生活中的圆锥曲线知识讲解

合集下载

圆锥曲线在生活中的应用

圆锥曲线在生活中的应用

圆锥曲线在生活中的应用
圆锥曲线在生活中的应用
什么是圆锥曲线?
圆锥曲线实际上是一种曲面。

它的特征是它的曲面不断凸出,从原点出发,到达最高点再回到原点,形成一个弧形。

它又叫哈密尔顿曲线,以伦敦大学学院理论物理学家贝尔瓦绍哈密尔顿(1805-1900)为命名。

圆锥曲线能在生活中被广泛应用,比如它可以用于飞机机翼的设计,平衡速度与空气动力的关系,从而获得最佳的滑翔能力;可以用于波纹管,采用圆锥曲线的设计,可以使水流的声音减弱,减轻水的冲洗;也可以用于升降机的层压,使得货物的装卸便利快捷地完成。

它还可以用于声设计。

一些大型会议厅设计时会采用圆锥曲线,让声音反射来帮助提高声音品质。

在医学领域,电磁脉冲治疗时支架设计可以采用圆锥曲线,减轻对患者的刺激痛苦。

此外圆锥曲线还可以用于发动机的调整,通过更加合理的设计,克服发动机的摩擦,提高燃料经济性和机动稳定性,使发动机具有更长的使用寿命。

总而言之,圆锥曲线有着广泛而有效的应用,它能在以上不同领域实现较好的效果,是一种非常了不起的发明。

圆锥曲线的由来及在生产生活中的应用

圆锥曲线的由来及在生产生活中的应用

2、圆锥曲线的光学性质及在生产生活中的应用
(1)椭圆光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆 转动180度形成的立体图形,其内表面全部做成反射面,中空) 可以将某个焦点发出的光线全部反射到另一个焦点处。
B
D
F2 O
F1
A
xA(3,0)射出,经二次反射
回到A点,设二次反射点为B,C,如图所示,则△ABC的周长为

应用:1、凸透镜:大多是球面,某些截面为椭圆。形状是四周薄,中间厚, 表面凸出,会使光发生折射最终使所有光线凝聚到一点,老花眼镜、放大镜 和远视眼镜都是这种镜片;
2、电影放映机
3、跑步机:椭圆机利用人体跑步时,脚踝的运动轨迹近似于椭圆形 的原理,通过一空间机构,实现踏板轨迹的椭圆运动,使双椭圆机的 健身运动与人的自然跑步相吻合,在运动的时候可以起到保护膝盖的 作用,有很好的缓冲和减震功能,通过锻炼可以增强体能。
圆锥曲线的由来及应用
一、问什么称为圆锥曲线?
圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多 年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切 割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆; 把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线; 当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双 曲线叫做“超曲线”,把抛物线叫做“齐曲线”。
2、冷却塔的外形是双曲线型的。
冷却塔做成双曲线形的是为了提高冷却的效率, 底部有最大的圆周,可以最大限度地进入冷空
气,冷空气到达最细部位时,接触热水,这时
首先由于管径变小,空气流速加快,可以尽快 的带走热水中的热量,其次由于管径变小,冷 空气的体积也受到压缩,故压力也有增加,而 压力增加流体的含热能力会随之增加,于是在 细腰部冷空气可以最大限度的吸收热水的热量 从而使热水冷却。还有这样的形状,在弯曲处 切线方向速度最大,有利于通风散热。到了最 上部,管径再次扩大,已携带了大量热量的空 气由于速度减慢,压力减小,又将所含的热量

圆锥曲线所有知识点和二级结论

圆锥曲线所有知识点和二级结论

圆锥曲线是解析几何学中的重要内容,它包括椭圆、双曲线和抛物线三种基本形式。

它们在数学、物理、工程等领域均有重要应用,具有广泛的研究价值。

下面将从几何、代数、物理等多个角度对圆锥曲线进行系统介绍和分析。

一、圆锥曲线的概念圆锥曲线的定义:在平面上依旧定点F到平面上所有定点P的距离的比值(|PF|/|PM|)为常数e(e>1)的动点M所得的轨迹即为双曲线。

在平面上的直线l与定点F的距离与到定点P的距离的比值始终为常数e(0<e<1)时,动点P所得的轨迹即为椭圆。

在平面上的直线上的所有点P到定点F的距离与到直线l的距离的差始终为常数e时,点P的轨迹即为抛物线。

二、椭圆的知识点1. 定义及表示:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的所有点P的集合。

2. 几何性质:椭圆有等轴对称性、焦点F1和F2为椭圆的两个焦点、平行于长轴或短轴的弦都过椭圆的焦点、焦距等于长轴长度、离心率等于c/a(c为焦距,a为长轴半径)等。

3. 参数方程:椭圆的参数方程为x = a*cos(t), y = b*sin(t),其中t为参数。

4. 离心率:离心率e的定义,离心率与长短轴的关系。

三、双曲线的知识点1. 定义及表示:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点P的集合。

2. 几何性质:双曲线有两条渐近线、两个焦点F1和F2、两个顶点、离心率等于c/a(c为焦距,a为顶点到中心的距离)等。

3. 参数方程:双曲线的参数方程为x = a * cosh(t), y = b * sinh(t),其中t为参数。

4. 离心率:离心率e的定义,离心率与距离关系。

四、抛物线的知识点1. 定义及表示:抛物线是平面上到定点F和直线l的距离相等的点P 的集合。

2. 几何性质:抛物线有顶点、准直线、对称轴、离心率等。

3. 参数方程:抛物线的参数方程为x = a * t^2, y = 2*a*t,其中t为参数。

生活中的圆锥曲线研究报告

生活中的圆锥曲线研究报告

生活中的圆锥曲线研究报告
标题:生活中的圆锥曲线研究报告
引言:
圆锥曲线是数学中的重要概念,在生活中也有许多应用。

本报告旨在研究生活中常见的圆锥曲线现象,并探讨其特点和应用。

一、抛物线的应用
1.1 电影院的屏幕:电影院的屏幕常常呈抛物线形状,这是因
为抛物线能够将来自投影机的光线均匀地反射到观众的视野中。

1.2 水下反射器:水下反射器常常采用抛物线形状,可以将来
自船只或潜水员的声波信号聚集到一个点上,提高接收信号的强度。

1.3 火箭发射器:火箭发射器通常呈抛物线形状,这是因为抛
物线能够提供最大的推力和最佳的飞行轨迹。

二、双曲线的应用
2.1 卫星通信:双曲线状的地球上的卫星轨道,能够实现全球
覆盖的通信网络。

2.2 过山车设计:许多过山车的轨道都采用双曲线形状,这种
形状能够给乘客带来更刺激的体验。

2.3 双曲线形状的桥梁:一些桥梁也采用双曲线形状,这样能
够使桥体结构更加稳定,并降低风力对桥梁的影响。

三、椭圆的应用
3.1 地球轨道:地球绕太阳的轨道呈现椭圆形状,这是行星运
动的基本特征。

3.2 眼镜制作:眼镜的镜片常采用椭圆形状,使得光线在镜片
内的传播距离最短,能够提供更好的视野。

结论:
圆锥曲线在生活中的应用非常广泛,包括抛物线、双曲线和椭圆。

通过研究这些曲线的特点和应用,我们可以更好地理解数学在现实生活中的实际应用。

在未来的研究中,我们可以进一步探索这些曲线其他可能的应用领域,以及更深入的数学原理。

(完整版)圆锥曲线的定义、方程和性质知识点总结

(完整版)圆锥曲线的定义、方程和性质知识点总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

最全圆锥曲线知识点总结

最全圆锥曲线知识点总结

最全圆锥曲线知识点总结的定义是指平面内一个动点P到两个定点F1,F2的距离之和等于常数(PF1+PF2=2a>F1F2),那么这个动点P的轨迹就是椭圆。

这两个定点被称为椭圆的焦点,两焦点的距离被称为椭圆的焦距。

注意:如果PF1+PF2=F1F2,则动点P的轨迹是线段F1F2;如果PF1+PF2<F1F2,则动点P的轨迹无图形。

2)对于椭圆,如果焦点在x轴上,那么它的参数方程是x=acosθ,y=bsinθ(其中θ为参数),如果焦点在y轴上,那么它的参数方程是y=acosθ,x=bsinθ。

如果椭圆的标准方程是x2/a2+y2/b2=1(a>b>0),那么它的范围是−a≤x≤a,−b≤y≤b,焦点是两个点(±c,0),对称中心是(0,0),顶点是(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率为e=c/a,椭圆即为0<e<1的情况。

3)关于直线与椭圆的位置关系,如果点P(x,y)在椭圆外,那么a2+b2>1;如果点P(x,y)在椭圆上,那么a2+b2=1;如果点P(x,y)在椭圆内,那么a2+b2<1.4)焦点三角形是指椭圆上的一点与两个焦点构成的三角形。

5)弦长公式是指如果直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,那么AB=√[1+k2(x1−x2)2]。

如果y1、y2分别为A、B的纵坐标,则AB=√[1+k2(y1−y2)2]。

如果弦AB所在直线方程设为x=ky+b,则AB=√[1+k2(y1−y2)2]。

6)圆锥曲线的中点弦问题可以用“韦达定理”或“点差法”求解。

在椭圆中,以P(x,b2x,y)为中点的弦所在直线的斜率k=−a2y。

1.已知椭圆 $m x^2 + n y^2 = 1$ 与直线 $x+y=1$ 相交于$A,B$ 两点,点 $C$ 是 $AB$ 的中点,且 $AB=2\sqrt{2}$,求椭圆的方程,若 $OC$ 的斜率为 $\frac{1}{2}$,求 $m,n$ 的值。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线,是由平面上一个动点到两个定点的距离之比为定值的点的轨迹。

圆锥曲线是解析几何的重要内容,广泛应用于数学、物理、工程等领域。

本文将对圆锥曲线的相关知识进行总结,帮助读者更好地理解和掌握这一概念。

一、基本概念1. 定义:圆锥曲线是平面上一个动点到两个定点的距离之比为定值的点的轨迹。

2. 定点:圆锥曲线的两个定点分别称为焦点。

3. 对称轴:通过两个焦点并垂直于准线的直线称为对称轴。

4. 准线:通过两个焦点的直线段称为准线。

二、椭圆1. 定义:椭圆是圆锥曲线的一种,其离心率小于1,且焦点不重合的曲线。

2. 方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。

3. 性质:椭圆具有对称性、渐近线和切线性质等。

4. 应用:椭圆在天文学、建筑学和电子等领域应用广泛。

三、双曲线1. 定义:双曲线是圆锥曲线的一种,其离心率大于1的曲线。

2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别是双曲线的半长轴和半短轴。

3. 性质:双曲线具有渐近线和切线性质,且有两个分支。

4. 应用:双曲线在物理学、天文学和通信等领域有重要应用。

四、抛物线1. 定义:抛物线是圆锥曲线的一种,其离心率等于1的曲线。

2. 方程:抛物线的标准方程为y^2 = 4ax,其中a是抛物线的焦点到准线的距离。

3. 性质:抛物线具有对称性、渐近线和切线性质等。

4. 应用:抛物线在物理学、工程学和天文学等领域有广泛应用。

五、圆1. 定义:圆是圆锥曲线的一种,其离心率等于0的曲线。

2. 方程:圆的标准方程为(x-h)^2 + (y-k)^2 = r^2,其中(h, k)是圆心的坐标,r是半径长度。

3. 性质:圆具有对称性、切线性质和切圆定理等。

4. 应用:圆在几何学、物理学和工程学等领域有广泛应用。

总结:圆锥曲线是解析几何的重要内容,包括椭圆、双曲线、抛物线和圆。

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。

定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。

标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。

标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 解析几何的产生
• 十六世纪以后,由于生产和 科学技术的发展,天文、力 学、航海等方面都对几何学 提出了新的需要。比如,德 国天文学家开普勒发现行星 是绕着太阳沿着椭圆轨道运 行的,太阳处在这个椭圆的
一个焦点上;意大利科学家伽 利略发现投掷物体试验着抛物 线运动的。这些发现都涉及到 圆锥曲线,要研究这些比较复 杂的曲线,原先的一套方法显 然已经不适应了,这就导致了 解析几何的出现
曲线的性质。这就是解析几何的基本思想。 具体地说,平面解析几何的基本思想有两个要点:第一,在平面
建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平 面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个 代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何 问题通过代数的方法解决,而且还把变量、函数以及数和形等重要 概念密切联系了起来。
笛卡尔为我们研究圆锥曲线提供了一个好的“环 境”,把这些曲线放入一个直角坐标系中,这样圆锥 曲线可以叫二次曲线,这为我们研究圆锥曲线提供 了便利。笛卡尔的《几何学》共分三卷,第一卷讨 论尺规作图;第二卷是曲线的性质;第三卷是立体 和“超立体”的作图,但他实际是代数问题,探讨 方程的根的性质。后世的数学家和数学史学家都把
活中处处也都有圆锥曲线
如喷泉
片的边缘
解析几何的产生并不是偶然的。在笛卡尔写《几何学》以前,就 有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究 天文、地理的时候,提出了一点位置可由两个“坐标来确定。这些 都对解析几何的创建产生了很大影响。在数学史上,一般认为和笛 卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一。
费尔马是一个业余从事数学研究的学者,对数论、解析几何、概 率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写 的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几 何学》以前,就已写了关于解析几何的小文,就已经有了解析几何 的思想。 笛卡尔的《几何学》,作为一本解析几何的书来看,是 不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了
解析几何的应用
在平面解析几何中,除了研究直线的有关直线的性质外,主要是 研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。
在空间解析几何中,除了研究平面、直线有关性质外,主要研 究柱面、锥面、旋转曲面。
椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应 用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个 焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷 达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成 的
还有隧道、桥梁的设
计和城市规划隧道、桥
梁的设计和一些重大工 程建设,一方面要考虑经 久耐用,另一方面要考虑 安全美观;城市规划更需 关注人文特点和科学设 计.这些都要联想并运用 数学的知识,特别是圆锥 曲线的应用
Байду номын сангаас宫一号等航天飞机的运行轨迹也是椭圆
圆锥曲线的发现可以说是一个伟大 的发现.它的发现给我们的生活与生 产带来了无穷的乐趣,也给我们的科 学研究带来了种种方便。在自然生
笛卡尔的《几何学》作为解析几何的起点。
从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立 起一种“普遍”的数学,把算术、代数、几何统一起来。他设 想,把任何数学问题化为一个代数问题,在把任何代数问题归 结到去解一个方程式。
为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出 发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值 可以确定平面上许多不同的点,这样就可以用代数的方法研究
相关文档
最新文档