,犯第一类错误的概率与犯第二类错误的概率之 和和为1。

( ) 四、计算题(共60分)1、(10分)对某校学生进行调查得知,该校学生参加英语四级辅导班后能通过四级考试的概率为0.86,不参加辅导班能通过四级考试的概率为0.35,假设该校学生有80%学生参加四级辅导班,试问:(1)该校任一学生能通过四级考试的概率是多少? (5分)(2)若该校一学生通过四级考试,则他已经参加培训班的概率是多少?(5分)2、(10分)设随机变量X 的概率密度函数为⎩⎨⎧<<=其它0Ax 02)(x x f(1)计算A 的值。

(3分) (2)计算X 的期望。

(3分) (3)计算X 的方差。

(4分)3、(10分)、设总体X 服从指数分布,其有概率密度函数为:⎩⎨⎧>=-其它00x e )(x x p λλ ,其中λ为未知参数, nX X X ,,,21 为总体的一组样本。

——第3页——系名____________班级____________姓名____________学号____________密封线内不答题(1)求λ的矩估计值;(5分) (2)求λ的极大似然估计值。

(5分)4、(10分)在某社区随机抽取40名男子的身高进行调查,得其平均身高为168厘米,样本标准差为8厘米,试求总体均值(该社区全体男子平均身高)μ的0.95的置信区间。

(注:0211.2)40(,0227.2)39(025.0025.0==t t )5、(10分)已知某炼铁厂铁水的含碳量服从正态分布N (4.55,0.1082)。

现在测定了9炉铁水,其平均含碳量为4.484。

如果估计方差没发生变化,可否认为现在生产的铁水平均含碳量仍为4.55 。

(α=0.05) (注:Z 05.0=1.96)6、(10分)下表列出了6个工业发达国家某年的失业率y 与国民经济增长率x 的数据。

(1)作散点图,能否认为y 与x 之间有线性相关关系?(2分) (2)建立y 关于x 的一元线性回归方程;(6分)(3)若一个工业发达国家国民经济增长率为3%,求其失业率的预测值。

(2分)——第4页——试题一答案选择题(每道题有且仅有一个正确答案,共20分,每题2分)1、D2、C3、B4、B5、C6、A7、A8、C9、B 10、B 填空题(每空1.5分,共20分)1、C B A ⋃⋃2、0.923、1/2;1/π4、27/135、10 ;0.46、17、X (样本均值)8、第二类错误(取伪错误,第Ⅱ类错误) 判断题。

(只判断对错,无须改错。

每题1分,共5分) 1、×2、×3、√4、√5、× 计算题(共50分)1、解:(1)用1A 表示该学生已经参加培训,用2A 表示该学生未受到培训。

用B 表示该学生通过CET-4。

(1分) 由题设可知P (1A )=0.8,P (2A )=0.2. (2分) 根据全概率公式 P (B )=)()(21ii iA B P A P ∑= (2分)=0.835.02.086.0⨯+⨯=758.0 (1分) (2)P(B A 1)=)()(B P B A P 1 (2分) =758.086.08.0⨯ (1分) =0.908 (2分)2、解:(1)由概率密度函数的正则性1=⎰+∞∞-x d x p )(得: (1分)120=⎰dx x A,即102=Ax 得: (1分)- 5 -A=1 (1分) (2)根据期望的计算公式⎰+∞∞-=dx x xp EX )( (1分)dx x x ⎰*=102=2/3 (2分)(3)根据方差计算公式22)(EX EX DX -= (1分) xdx x EX 21022*=⎰=1/2 (1分) 所以 2)3/2(2/1-=DX=1/1806.0≈ (2分)3、解:1)EX=x d x p ⎰+∞∞-)(=x x d e λλ-⎰1=λ1, (2分) 由矩法估计知:EX=λ1=x 得: (1分) ∧λ=x1 (2分)2)θ的极大似然函数为:L (θ)=∏∏=-==ni x nni i ie x p 11λλ)( (2分)∑=-=ni i x n L 1ln ln λλ (1分)∑=+=ni i x n d L d 1ln λλ (1分) ∧λ=x1(1分)4、解:设总体平均值为0227.2)39(,05.0025.0==t αμ,已知 (2分)——第6页——μ的置信系数为0.95的置信区间是: 0227.24081680227.2408168⨯+<<⨯-μ即为: (4分)165.44<<μ170.56 (2分) μ的置信系数为0.95的置信区间为[165.44, 170.56] (2分) 5、解:原假设H 0:μ=4.55 (2分) 选取 nX U σ55.4__-=作为统计量, (2分) 根据题得到:__X =4.484,σ=0.108 因为Z 05.0=1.96,3/108.055.4484.4-=U =-1.83>-1.96, (4分)所以接受H 0,即认为:认为现在生产的铁水平均含碳量仍为4.55 6解:(1)图略,由散点图可以认为y 与x 之间存在线性相关关系。

(2分)(2)设y=a+bx 计算:433.485.3033.1415.10135.11____===-==y x l l l yy xy xx (2分)则得到 a=7.94 b=-0.91 (3分)所以 x y91.094.7ˆ-= (1分) (3)x=3时,y=7.94-0.91*3=5.21 (2分)——第7页——系名____________班级____________姓名____________学号____________密封线内不答题试题二一、选择题(每道题有且仅有一个正确答案,共20分,每题2分) 1、已知P(A)=0.4, P(B)=0.5, P(A ∪B)=0.7则)(__B A P 为( )A.0.2B. 0.3C.0.4D. 不能确定 2、掷二骰子,求点数之和至少为10的概率是( )A .10/12 B.3/12 C. 10/36 D.1/63、一地区男女人数相等,随机抽取100人,恰好有50名男性的概率是( )A. 50)21( B. 5050100)21(C C. 10050100)21(C D. 1/24、设X~N(11,6),则其概率密度函数为( )A.()12112261--x eπ B.()62112261--x eπC.()12112121--x eπD.()62112121--x eπ5、对任意二事件A 和B ,有()P A B -=【 】。

相关文档
最新文档