八年级数学必背几何定理定义公式之轴对称

合集下载

八年级数学必背几何定理定义公式之轴对称

八年级数学必背几何定理定义公式之轴对称

八年级数学复习必背几何定理定义公式轴对称图形1、轴对称:如果把一个图形沿着一条直线折叠后能够与另一个图形完全重合,那么这两个图形关于直线成轴对称。

2、轴对称图形:如果把一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形是轴对称图形。

3、轴对称的性质:①关于某条直线对称的两个图形是全等形。

②如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

③两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

④真命题:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4、几种轴对称图形及其对称轴的数量与位置:图形对称轴的数量对称轴的位置是否中心对称图形是线段 2 线段本身所在的直线线段的垂直平分线角 1 角平分线所在的直线否等腰三角形 1 底边的垂直平分线否等边三角形 3 各边的垂直平分线否等腰梯形 1 两底中点所在的直线否矩形 2 对边中点所在的直线是菱形 2 对角线所在的直线是正方形 4 对边中点所在的直线对角线所在的直线是圆无数条经过圆心的直线是正n边形n 当n为奇数时,各边的中垂线;当n为偶数时,各边的中垂线以及平分正n边形的对角线所在的直线。

当n为奇数时,不是中心对称图形。

当n为偶数时,是中心对称图形。

普通平行四边形0 / 是5、线段的轴对称性:①线段的垂直平分线上的点到线段两端的距离相等。

②到线段两端距离相等的点在这条线段的垂直平分线上。

③线段的垂直平分线是到线段两端距离相等的所有点的集合。

6、角的轴对称性:①角平分线上的点到这个角的两边的距离相等。

②在角的内部到一个角的两边的距离相同的点,在这个角的平分线上。

③角的平分线是角的内部到角的两边距离相等的所有点的集合。

7、等腰三角形的定义:有两条边相等的三角形叫作等腰三角形。

8、等腰三角形的性质:①等腰三角形的两个底角相等 (即等边对等角)②三线合一:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。

八年级上数学轴对称知识点

八年级上数学轴对称知识点

八年级上数学轴对称知识点数学中的轴对称是一个重要的概念,它在几何学中有着特殊的地位。

轴对称是一种在几何上对称性的表示,就是说经过此类对称变换后,物体会维持原来的形状。

轴对称广泛应用于数学的各个领域,从简单的平面图形到三维几何图形,都可以应用轴对称进行变形。

而在八年级上数学的学习中,轴对称是数学中一个重要的知识点。

接下来,本文将为大家详细介绍八年级上数学轴对称的知识点。

一、轴对称的定义及性质1.定义:平面上的轴对称是指当一个点绕着轴旋转180度后,仍能落在原来的位置上的变换。

2.性质:若点P和点P'在轴对称的图形上位于同一位置,则它们在轴上的距离相等,且轴垂直于P和P'之间的连线。

二、轴对称的应用1.轴对称可以应用于平面图形的构造,如圆,矩形,三角形等。

2.轴对称可以帮助我们求出平面图形的对称中心,并用这个对称中心得到一些图形的性质。

3.轴对称可以用于解题,如对称图形的面积、图形重心的求解等。

三、轴对称与对称中心的求解1.对称中心的定义:一个平面图形可以有很多对称中心,但每个对称中心都必须满足:通过这个对称中心,将图形分为对称的两部分,且分割的两部分的对应点在图形轴对称的位置上。

2.求解对称中心的方法:通过找到轴对称图形上的对称关系,确定对称直线的位置,然后在对称直线上作垂线,交点即为对称中心。

四、轴对称的练习1.练习一:如图,在平面直角坐标系中,直线l是x轴的正半轴,正方形ABCD经过轴对称后,变为图形A'B'C'D',点C、C'、E在同一直线上,且EE'的坐标为(7,4),求正方形ABCD的边长。

解:通过图形的观察,我们可以得出以下结论:1)正方形ABCD在x轴上的对称点是A’B’C’D’,因为它们的横坐标相等,纵坐标互为相反数。

2)点C、C’、E在同一直线上,因此点E的坐标应该是在点C和C’连线上的,可以算出点C(x,y)的坐标后,求出点C’的坐标,再连通C’E’的直线,求出其上与x轴交点的坐标即可求出正方形的边长。

初二数学轴对称与中心对称的知识点

初二数学轴对称与中心对称的知识点

初二数学轴对称与中心对称的知识点初二数学轴对称与中心对称的知识点一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的`中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

八年级上册轴对称的知识点

八年级上册轴对称的知识点

八年级上册轴对称的知识点轴对称是几何中常见的概念,也是初中数学中必须掌握的一个知识点。

在此,我们将对八年级上册轴对称的相关知识进行详细介绍,以便同学们更好地掌握。

一、轴对称的定义
轴对称,指平面上存在一条直线,将图形对称折叠后,两边完全重合,那么这条直线就叫做轴对称线,这种图形就是轴对称图形。

二、轴对称的性质
1.轴对称线是图形的对称轴,对称轴上任意一点到图形两边的距离相等。

2.轴对称图形中,如果一条线段与对称轴垂直,那么它与对称轴的交点一定在对称轴的中点。

3.轴对称图形中,如果一条线段与对称轴平行,那么它对称后
的线段与原线段的距离相等。

三、轴对称的判定方法
1.对称中心法:将图形折叠后,查看两边是否完全重合,确定
对称中心及轴对称线。

2.寻找轴对称点法:通过寻找具有对称性的点,确定轴对称线。

四、轴对称的常见图形
1.正方形:正方形具有4条对称轴,分别是4个边的中垂线和
2条对称线。

2.矩形:矩形具有2条对称轴,分别是2条相邻边的中垂线。

3.等边三角形:等边三角形具有3条对称轴,分别是3条中线。

4.等腰三角形:等腰三角形具有1条对称轴,即过顶点与底边中点的中线。

5.圆:圆具有无数条对称轴,都是其直径。

五、轴对称的应用
轴对称不仅在几何学中有广泛的应用,而且在现实生活中也有很多应用。

比如对称艺术品、镜像照片等。

六、总结
轴对称作为初中几何中的基础知识,是我们往后学习更高级几何学知识的基础。

通过本篇文章的介绍和总结,相信同学们已经对轴对称有了更深入的理解和掌握。

八年级轴对称数学知识点

八年级轴对称数学知识点

八年级轴对称数学知识点
轴对称是数学中比较基础的概念之一,对数学学习的深入和有效应用有很大帮助。

在初中数学学习中,八年级轴对称是一个非常重要的知识点。

本文将就八年级轴对称这个知识点进行详细的介绍。

一、什么是轴对称
轴对称是指图形对某条直线具有对称性。

具体的表现形式是:图形关于某一直线对称之后,在原图形的基础上能“翻转”到副本的位置,并且重叠相拼即可得到。

二、轴对称的性质
1、轴对称图形的对称轴是唯一的。

2、轴对称图形中的任意一点,关于对称轴的对称点必然满足在对称轴同侧。

3、轴对称图形的内部点对称于对称轴上的点,整体上左右对称。

三、常见八年级轴对称问题类型
1、求轴对称的轴线:当给出轴对称图形时,需要从图形上分
析出轴对称的轴线。

2、用轴对称复制图形:当给出了一个图形和它的对称轴时,
需要求出轴对称的图形。

3、判断轴对称图形:当给出来了几个图形时,需要判断哪些
是轴对称图形。

4、证明轴对称性:当给出一个轴对称图形时,需要证明这个
图形具有轴对称性。

四、轴对称的应用
1、绘画:许多艺术作品都运用了轴对称的特性,如某些建筑物、雕塑等,能够更加精确和美观的呈现在人们面前。

2、工程:在设计一些具有轴对称性质的工程中能够更好地满
足实际需求,如建筑、桥梁等。

3、其他学科:在生物、化学等学科中都涉及到轴对称的概念。

五、本章小结
八年级轴对称是一个相对比较基础且重要的知识点,对于学习几何以及正方形、矩形、圆等问题都有着一定的应用。

掌握了轴对称的性质及应用,能够更好地促进数学的学习效果,提高学生的综合素质。

2024年初二数学期末考试轴对称知识点总结(二篇)

2024年初二数学期末考试轴对称知识点总结(二篇)

2024年初二数学期末考试轴对称知识点总结初中数学中,轴对称是一个重要的几何概念。

轴对称是指一个图形或者一个物体能够与某条轴线对称,即图形或物体的一部分关于轴线对称地出现在另一部分的相对位置。

轴对称的性质是常用的,它在初中数学的课本中会有详细的介绍和讲解。

以下是对初二数学期末考试轴对称知识点的总结:一、轴对称的定义和性质:1. 轴对称:如果一个图形、物体或者函数,相对于某条轴线可以对称地出现,那么就称这个图形、物体或者函数是轴对称的。

2. 轴线:轴线是指对称图形相对出现的那根线。

3. 轴对称的性质:轴对称的图形具有以下性质:- 轴线上的点不动。

- 对称轴的两侧对称,即轴线上的一点与该图形对称轴另一侧的点,关于对称轴中点对称。

- 对称轴的两侧的点与对称轴上的一点对称关系。

二、判断轴对称的方法:1. 观察法:通过观察图形是否关于某条线对称,可以判断图形是否轴对称。

如果图形可以重叠折叠,使得一个部分与另一个部分完全重合,那么这个图形就是轴对称的。

2. 对称线法:使用直尺将图形的两个对称部分的最近相对线段连接起来,如果这条线段与直尺重合,那么这条线段就是图形的对称线。

3. 折叠法:将纸张上的图形剪下来,然后将图形沿着一个假想的轴线折叠起来,如果两个对称的部分完全重合,那么这个图形就是轴对称的。

三、轴对称的常见图形:1. 一阶图形:一个点、一条线段、一条射线、一个无面积的抽象图形等。

2. 二阶图形:矩形、正方形、菱形、圆、椭圆等。

3. 三阶图形:五角星、六边形等。

四、轴对称和平移、旋转的关系:1. 平移:平移是图形在平面上沿水平方向或者垂直方向移动的变换,平移不改变图形的形状和大小,也不改变图形的轴对称性。

2. 旋转:旋转是图形围绕一个点或者直线进行旋转的变换,旋转不改变图形的形状和大小,但可能改变图形的轴对称性。

有些图形在旋转一定角度之后仍然保持轴对称,有些则不再保持轴对称。

五、轴对称的应用:1. 填充对称:将一个图形沿着对称轴镜像复制,用来填充平面空间。

数学八年级轴对称知识点

数学八年级轴对称知识点

数学八年级轴对称知识点
在八年级数学中,轴对称是重要的几何概念之一。

以下是轴对称的相关知识点:
1. 定义:轴对称是指一个图形以某条直线为轴,对称图形的每个点都与轴上与原点相
对称。

2. 轴对称图形:轴对称图形是具有轴对称性质的图形,例如正方形、矩形、圆等。

3. 轴对称轴:轴对称图形上的轴称为轴对称轴,轴对称轴通常是垂直于对称轴的直线。

4. 轴对称性质:轴对称图形中,如果图形上的某一点关于轴对称轴对称,则该图形上
有另一点与之对称,且该对称点关于轴对称轴对称的点也在图形上。

5. 轴对称性质的判断:判断一个图形是否具有轴对称性质,可以通过折纸法来判断。

将图形沿着可能的轴对称轴线折叠,如果能够使折叠后的两部分完全重合,则图形具
有轴对称性质。

6. 轴对称图形的性质:轴对称图形具有以下性质:
- 图形上任意一点到轴对称轴的距离,与该点的对称点到轴对称轴的距离相等;
- 图形上任意一点到轴对称轴的距离,与该点的对称点到轴对称轴的距离之积为轴对称轴的平方;
7. 轴对称图形的应用:轴对称图形常出现在几何中,例如在折纸、制作对称性的图案
和图形等方面得到广泛应用。

这些是八年级数学中关于轴对称的重要知识点,希望对你有帮助!。

八年级上册数学轴对称知识点

八年级上册数学轴对称知识点

八年级上册数学轴对称知识点在初中数学中,轴对称是一个非常重要的知识点。

轴对称是指在一个平面上,如果有一条直线,把这个平面分成两个对称的部分,那么我们就说这个平面是轴对称的。

八年级上册的数学课程中,轴对称被涉及到了,下面我们来详细地探讨一下轴对称的相关知识点。

一、轴对称的定义和性质轴对称的定义如上所述,即沿着一条直线进行对称,这条直线就称为轴线或者对称轴。

在轴对称的情况下,通过轴对称得到的镜像图形和原图形完全重合,这也就是轴对称的性质。

轴对称有如下的性质:(1)轴对称图形共有或自成一类轴对称得到的镜像图形和原图形完全重合,因此当把某个图形做轴对称后,得到的图形和原图形形状相同,只是位置不同。

所以,轴对称得到的镜像图形和原图形共有或自成一类。

(2)轴对称的两个对称图形的距离等于轴到这两个图形的距离我们知道,轴对称的求法是以轴线为轴进行对称,而轴线到对称位置不同的点的距离不同,因此,轴对称的两个对称图形的距离等于轴到这两个图形的距离。

(3)轴对称保持长度、角度不变轴对称能够保持长度和角度不变的原因是,轴对称的两个对称图形都是完全重合的,所以它们的长度和角度是相同的。

二、轴对称的基本步骤下面我们来看轴对称的基本步骤:(1)确定轴对称的轴线首先,要确定轴对称的轴线,它必须是平面内的一条直线。

(2)确定轴对称的中心点确定轴对称的中心点,这个点一般都在轴线上,它是轴线的中点。

(3)确定轴对称的象限确定轴对称的象限,即确定轴对称得到的镜像图形和原图形的位置关系。

(4)确定轴对称的顺序确定轴对称的顺序,从哪一端开始进行对称。

一般情况下,我们可以从离中心点近的位置开始对称。

三、轴对称的应用轴对称的应用十分广泛,下面我们来看一下轴对称在实际生活中的应用:(1)轮子的轴对称自行车、汽车等车辆的轮子都采用了轴对称的原理。

(2)建筑物的轴对称建筑物在建造过程中也采用了轴对称的方法,比如古希腊罗马建筑中的神殿、半圆形壳体建筑等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学复习必背几何定理定义公式
轴对称图形
1、轴对称:如果把一个图形沿着一条直线折叠后能够与另一个图形完全重合,那么这两个图形关于直线成轴对称。

2、轴对称图形:如果把一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形是轴对称图形。

3、轴对称的性质:
①关于某条直线对称的两个图形是全等形。

②如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

③两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

④真命题:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4、几种轴对称图形及其对称轴的数量与位置:
图形对称轴的数量对称轴的位置是否中心对称图形

线段 2 线段本身所在的直线
线段的垂直平分线
角 1 角平分线所在的直线否等腰三角形 1 底边的垂直平分线否等边三角形 3 各边的垂直平分线否等腰梯形 1 两底中点所在的直线否矩形 2 对边中点所在的直线是菱形 2 对角线所在的直线是正方形 4 对边中点所在的直线
对角线所在的直线
是圆无数条经过圆心的直线是
正n边形n 当n为奇数时,各边的中
垂线;当n为偶数时,各
边的中垂线以及平分正n
边形的对角线所在的直
线。

当n为奇数时,不是中心对称图形。

当n为偶数时,是中心对称图形。

普通平行四边

0 / 是
5、线段的轴对称性:
①线段的垂直平分线上的点到线段两端的距离相等。

②到线段两端距离相等的点在这条线段的垂直平分线上。

③线段的垂直平分线是到线段两端距离相等的所有点的集合。

6、角的轴对称性:
①角平分线上的点到这个角的两边的距离相等。

②在角的内部到一个角的两边的距离相同的点,在这个角的平分线上。

③角的平分线是角的内部到角的两边距离相等的所有点的集合。

7、等腰三角形的定义:有两条边相等的三角形叫作等腰三角形。

8、等腰三角形的性质:
①等腰三角形的两个底角相等 (即等边对等角)
②三线合一:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。

9、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
10、等边三角形的定义:三边都相等的三角形叫作等边三角形。

11、等边三角形的性质:等边三角形的各角都相等,并且每个角都等于60°。

12、等边三角形的判定:
①三个角都相等的三角形是等边三角形。

②有一个角等于60°的等腰三角形是等边三角形。

13、直角三角形的性质:
①直角三角形的两个锐角互余。

②直角三角形斜边上的中线等于斜边上的一半
③勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

④在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

⑤在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30
14、直角三角形的判定:
①两个锐角互余的三角形是直角三角形。

②真命题:如果三角形的一边上的中线等于这边长的一半,那么这个三角形是直角三角形。

③勾股定理逆定理:如果一个三角形的两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

相关文档
最新文档