可控硅的使用及其方法
可控硅的使用方法大全

可控硅的使用方法大全一、概述在日常的控制应用中我们都通常会遇到需要开关交流电的应用,一般控制交流电的时候,我们会使用很多种方法,如:1、使用继电器来控制,如电饭煲,洗衣机的水阀:2、使用大功率的三极管或IGBT来控制:3、使用整流桥加三极管:4、使用两个SCR来控制:5、使用一个Triac来控制:晶闸管(Thyristor)又叫可控硅,按照其工作特性又可分单向可控硅(SCR)、双向可控硅(TRIAC)。
其中双向可控硅又分四象限双向可控硅和三象限双向可控硅。
同时可控硅又有绝缘与非绝缘两大类,如ST的可控硅用BT名称后的“A”、与“B”来区分绝缘与非绝缘。
单向可控硅SCR:全称Semiconductor Controlled Rectifier(半导体整流控制器)双向可控硅TRIAC:全称Triode ACSemiconductor Switch(三端双向可控硅开关),也有厂商使用Bi-direct ional Controlled Rectifier(BCR)来表示双向可控硅。
请注意上述两图中的红紫箭头方向!可控硅的结构原理我就不提了。
二、可控硅的控制模式现在我们来看一看通常的可控硅控制模式1、On/Off 控制:对于这样的一个电路,当通过控制信号来开关Triac时,我们可以看到如下的电流波形通常对于一个典型的阻性的负载使用该控制方法时,可以看到控制信号、电流、相电压的关联。
2、相角控制:也叫导通角控制,其目的是通过触发可控硅的导通时间来实现对电流的控制,在简单的马达与调光系统中多可以看到这种控制方法在典型的阻性负载中,通过控制触发导通角a在0~180之间变化,从而实现控制电流的大小三、我们知道,可控硅的一个导通周期可以有四步:。
简单粗暴--5分钟搞定可控硅电路应用

简单粗暴--5分钟搞定可控硅电路应用可控硅对于电子工程师来说是个重要的元器件,对于一个合格的硬件工程师来说,必须要掌握可控硅的电路设计。
可控硅在各个领域应用广泛,常用来做各种大功率负载的开关。
相比继电器,可控硅有很多优势,继电器在开关动作时会产生电火花,在某些工业环境由于安全原因这是不允许的,继电器在开关动作时触点会发生氧化,影响继电器寿命,而这些缺点可控硅都能避免。
可控硅(Silicon Controlled Rectifier) 简称SCR,可控硅分单向可控硅和双向可控硅两种。
双向可控硅也叫三端双向可控硅,简称TRIAC。
双向可控硅在结构上相当于两个单向可控硅反向连接,这种可控硅具有双向导通功能。
其通断状态由控制极G决定。
在控制极G上加正脉冲(或负脉冲)可使其正向(或反向)导通。
单向可控硅工作原理单向可控硅的电流是从阳极流向阴极,交流电过零点时截止,如图交流电的负半周时,单向可控硅是不导通的,在正半周时,只有控制栅极有触发信号时,可控硅才导通。
双向可控硅工作原理双向可控硅的电流能从T1极流向T2极,也能从T2极流向T1极,交流电过零点时截止,只有控制栅极有正向或负向的触发信号时,可控硅才导通。
接下来我们讲解下使用最多的双向可控硅的一些电路应用上图中,VCC和交流电其中一端是连接在一起的,这样就能保证单片机是输出低电平信号触发可控硅,这样可控硅触发工作在第3象限,上图中避免可控硅触发使用高电平信号,避免可控硅触发工作在第4象限。
若运行在第4象限由于双向可控硅的内部结构,门极离主载流区域较远,导致需要更高的Igt,由Ig 触发到负载电流开始流动,两者之间迟后时间较长,导致要求Ig 维持较长时间,另外一个缺点就是会导致低得多的 dIT/dt 承受能力,若控制负载具有高dI/dt 值(例如白炽灯的冷灯丝),门极可能发生强烈退化。
查阅可控硅BT134器件规格书,也明确说明触发工作在第4象限,Igt需求更大。
可控硅调光方案

可控硅调光方案可控硅调光方案是一种常用于灯光调节的技术方案,通过控制可控硅器件的导通角度来实现灯光的亮度调节。
本文将介绍可控硅调光方案的原理、应用以及其在照明系统中的优势。
一、可控硅调光原理可控硅调光方案是基于可控硅器件的特性而设计的。
可控硅器件是一种能够控制交流电流导通角度的半导体器件,通过控制其导通角度来控制负载电流大小,从而实现灯光的亮度调节。
可控硅的导通角度是通过控制器控制的,控制信号一般是脉冲信号,脉冲宽度越长,导通角度越大,负载电流越大,灯光亮度也就越大。
反之,脉冲宽度越短,导通角度越小,负载电流越小,灯光亮度也就越小。
二、可控硅调光方案的应用1. 家庭照明可控硅调光方案广泛应用于家庭照明中。
可控硅调光器可以与智能家居系统连接,通过手机APP或遥控器来调节灯光的亮度,实现灯光的个性化、智能化控制。
例如,在晚上观看电影时,可以将灯光调暗,营造出舒适的观影环境;而在需要较强光源的活动中,如读书、烹饪等,可以将灯光调亮以提供足够的照明。
2. 商业照明可控硅调光方案也在商业照明中得到广泛应用。
商业场所常常需要根据不同的使用需求调节灯光亮度,例如商场、餐厅、办公室等。
可控硅调光方案能够满足这些场所的需求,实现对灯光亮度的精确控制,优化照明效果,提高用户体验。
3.公共照明在公共照明领域,如街道照明、广场照明等,可控硅调光方案也被广泛应用。
通过控制灯光的亮度,可以提高照明效果并降低能耗。
例如,在夜间交通不繁忙时,可以将灯光调暗,节约能源;而在特殊活动或需要更强照明的情况下,可以将灯光调亮,提供更好的照明效果。
三、可控硅调光方案的优势1. 调光范围广可控硅调光方案的调光范围非常广,从完全关闭到最大亮度都可以进行精确控制。
这使得灯光可以适应不同环境和使用需求,提供更加舒适的照明体验。
2. 节能环保可控硅调光方案能够根据实际需求调整灯光亮度,避免了灯光长时间处于高亮度状态而造成的能源浪费。
通过合理调节灯光亮度,可控硅调光方案能够降低能耗,减少对电力资源的消耗,从而实现节能环保的目标。
可控硅触发板使用说明

KY-23-1可控硅触发板使用说明KY-23-1为KY-23的改进型:①增加了一个过流过压保护选择端子“GB”。
该端子与“Y”端子相接是过压保护;与“L1”端子相接是直流过流保护;与“L2”端子相接是交流过流保护。
原KY-23是过流还是过压保护取决于端子“K”的接线,在电压闭环控制时只能过压保护。
②KY-23-1将原接线端子改为插头形式,方便维修更换。
一、主要特点1.闭环控制,可实现稳流或稳压的比例积分调节。
2.适用于单相变压器原边的可控硅调压控制,以及电机等其它单相感性负载的控制。
用于变压器原边控制时,变压器完全空载也可稳定地从零调至最高电压。
也适用于阻性负载的调压控制。
3.应用单片机技术,无上电冲击,可适应于不同的控制方式。
4.三种控制信号输入方式:① 2.2K电位器手动调节。
② DC 0~10mA电流信号调节。
③ 4~20mA电流信号调节。
如果需要DC 0~10V电压信号调节,请参阅后面的说明稍做改动即可。
5. 反馈信号分为:电流反馈AC 0~5A、DC 0~75mV和电压反馈AC 10~380V 、DC 10~550V(可通过改变几个电阻的阻值由用户任选反馈电压),由此可闭环稳流调节或稳压调节。
出厂时按DC10V反馈而调。
建议:为安全起见,反馈电压较高时最好用变压器降压隔离。
6. 可通过一个转换开关方便地实现手动调节和自动调节的转换。
7.可通过一个转换开关方便地实现稳流调节和稳压调节的转换。
8.电源电压单相220V或两相380V(和负载相对应),不需要外接变压器。
9.带有过流过压保护继电器,一组3A常开常闭触点输出。
10.移相范围0--170°。
11.触发脉冲形式:10KHz脉冲列。
12.触发脉冲幅值:15V;触发电流:300mA。
13.触发板尺寸:187mm×120mm×35mm。
二、使用与调整1.接线端子XT1的端子G1、K1、G2、K2为可控硅的触发信号。
可控硅的使用方法大全

可控硅的使用方法大全一、概述在日常的控制应用中我们都通常会遇到需要开关交流电的应用,一般控制交流电的时候,我们会使用很多种方法,如:1、使用继电器来控制,如电饭煲,洗衣机的水阀:2、使用大功率的三极管或IGBT来控制:3、使用整流桥加三极管:4、使用两个SCR来控制:5、使用一个Triac来控制:晶闸管(Thyristor)又叫可控硅,按照其工作特性又可分单向可控硅(SCR)、双向可控硅(TRIAC)。
其中双向可控硅又分四象限双向可控硅和三象限双向可控硅。
同时可控硅又有绝缘与非绝缘两大类,如ST的可控硅用BT名称后的“A”、与“B”来区分绝缘与非绝缘。
单向可控硅SCR:全称Semiconductor Controlled Rectifier(半导体整流控制器)双向可控硅TRIAC:全称Triode ACSemiconductor Switch(三端双向可控硅开关),也有厂商使用Bi-direct ional Controlled Rectifier(BCR)来表示双向可控硅。
请注意上述两图中的红紫箭头方向!可控硅的结构原理我就不提了。
二、可控硅的控制模式现在我们来看一看通常的可控硅控制模式1、On/Off 控制:对于这样的一个电路,当通过控制信号来开关Triac时,我们可以看到如下的电流波形通常对于一个典型的阻性的负载使用该控制方法时,可以看到控制信号、电流、相电压的关联。
2、相角控制:也叫导通角控制,其目的是通过触发可控硅的导通时间来实现对电流的控制,在简单的马达与调光系统中多可以看到这种控制方法在典型的阻性负载中,通过控制触发导通角a在0~180之间变化,从而实现控制电流的大小三、我们知道,可控硅的一个导通周期可以有四步:。
可控硅的使用-可控硅用法-可控硅(晶闸管)的特性与使用方法

可控硅的使用-可控硅用法-可控硅(晶闸管)的特性与使用方法对单向可控硅(晶闸管)来说,当栅极电压达到门限值VGT且栅电流达到门限值IGT时,可控硅(晶闸管)被触发导通。
当触发电流的脉宽较窄时,则应提高触发电平。
当负载电流超过单向可控硅(晶闸管)的闩电流IL时,即使此时的栅电流减为零,可控硅(晶闸管)仍能维持导通状态。
为了保证电路在环境最低温度下也能正常工作,则要求驱动电路能提供足够高的电压、电流及占空比的控制信号。
高灵敏度的单向可控硅(晶闸管),会在高温下因阳-阴极间的漏电流而误触发,应确保不超过TJMAX。
可靠地关断单向可控硅(晶闸管),负载电流必须降到低于保持电流IH,并维持一定的时间。
标准的双向可控硅(晶闸管)既可被栅极的正向电流触发,也能被栅极的反向电流触发,它可以在四个象限内导通。
在负载电流为零时,最好用反相的直流或单极性脉冲的(栅极)电流触发。
在通常的交流相位控制电路中,如电灯调光器和家用马达调速器等,可控硅(晶闸管)G与MT2的极性要一致,在设计可控硅(晶闸管)时要避免在3+区域内工作(MT2为-,G为+)。
值得注意的是,双向可控硅(晶闸管)可能在一些意想不到的情况下触发导通,其后果有些问题不大,而有些则有潜在的破坏性。
1.栅极上的噪声电平在有电噪声的环境中,如果栅极上的噪声电压超过VGT,并有足够的栅电流激发可控硅(晶闸管)内部的正反馈,则也会被触发导通。
应用安装时,首先要使栅极外的连线尽可能短。
当连线不能很短时,可用绞线或屏蔽线来减小干扰的侵入。
在然后G与MT1之间加一个1kΩ的电阻来降低其灵敏度,也可以再并联一个100nF的电容,来滤掉高频噪声。
2.关于转换电压变化率当驱动一个大的电感性负载时,在负载电压和电流间有一个很大的相移。
当负载电流过零时,双向可控硅(晶闸管)开始换向,但由于相移的关系,电压将不会是零。
所以要求可控硅(晶闸管)要迅速关断这个电压。
如果这时换向电压的变化超过允许值时,就没有足够的时间使结间的电荷释放掉,而被迫使双向可控硅(晶闸管)回到导通状态。
可控硅交流调压器的工作原理及其相关应用

可控硅交流调压器的工作原理及其相关应用基本介绍可控硅交流调压器:是一种以可控硅(电力电子功率器件)为基础,以智能数字控制电路为核心的电源功率控制电器,简称可控硅调压器,又称可控硅调功器,可控硅调整器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器。
具有效率高、无机械噪声和磨损、响应速度快体积小、重量轻、效率高、寿命长、以及使用方便等优点,目前交流调压器多采用可控硅调压器。
工作原理可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。
这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。
这台调压器的输出功率达100W,一般家用电器都能使用。
1:电路原理:电路图如下可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。
从图中可知,二极管D1D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。
在交流电的正半周时,整流电压通过R4、W1对电容C充电。
当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。
这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。
可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。
当交流电通过零点时,可控硅自关断。
当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。
2:元器件选择调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W的碳膜电阻。
D1—D4选用反向击穿电压大于300V、最大整流电流大于0、3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。
可控硅工作原理及其应用新版

可控硅工作原理及其应用新版可控硅(scr: silicon controlled rectifier)是可控硅整流器的简称。
可控硅有单向、双向、可关断和光控几种型别它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被广泛用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。
单向可控硅的工作原理单向可控硅原理可控硅是p1n1p2n2四层三端结构元件,共有三个pn结,分析原理时,可以把它看作由一个pnp管和一个npn管所组成当阳极a加上正向电压时,bg1和bg2管均处于放大状态。
此时,如果从控制极g输入一个正向触发讯号,bg2便有基流ib2流过,经bg2放大,其集电极电流ic2=β2ib2。
因为bg2的集电极直接与bg1的基极相连,所以ib1=ic2。
此时,电流ic2再经bg1放大,于是bg1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到bg2的基极,表成正反馈,使ib2不断增大,如此正向馈迴圈的结果,两个管子的电流剧增,可控硅使饱和导通。
由于bg1和bg2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极g的电流消失了,可控硅仍然能够维持导通状态,由于触发讯号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化一、单向可控硅工作原理可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。
以上两个条件必须同时具备,可控硅才会处于导通状态。
另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。
可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。
二、单向可控硅的引脚区分对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。
从外形无法判断的可控硅,可用万用表r×100或r×1k 挡,测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的範围)时,黑表笔所接的是控制极g,红表笔所接的是阴极c,余下的一只管脚为阳极a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可控硅的使用及其方法
可控硅作为一种电子开关,广泛地应用在自动化设备和各种控制电路中,可控硅既有单项也有双向的,在使用中会经常遇到一些问题。
文章根据实际工作情况,介绍一些经验以供参考。
标签:自动化设备;控制回路;研究分析
1 选购可控硅
可控硅的电参数很多,在选购时要考虑的是:额定平均电流IT、正反向峰值电压VDRM(VRRM)、控制极触发电压与触发电流IGT这几个参数。
由于手册或产品合格证上给定的可控硅的上述参数值都是在规定的条件下测定的,而实际使用环境往往与规定条件不同,并且极有可能发生突发事故超过管子承受能力的现象。
所以为了管子在安全的电压下工作,特别是交流220V的情况下,应该按额定为实际电压的2~3倍值来选管子。
例如:外加电压为220V,则至少应选择400V以上的管子最好为600V,为了保证管子避免电流过大而烧毁,并考虑到管子的发热情况与电流的有效值,应选择平均电流的有效值的1.2~2倍,需要指出的是。
IT对单项可控硅而言是IT(A V)指允许流过SCR的最大有效值电流。
例如:8A SCR(单向)的有效值IT(RMS)=12.6A,因此用8A的BCR代替8A的SCR是不允许的,为了使管子的触发电压与触发电流要比实际应用中的数值要小。
例如:实际使用的触发电压为3V,则可选触发电压为2V的管子。
同样,管子的触发电流亦应选择小些以保证可靠触发,一般常用的集成电路输出电流均很小(除555电路例外,TTL比CMOS要大),所以可在其输出端加一级晶体管放大电路,以提供足够大的驱动电路来保证管子可靠地触发导通。
2 可控硅的具体接法
2.1 直流电路
首先,单向可控硅SCR有三个电极,即阳极A,阴极K,控制极G,SCR 在直流控制电路中使用时,要注意施加工作电压与控制触发电压的极性。
A,K 之间是加正向电压但控正向的接法是图1,只有A,K之间接正向电压,控制极G亦接正向电压,SCR才能导通。
SCR一旦触发导通后,即使降低控制极电压,甚至撤除控制极电源,SCR亦不阻断而是继续导通。
要使SCR阻断,只有降低其阳极电压或将阳极,阴极断开一下,即使阳极与阴极电压为零即可所以有时候可以在SCR的A极与电源之间串了一个常闭开关,按一下即可将SCR阻断。
图1是双向可控硅BCR的接法。
BCR是由两个SCR反向并联构成的,共用一个控制极。
因此BCR与SCR接法有很大不同,无论在阳、阴两个电极之间接何种极性的电压,只要在其控制极加上一个触发脉冲,而不管这个脉冲是什么极性的,都可以使BCR导通。
鉴于此,BCR实际上已无阳极、阴极,通常这两极称为T1、T2电极。
显然,BCR有四种触发工作方式,但以图1这种工作方式最为可靠。
即T1电极的电位低于T2,控制极的电位高于T2,这一点在BCR应用中应引起注意。
尤其是初期使用时在电路设计时应标出T1、T2的区别。
另外,BCR所需要的控制极触发功率要比SCR大,在使用中亦应注意这一点。
2.2 交流电路
在交流电路中,例如:在SCR的A、K之间的是AC220V电压,在正弦电压的正半周内,SCR可触发导通,在负半周内,不可触发导通,由于SCR的半波整流作用,负载两端的电压只有原来的一半。
例如负载是220V的灯泡接在市电220V的电路中,灯泡两端电压只有110V。
因此,可以大大提高灯泡的寿命,而BCR接在AC220V市电中,无论正弦电压的正半周还是负半周线路中,使用较多的是BCR,这里有一个可控硅功率消耗问题,即功耗。
在相类似的SCR与BCR(指上述几个参数),BCR的功耗比SCR大得多,这里面有可控硅PN电结与外壳的热电阻,可控硅PN结与周围环境的热电阻问题,所以人们往往喜欢使用BCR的较多。
另外,在交流电路中使用的可控硅,无论是双向还是单向的,其阳极、阴极接至交流电源,而控制极G的控制电压仍是直流电压,这一点要引起注意。
例如在图2所示的照明灯延迟控制电路中,此电路错误的地方在于没有形成控制极触发回路,这个问题一般很容易发生在直流电源与交流电源共同存在的使用电路中。
以SCR为例,我们知道G、K之间有一个PN结。
从图中得知,G极接在555电路的输出端,而555使用的是直流12伏电压,而K极接至交流220V电网中。
由于变压器Q的隔离作用。
其初、次级电压是无电气上的联接。
因此,12V直流电源与220V交流电源亦就没有一个公共的参考电位,亦即是G、K极之间的PN结没有形成一个触发电压回路。
解决的方法是:将Q次级线圈的公共地(即12V末端)与220V的零线联接起来,如图中虚线所示,这样就为直流与交流电源找到一个参考点电位,即G极形成触发回路。
3 解决可控硅的误触发
可控硅触发电压过低,触发电流过小。
可控硅触发困难,这不是我们所希望的。
但是触发电压过高,触发电流过大,又容易可引起可控硅的误触发即抗干扰能力差,这又是我们要避免的,解决的方法如下:①尽量避免电感元件靠近可控硅控制回路,例如电源变压器、继电器线圈等。
②屏蔽可控硅控制极电路,如用屏蔽线将回路屏蔽起来,或用铁皮将回路整个屏蔽起来。
③在可控硅阴极与控制极之间并联一只0.01~0.1u的电容,消除干扰脉冲的作用。
④在控制极加上反向偏置电压,一般可由串联二极管的正向压降产生反向电压。
⑤采用555集成电路构成可控硅控制极封锁电路,来克服可控硅工作环境的恶劣(如空间电场、磁场变化过大等引起误触发)上述两个方法一般用于工厂现场控制)。
4 可控硅的常见故障分析
4.1 可控硅一直处于导通状态,一般有三个原因:一是可控硅短路损坏,造成损坏的有阳极电流过大,电源电压过高,其它控制元件失效,对外来的浪涌电压过大,浪涌电压与电流保护元件失效等;二是负载电流小于可控硅的维持电流而不截止;三是控制极电压不正常。
4.2 可控硅一直处于阻断状态,一般应检查控制极触发电流是否过小,若触发电流正常,则应检查阳极电流是否大于可控硅额定导通电流。
参考文献
[1]孙余凯,项绮明.家用电器实用维修大全[M].北京:人民邮电出版社,1998.
[2]张立.现代电力电子技术基础[M].北京:高等教育出版社,1999.
[3]王建英.新型开关电源实用技术编[M].北京:电子工业出版社,1999.。