可控硅检测方法和经验

合集下载

检测三极管的方法与经验之谈

检测三极管的方法与经验之谈

检测三极管的方法与经验之谈作者:康与祥来源:《科学与技术》2015年第01期摘要:我们生活中的电子产品越来越多,无论简单的还是复杂的,基本上都是经过三极管对信号处理后来实现某项功能,从而达到设计者的初衷,因此三极管是构成电子产品的重要元件之一,其性能的好坏直接影响产品的质量,如何检测就成为正确应用的关键。

在总结经验和实践的基础上,针对职专生或初学者的特点,摸索出通俗易懂的检测三极管的方法,以及由此可延伸到相关三引脚元件的检测方法,为以后的学习奠定基础。

关键词:三极管、结构、测量生活中的电子产品越来越多,无论简单的还是复杂的,基本上都是经过三极管对信号处理后来实现某项功能,从而达到设计者的初衷,因此三极管是构成电子产品的重要元件,其性能的好坏直接影响产品的质量,如何检测就成为正确应用的关键。

一、先从结构入手确立测量的依据1、复习分析半导体的基础知识,由此到处P型和N型半导体,两种半导体有机的结合形成PN结,经试验得出PN结的特性——单向导电性,也即二极管的特性,其符合为(有关二极管的检测不再陈述)。

2、三极管的结构演变由P型和N型半导体合理交叉结合,即PNP或NPN排列,然后经过下图所示的逐步演变,就构成我们所需要的三极管的等效结构图(图1所示)。

由上图可知,三极管有三个电极即发射极e、基极b和集电极c,两个PN结即发射结和集电结,这两个PN结自然也具有单向导电性。

二、由外型确定引脚排列规律常用三极管的引脚排列顺序都有一定的规律可循,掌握了其排列规律,能够更好的检测出其性能、类型等相关知识,为准确应用奠定基础。

三、电阻分析法测三极管万用表(机械式)的电阻档测量性能好的三极管时,任意两个电极间的正反向电阻所得到的结果。

注意:1、硅管阻值大为接近无穷大,阻值小为几千欧;锗管阻值大为几千欧,阻值小为几百欧。

四、测量方法规律总结(三极管测量三字歌)前面几点是为更好地理解测量口诀,只要有所了解就可以。

注意:1、每个学生手中有尽可能多的三极管;2、要边讲解边示范测量方法;3、先测量性能好的三极管,基本熟悉后再测性能差的,或随机抽测。

局部阻力损失实验报告

局部阻力损失实验报告

局部阻力损失实验报告局部阻力损失实验报告局部阻力损失实验前言:工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。

为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。

管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。

但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。

在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。

例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。

因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。

此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。

摘要:本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。

进而加深对局部阻力损失的理解。

三、实验原理写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得:1.突然扩大采用三点法计算,下式中实测hje?[(Z1?p1hf1?2由hf2?3按流长比例换算得出。

p2)?)?12g2]?[(Z2?22g2hf12]ehje/12g2理论?e?(1A1A22)hjee,12g22.突然缩小采用四点法计算,下式中B点为突缩点,换算得出。

匝间绝缘测试项目的释义及正确使用

匝间绝缘测试项目的释义及正确使用

正确使用电机检测中匝间绝缘测试项目1 概述近年来,在国内电机生产和检测中,匝间绝缘测试项目越来越受到广泛重视。

在80年代和90年代初,各厂家和试验室所用匝间绝缘测试仪均用目测波形差异测试法,且匝间绝缘项目测试仅用于交流电机定子绕组的测试。

随着计算机应用的提高和普及,匝间绝缘测试方法也从目测发展为用计算机进行分析和判断。

脉冲冲击电路从闸流管发展到高压可控硅电路,电路稳定、可靠,不需预热,寿命长。

在90年代中期以后,国内匝间绝缘测试技术已发展到一个新水平。

2 匝间绝缘检测机理匝间绝缘测试机理为用一个高压窄脉冲(根据现有标准脉冲上升沿为1.2μs、0.5μs两种)加于被测绕组两端,此脉冲能量在绕组与匹配电容之间产生一个并联自激振荡,由于绕组直流电阻的存在,此谐振为一衰减波并较快趋近于零,分析被测绕组振荡波形与标准绕组振荡波形之差异,即可判断被测绕组的优劣,判断其是否存在匝间短路或匝间绝缘不良问题。

传统的匝间绝缘判断方法是将标准绕组和被测绕组两振荡波加于双线示波器上,用肉眼观察两波形的幅值和频率的差异,并根据经验判断被测绕组是否合格,这种方法的根本缺点是判断主观随意性,没有量化指标考核,这种方法也经常引起制造者与检验人之间的分歧与矛盾。

随着计算机技术的发展与普及,匝间绝缘测试方法已大有改进,用一个高速A/D系统将绕组的脉冲电压冲击的衰减自激振荡波模拟信号进行数字化处理,然后由计算机对波形数据进行分析比较和计算,并由计算机对各参量的变化进行判断。

波形判断的参量,目前国内和国际上有很多形式,如利用被测绕组振荡波与X轴的面积和标准绕组振荡波与X轴的面积之差的百分数法、两个波的频率差的百分数法、用两个波面积差的百分数法、电晕放电法、电桥不平衡法等。

目前国内使用较普遍的是面积差百分数法和频率差百分数法。

正确选择各检测参数,才能保证检测准确性,现以目前国内某公司的定子综合测试台中匝间绝缘项目测试为例进一步阐述检测机理与方法。

1 恒温控制实验

1 恒温控制实验

实验一恒温控制实验一、实验目的1.了解恒温槽的构造和控制作用,利用恒温槽获得常温恒温并考察恒温控制精确度。

2.了解中高温电炉恒温控制设备及其控制作用。

热悉可控硅温度控制仪的操作并考察电炉恒温控制精确度。

二、实验原理1.恒温槽在物理化学实验中,许多待测数据,如蒸气压、电导、分解压、化学反应速率常数、表面张力、折射率等随温度变化而变化,因此必须在恒定温度的条件下进行测定。

恒温条件是这些数据测定可靠的基本保障。

常温恒温一般通过二位控制来实现,如恒温槽、干燥箱等。

恒温槽由内盛恒温介质(常用水)的浴槽、电热器、搅拌器、电接点温度计(或其它感温元件)、温度计和温度控制器等组成,如图II-1-1所示。

电接点温度计相当于一个自动开关,即所谓二位控制。

由于它允许通过的电流很小(1mA),因此必须通过过渡性的功率继电器来控制加热器的电流。

给定温度(例如高于室温5℃)通过电接点温度计调节。

它的上下两端各有一根铂丝通过导线连入温度控制器,当其中的水银柱与上端铂丝尚有一段距离而未能相互接触时,则不能与始终和水银连接的下端铂丝形成通路。

于是,温度控制器的控制电路会控制继电器,使电热器通电加热,浴槽温度因此而上升。

当温度升高到给定温度时,电接点温度计中的水银柱随着上升到恰好与上端的铂丝接触,导至温度控制器通过控制电路使继电器控制电热器断电,停止加热,由于浴槽的散热作用,温度下降,电接点温度计中的水银柱也随之下降而与上端的铂丝脱开,因此温度控制器又控制电热器通电加热。

如此反复,实现自动间歇供电,使电热器或通电加热或断电停止加热,实施二位控制,使恒温槽控制在给定温度。

但实际上是在一定范围内波动,为使波动范围较小,可通过调压器(或几组电热器由相应开关接通或断开)调节电热器通电加热的功率。

恒温控制精确度与电热器功率、电热器和恒温介质的热容;感温元件和继电器的灵敏度、搅拌强度、环境温度等诸多因素有关。

理想的控制是使恒温槽在单位时间内的得失热量达到平衡。

万用表原理

万用表原理

万用表的基本原理是利用一只灵敏的磁电式直流电流表(微安表)做表头。

当微小电流通过表头,就会有电流指示。

但表头不能通过大电流,所以,必须在表头上并联与串联一些电阻进行分流或降压,从而测出电路中的电流、电压和电阻。

下面分别介绍。

●测直流电流原理。

如图1a所示,在表头上并联一个适当的电阻(叫分流电阻)进行分流,就可以扩展电流量程。

改变分流电阻的阻值,就能改变电流测量范围。

●测直流电压原理。

如图1b所示,在表头上串联一个适当的电阻(叫倍增电阻)进行降压,就可以扩展电压量程。

改变倍增电阻的阻值,就能改变电压的测量范围。

●测交流电压原理。

如图1c所示,因为表头是直流表,所以测量交流时,需加装一个并、串式半波整流电路,将交流进行整流变成直流后再通过表头,这样就可以根据直流电的大小来测量交流电压。

扩展交流电压量程的方法与直流电压量程相似。

●测电阻原理。

如图1d所示,在表头上并联和串联适当的电阻,同时串接一节电池,使电流通过被测电阻,根据电流的大小,就可测量出电阻值。

改变分流电阻的阻值,就能改变电阻的量程。

用万用表测且电区和测试电子元件(一)用万用表测量电阻万用表欧姆档可以测量导体的电阻。

欧姆档用“Ω”表示,分为R×1、R×10、R×100和R×1K四档。

有些万用表还有R×10k档。

使用万用表欧姆档测电阻,除前面讲的使用前应做到的要求外,还应遵循以下步骤。

1.将选择开关置于R×100档,将两表笔短接调整欧姆档零位调整旋钮,使表针指向电阻刻度线右端的零位。

若指针无法调到零点,说明表内电池电压不足,应更换电池。

2.用两表笔分别接触被测电阻两引脚进行测量。

正确读出指针所指电阻的数值,再乘以倍率(R×100档应乘100,R×1k档应乘1000……)。

就是被测电阻的阻值。

3.为使测量较为准确,测量时应使指针指在刻度线中心位置附近。

若指针偏角较小,应换用R×1k档,若指针偏角较大,应换用R×1O档或R×1档。

空调常见故障案例

空调常见故障案例

案例一、可控硅坏、室内机噪音故障现象:关机后,室内风机慢慢转动,开机后发出剌耳噪声。

原因分析:根据用户反映及现象分析,初步判断为室内电机供电故障,检查室内风机供电电压,关机状态下电机上有100V电压,关机后室内电机仍缓慢连续运行,室内电机发热使塑料的电机架遇热变形,塑封电机位置偏移,这样则导致贯流风叶要与底盘相碰,发出难听的噪音,而且有一股烧焦的味道。

由此判定为风机控制可控硅损坏。

解决措施:换主控板。

经验总结:分体挂机室内机风机转速是由可控硅来控制的,当电源电压较低或波动较大时,会造成可控硅单相击穿,停机时室内风机仍有电压,电机仍会慢转,由于可控硅为单相击穿,电机供电电源非正弦波形,电机运转不平稳,噪音较大。

案例二、室内风机关机后不停及未开机风机就运行故障现象:关机后,室内风机不停、未开机风机就运行。

原因分析:根据用户反映故障现象,通电即发现室内风机运行,用遥控开机后关机,室内风机仍在运行,初步判断为室内电机供电故障,检查室内风机供电电压,通电状态或关机装态下电机上有 158V电压输出,因此通电后室内电机就运行,由此判定为风机控制可控硅损坏。

解决措施:更换同型号控制器后试机正常。

经验总结:分体挂机室内机风机转速是由可控硅来控制的,当电源电压较低或波动较大时,会造成可控硅单相击穿,停机或关机时室内风机仍有电压,室内风机不能关闭。

案例三、遥控器接收器坏故障现象:遥控不开机原因分析:检查遥控器,用遥控器对准普通收音机,按遥控器上的任何键,收音机均有反映,说明遥控器属正常,故障在室内机主控板或者遥控接收器。

打开室内机外盖,检查220伏输入电源及12伏与5伏电压均正常,用手动启动空调,空调能正常启动运转,说明主控板无问题,故障部位在遥控接收器元器件上,经检查,发现原因在于控制器接收回路上瓷片电容(103Z/50v)绝缘电阻偏小,只有几kΩ,质量好的瓷片电容应该在10000MΩ以上,漏电电流偏大而引起的遥控不接收。

常见仪表故障分析报告处理及方法

常见仪表故障分析报告处理及方法

目录第一章自动化仪表故障综合分析1.1 工业仪表故障分析判断方法1.2 仪表故障的一般规律1.3 应用万用表分析和解决仪表故障1.4 电动、气动仪表的故障判断及维修第二章流量监测仪表故障处理2.1 电磁流量计2.2 超声波流量计2.3 涡轮流量计2.4 强力巴流量计第三章物位检测仪表故障处理3.1 雷达物位计3.2 超声波物位计3.3 液位计第四章压力检测仪表故障处理4.1 智能压力变送器或智能差压变送器4.2 压力开关4.3 压力表第五章温度检测仪表故障处理5.1 热电阻温度变送器5.2 热电偶温度变送器第六章气动薄膜调节阀故障处理6.1 气动薄膜调节阀第七章电动执行机构故障处理7.1 电动执行机构第八章电子秤故障处理8.1 电子料斗秤8.2 电子皮带秤8.3 电子转子秤8.4 电子地磅/汽车衡第九章分析仪故障处理9.1 HLA-M105C(O2 CO)在线气体分析系统9.2 SCS-900C烟气连续监测系统(烟气分析仪) 9.3 GXH-904D型气体分析系统9.4 CEMS-2000型烟气分析系统常见仪表故障分析处理及方法第一章自动化仪表故障综合分析1.1 工业仪表故障分析判断方法仪表故障分析是一线维护人员经常遇到的工作,根据多年仪表维修经验,整理了工业仪表故障分析判断的十种方法,比较原则地介绍如下:1.1.1调查法通过对故障现象和它产生发展过程的调查了解,分析判断故障原因的方法。

一般有以下几个方面:⑴故障发生前的使用情况和有无什么先兆;⑵故障发生时有无打火、冒烟、异常气味等现象;⑶供电电压变化情况;⑷过热、雷电、潮湿、碰撞等外界情况;⑸有无受到外界强电场、磁场的干扰;⑹是否有使用不当或误操作情况;⑺在正常使用中出现的故障,还是在修理更换元器件后出现的故障;⑻以前发生过哪些故障及修理情况等。

采用调查法检修故障,调查了解要深入仔细,特别对现场使用人员的反映要核实,不要急于拆开检修。

维修经验表明,使用人员的反映有许多是不正确或不完整的,通过核实可以发现许多不需要维修的问题。

双向可控硅调光灯电路的安装与调试实训心得

双向可控硅调光灯电路的安装与调试实训心得

双向可控硅调光灯电路的安装与调试实训心得
电子电路应用实训是应用电子技术专业的必修课,通过调光灯电路双路的设计制作,进一步提高电子元器件的识别、检测和组装焊接技能,培养电子线路识图与实物制作规划能力,以及电子线路测试与功能调试能力。

经过了本次的实训课程,让我们知道调光灯电路的原理与作用。

在这次的实训中,所经历实验的失败与成功,我们在一次次的失败中不断的总结教训与经验,到最后我们成功的完成调光灯电路,明白了做实验时一定要细心、沉着、稳重,切不可粗心大意。

通过这次课程设计,学会灵活运用multisim10仿真软件, 学会
从读方面思考问题。

仿真过程与实验过程中出现误差,能在合理范围的则证明实验成功。

这一次课程设计,不仅培养了我的动手能力,同时也培养了我的动脑能力;遇到问题,多翻查资料,多问问别人,问题便会迎刃而解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可控硅检测方法与经验可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。

它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等优点,它是大功率开关型半导体器件,广泛应用在电力、电子线路中。

1. 可控硅的特性。

可控硅分单向可控硅、双向可控硅。

单向可控硅有阳极A、阴极K、控制极G三个引出脚。

双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。

只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。

此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。

单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。

只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。

单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G和阴极K间有重新加上正向触发电压方可导通。

单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。

双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。

此时A1、A2间压降也约为1V。

双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。

只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。

2. 单向可控硅的检测。

万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极K,另一空脚为阳极A。

此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。

此时万用表指针应不动。

用短线瞬间短接阳极A和控制极G,此时万用表电阻挡指针应向右偏转,阻值读数为10欧姆左右。

如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。

3. 双向可控硅的检测。

用万用表电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻,结果其中两组读数为无穷大。

若一组为数十欧姆时,该组红、黑表所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。

确定A1、G极后,再仔细测量A1、G极间正、反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。

将黑表笔接已确定的第二阳极A2,红表笔接第一阳极A1,此时万用表指针不应发生偏转,阻值为无穷大。

再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约10欧姆左右。

随后断开A2、G间短接线,万用表读数应保持10欧姆左右。

互换红、黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。

同样万用表指针应不发生偏转,阻值为无穷大。

用短接线将A2、G极间再次瞬间短接,给G极加上负的触发电压,A1、A2间的阻值也是10欧姆左右。

随后断开A2、G极间短接线,万用表读数应不变,保持在10欧姆左右。

符合以上规律,说明被测双向可控硅未损坏且三个引脚极性判断正确。

检测较大功率可控硅时,需要在万用表黑笔中串接一节干电池,以提高触发电压。

晶闸管(可控硅)的管脚判别晶闸管管脚的判别可用下述方法:先用万用表R*1K挡测量三脚之间的阻值,阻值小的两脚分别为控制极和阴极,所剩的一脚为阳极。

再将万用表置于R*10K挡,用手指捏住阳极和另一脚,且不让两脚接触,黑表笔接阳极,红表笔接剩下的一脚,如表针向右摆动,说明红表笔所接为阴极,不摆动则为控制极。

场效应管检测一、用指针式万用表对场效应管进行判别(1)用测电阻法判别结型场效应管的电极根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。

具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。

当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。

因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。

也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。

当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。

若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。

若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

(2)用测电阻法判别场效应管的好坏测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。

具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。

然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。

要注意,若两个栅极在管内断极,可用元件代换法进行检测。

(3)用感应信号输人法估测场效应管的放大能力具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上V的电源电压,此时表针指示出的漏源极间的电阻值。

然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。

这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针有较大幅度的摆动。

如果手捏栅极表针摆动较小,说明管的放大能力较差;表针摆动较大,表明管的放大能力大;若表针不动,说明管是坏的。

根据上述方法,我们用万用表的R×100档,测结型场效应管3DJ2F。

先将管的G极开路,测得漏源电阻RDS为600Ω,用手捏住G极后,表针向左摆动,指示的电阻RDS为12kΩ,表针摆动的幅度较大,说明该管是好的,并有较大的放大能力。

运用这种方法时要说明几点:首先,在测试场效应管用手捏住栅极时,万用表针可能向右摆动(电阻值减小),也可能向左摆动(电阻值增加)。

这是由于人体感应的交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同(或者工作在饱和区或者在不饱和区)所致,试验表明,多数管的RDS增大,即表针向左摆动;少数管的RDS减小,使表针向右摆动。

但无论表针摆动方向如何,只要表针摆动幅度较大,就说明管有较大的放大能力。

第二,此方法对MOS场效应管也适用。

但要注意,MOS场效应管的输人电阻高,栅极G允许的感应电压不应过高,所以不要直接用手去捏栅极,必须用于握螺丝刀的绝缘柄,用金属杆去碰触栅极,以防止人体感应电荷直接加到栅极,引起栅极击穿。

第三,每次测量完毕,应当G-S极间短路一下。

这是因为G-S结电容上会充有少量电荷,建立起VGS电压,造成再进行测量时表针可能不动,只有将G-S极间电荷短路放掉才行。

(4)用测电阻法判别无标志的场效应管首先用测量电阻的方法找出两个有电阻值的管脚,也就是源极S和漏极D,余下两个脚为第一栅极G1和第二栅极G2。

把先用两表笔测的源极S与漏极D之间的电阻值记下来,对调表笔再测量一次,把其测得电阻值记下来,两次测得阻值较大的一次,黑表笔所接的电极为漏极D;红表笔所接的为源极S。

用这种方法判别出来的S、D极,还可以用估测其管的放大能力的方法进行验证,即放大能力大的黑表笔所接的是D极;红表笔所接地是8极,两种方法检测结果均应一样。

当确定了漏极D、源极S的位置后,按D、S的对应位置装人电路,一般G1、G2也会依次对准位置,这就确定了两个栅极G1、G2的位置,从而就确定了D、S、G1、G2管脚的顺序。

(5)用测反向电阻值的变化判断跨导的大小对VMOSN沟道增强型场效应管测量跨导性能时,可用红表笔接源极S、黑表笔接漏极D,这就相当于在源、漏极之间加了一个反向电压。

此时栅极是开路的,管的反向电阻值是很不稳定的。

将万用表的欧姆档选在R×10kΩ的高阻档,此时表内电压较高。

当用手接触栅极G时,会发现管的反向电阻值有明显地变化,其变化越大,说明管的跨导值越高;如果被测管的跨导很小,用此法测时,反向阻值变化不大。

二、.场效应管的使用注意事项(1)为了安全使用场效应管,在线路的设计中不能超过管的耗散功率,最大漏源电压、最大栅源电压和最大电流等参数的极限值。

(2)各类型场效应管在使用时,都要严格按要求的偏置接人电路中,要遵守场效应管偏置的极性。

如结型场效应管栅源漏之间是PN结,N沟道管栅极不能加正偏压;P沟道管栅极不能加负偏压,等等。

(3)MOS场效应管由于输人阻抗极高,所以在运输、贮藏中必须将引出脚短路,要用金属屏蔽包装,以防止外来感应电势将栅极击穿。

尤其要注意,不能将MOS场效应管放人塑料盒子内,保存时最好放在金属盒内,同时也要注意管的防潮。

(4)为了防止场效应管栅极感应击穿,要求一切测试仪器、工作台、电烙铁、线路本身都必须有良好的接地;管脚在焊接时,先焊源极;在连入电路之前,管的全部引线端保持互相短接状态,焊接完后才把短接材料去掉;从元器件架上取下管时,应以适当的方式确保人体接地如采用接地环等;当然,如果能采用先进的气热型电烙铁,焊接场效应管是比较方便的,并且确保安全;在未关断电源时,绝对不可以把管插人电路或从电路中拔出。

以上安全措施在使用场效应管时必须注意。

(5)在安装场效应管时,注意安装的位置要尽量避免靠近发热元件;为了防管件振动,有必要将管壳体紧固起来;管脚引线在弯曲时,应当大于根部尺寸5毫米处进行,以防止弯断管脚和引起漏气等。

对于功率型场效应管,要有良好的散热条件。

因为功率型场效应管在高负荷条件下运用,必须设计足够的散热器,确保壳体温度不超过额定值,使器件长期稳定可靠地工作。

总之,确保场效应管安全使用,要注意的事项是多种多样,采取的安全措施也是各种各样,广大的专业技术人员,特别是广大的电子爱好者,都要根据自己的实际情况出发,采取切实可行的办法,安全有效地用好场效应管。

三.VMOS场效应管VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V型槽MOS场效应管。

相关文档
最新文档