高2020届高2017级三维设计一轮复习理科数学教师用书选修4-4坐标系与参数方程

合集下载

2020版高考数学北师大版(理)一轮复习课件:选修4-4 坐标系与参数方程 .pdf

2020版高考数学北师大版(理)一轮复习课件:选修4-4 坐标系与参数方程 .pdf

-6-
参数
知梳理 考点自诊
-7-
知识梳理 考点自诊
-8-
× ×
√ √
×
知识梳理 考点自诊
-9-
C
-10-
知识梳理 考点自诊
3.在极坐标系Ox中,方程ρ=2sin θ表示的圆为( D )
解析:由题意得,方程ρ=2sin θ表示以 为圆心,半径为1的圆,故 选D.
4.在极坐标系中,直线l的方程为ρsin θ=3,则点 到直线l的距离
2.将参数方程化为直角坐标方程的过程就是消去参数的过程,常 用的消参方法有代入消参、加减消参和三角恒等式消参等,往往需 要对参数方程进行变形,为消去参数创造条件.
考点1
考点2
考点3
考点4
考点5
-16-
对点训练1(2019届广东六校第一次联考,22)在平面直角坐标系中, 将曲线C1向左平移2个单位,再将得到的曲线上的每一个点的横坐 标保持不变,纵坐标缩短为原来的 ,得到曲线C2,以坐标原点O为极 点,x轴的正半轴为极轴,建立极坐标系,C1的极坐标方程为ρ=4cos α.
选修4—4 坐标系与参数方程
知识梳理 考点自诊
-2-
知识梳理 考点自诊
-3-
2.极坐标系与极坐标
(1)极坐标系:如图所示,在平面内取一个 定 点 O,叫做极点,自 极点O引一条 射 线 Ox,叫做极轴;再选定一个 长 度 单位,一 个 角 度 单位(通常取 弧 度 )及其正方向(通常取 逆 时 针 方
考点4
考点5
-20-
考点1
考点2
考点3
考点4
考点5
-21-
解题心得1.求点到直线距离的最大值,一般利用曲线的参数方程 及点到直线的距离公式把距离最值转化为三角函数求最大值.

高考数学一轮复习 选考部分选修4—4坐标系与参数方程教学案 理

高考数学一轮复习 选考部分选修4—4坐标系与参数方程教学案 理

选修4—4 坐标系与参数方程考纲要求1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. 2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形(如过极点的直线,过极点或圆心在极点的圆)表示的极坐标方程.4.了解参数方程,了解参数的意义.5.能选择适当的参数写出直线、圆和圆锥曲线的参数方程.1.设点P 是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λxλ>0,y ′=μy μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系在平面内取一个定点O ,叫做____;自极点O 引一条射线Ox ,叫做____;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的____,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ,有序数对(ρ,θ)叫做点M的极坐标,记作________.极坐标系的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.由极径的意义知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立________关系,约定极点的极坐标是极径______,极角可取任意角.3.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则x =ρcos θ,y =ρsin θ;也可化为关系式ρ2=x 2+y 2,tan θ=yx(x ≠0).4.直线的参数方程(1)过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),通常称该方程为直线l 的参数方程的标准形式,其中t 表示P 0(x 0,y 0)到l 上一点P (x ,y )的有向线段P 0P →的数量.t >0时,P 0P →的方向向上;t <0时,P 0P →的方向向下;t =0时,P 与P 0重合.(2)直线l 的参数方程的一般形式是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),该直线倾斜角α的正切为tan α=ba(α=0°或α=90°时例外).当且仅当a 2+b 2=1且b >0时,上式中的t才具有(1)中的t 所具有的几何意义.5.圆的参数方程圆心在M 0(x 0,y 0),半径为r 的圆的参数方程为______________________. 6.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b2=1的参数方程为______________.(2)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a sec φ,y =tan φ(φ为参数).(3)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).1.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t (t 为参数)与直线4x +ky =1垂直,则常数k =__________.2.已知直线l :x +y -2=0与圆C :⎩⎨⎧x =1+2cos θ,y =1+2sin θ(θ为参数),它们的公共点个数为__________.3.(2012陕西高考)直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为______.4.已知直线l :⎩⎪⎨⎪⎧x =a +4t ,y =-1-2t(t 为参数),圆C 的极坐标方程为ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4.(1)则圆心C 到直线l 的距离为__________;(2)若直线l 被圆C 截得的弦长为655,则a =__________.5.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2 2ρcos ⎝⎛⎭⎪⎫θ-π4=2.(1)圆O 1和圆O 2的极坐标方程化为直角坐标方程分别为__________; (2)经过两圆交点的直线的极坐标方程为__________.一、平面直角坐标系下的伸缩变换【例1】在同一直角坐标系中,将直线x -2y =2变成直线2x ′-y ′=4,所满足图象变换的伸缩变换为__________.方法提炼求满足图象变换的伸缩变换,可先求出变换公式,分清新旧坐标,代入对应的曲线方程,然后比较系数可得变换规则.请做演练巩固提升1二、如何求曲线的极坐标方程【例2】过原点的一动直线交圆x 2+(y -1)2=1于点Q ,在直线OQ 上取一点P ,使P 到直线y =2的距离等于|PQ |.用极坐标法求动直线绕原点一周时P 点的轨迹方程为__________.方法提炼求曲线极坐标方程的基本步骤是:(1)建立适当的极坐标系;(2)在曲线上任取一点P (ρ,θ);(3)根据曲线上的点所满足的条件写出等式;(4)用极坐标ρ,θ表示上述等式,并化简得极坐标方程;(5)证明所得的方程是曲线的极坐标方程.请做演练巩固提升2 三、极坐标方程的应用【例3】已知极坐标系的极点是直角坐标系的原点,极轴与直角坐标系中x 轴的正半轴重合.曲线C 的极坐标方程为ρ=2cos θ-2sin θ,曲线l 的极坐标方程是ρ(cos θ-2sin θ)=2,则(1)曲线C 和l 的直角坐标方程分别为__________;(2)设曲线C 和l 相交于A ,B 两点,则|AB |=__________. 方法提炼1.极坐标与直角坐标互化公式:x =ρcos θ,y =ρsin θ成立的条件是直角坐标的原点为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位.2.用极坐标法可使几何中的一些问题得出更直接、简单的解法,但解题的关键是选取适当极坐标系,这样可以简化运算过程,转化为直角坐标时也容易一些.特别提醒:极坐标与直角坐标的区别有:多值性:在直角坐标系中,点与直角坐标是“一对一”的关系.在极坐标系中,由于终边相同的角有无数个,即点的极角不唯一,因此点与极坐标是“一对多”的关系.但不同的极坐标可以写出统一的表达式.如果(ρ,θ)是点M 的极坐标,那么(ρ,θ+2k π)或(-ρ,θ+(2k +1)π)(k ∈Z )都可以作为点M 的极坐标.请做演练巩固提升3 四、参数方程及其应用【例4-1】(2012广东九校联考)已知曲线C 的参数方程是⎩⎨⎧x =2+2cos θ,y =2sin θ(θ为参数),且曲线C 与直线x -3y =0相交于两点A ,B ,则线段AB 的长是__________.【例4-2】在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =-1-35t (t 为参数),若以O 为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎪⎫θ+π4,则直线l 被曲线C 所截得的弦长为__________. 方法提炼 1.直线的参数方程的应用非常广泛,主要用来解决直线与圆锥曲线的位置关系问题.在解决这类问题时,充分利用直线参数方程中参数t 的几何意义,可以避免通过解方程组找交点等繁琐的运算,使问题得到简化.直线的参数方程有多种形式,只有标准式中的参数才具有明确的几何意义.2.把参数方程化为普通方程,消参数的方法有:代入消去法、加减消去法、恒等式(三角的或代数的)消去法等.普通方程化为参数方程:关键是如何引入参数.若动点坐标x ,y 与旋转角有关时,通常选择角为参数;与运动有关的问题,通常选择时间为参数等.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.提醒:将曲线的参数方程化为普通方程主要消去参数,简称为“消参”.把参数方程化为普通方程后,很容易改变变量的取值范围,从而使得两种方程所表示的曲线不一致,因此我们要注意参数方程与普通方程的等价性.请做演练巩固提升4极坐标与参数方程的综合应用【典例】 已知曲线C 的极坐标方程是ρ=1,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t 2,y =2+32t (t 为参数).(1)直线l 与曲线C 的直角坐标方程分别为__________,__________;(2)若将曲线C 上任意一点保持纵坐标不变,横坐标缩为原来的12后,得到曲线C ′,设曲线C ′上任一点为M (x ,y ),则x +2y 的最小值为__________.解析:(1)直线l 的直角坐标方程为3x -y -3+2=0,曲线C 的普通方程为x 2+y 2=1.(2)曲线C ′的普通方程为4x 2+y 2=1.令x =12cos θ,y =sin θ,∴x +2y =12cos θ+2sin θ=172sin(θ+φ).∴x +2y 的最小值为-172. 答案:(1)3x -y -3+2=0 x 2+y 2=1(2)-172答题指导:1.研究含有极坐标方程和参数方程的题目时,可先将它们同时化为直角坐标方程,再借助于直角坐标方程研究它们的性质.2.本题第(2)问还可利用线性规划及直线与椭圆相切等知识来解决.1.设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y =sin x 的方程变为__________.2.将极坐标系的极轴与直角坐标系的x 轴的非负半轴重合,并取相同的单位长度和角度,则过曲线ρcos θ+ρsin θ=1和曲线⎩⎪⎨⎪⎧y =t +1,x =t (t 为参数)的交点且与极轴平行的直线的极坐标方程为__________.3.(2012湖南高考)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =________.4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =1+t sin α(t为参数),曲线C 的极坐标方程为ρ=4cos θ.(1)若直线l 的斜率为-1,则直线l 与曲线C 交点的极坐标为__________; (2)若直线l 与曲线C 相交弦长为23,则直线l 的参数方程为__________.5.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =2+32t (t 为参数),曲线C 的极坐标方程为ρ=sin θ1-sin 2θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,M 点坐标为(0,2),直线l 与曲线C 交于A ,B 两点.(1)直线l 的普通方程为__________,曲线C 的直角坐标方程为__________; (2)线段MA ,MB 长度分别记|MA |,|MB |,则|MA |·|MB |=__________.参考答案基础梳理自测知识梳理2.极点 极轴 极径 M (ρ,θ) 一一对应 ρ=0 5.⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数) 6.(1)⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数)基础自测1.-6 解析:将⎩⎪⎨⎪⎧x =1-2t ,y =2+3t 化为普通方程y =-32x +72,该直线的斜率为k 1=-32;当k ≠0时,直线4x +ky =1的斜率为k 2=-4k,由k 1·k 2=-1,得k =-6.当k =0时,显然不成立.2.2 解析:将圆的参数方程化为普通方程为(x -1)2+(y -1)2=2,易知直线经过圆心,故直线与圆相交,即公共点个数为2.3. 3 解析:直线2ρcos θ=1即为2x =1,圆ρ=2cos θ,即为(x -1)2+y 2=1,由此可求得弦长为 3.4.(1)5|1-a |5 (2)0或2 解析:(1)把⎩⎪⎨⎪⎧x =a +4t ,y =-1-2t 化为普通方程为x +2y +2-a =0,把ρ=22cos ⎝⎛⎭⎪⎫θ+π4化为普通方程为x 2+y 2-2x +2y =0,∴圆心到直线的距离为5|1-a |5. (2)由已知,⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫|a -1|52=(2)2,∴a 2-2a =0,a =0或a =2.5.(1)x 2+y 2=4,x 2+y 2-2x -2y -2=0(2)ρsin ⎝⎛⎭⎪⎫θ+π4=22 解析:(1)∵ρ=2, ∴ρ2=4,即x 2+y 2=4.∵ρ2-2 2ρcos ⎝⎛⎭⎪⎫θ-π4=2,∴ρ2-2 2ρ⎝⎛⎭⎪⎫cos θcos π4+sin θsin π4=2.∴x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎪⎫θ+π4= 22. 考点探究突破【例1】 ⎩⎪⎨⎪⎧ x ′=x ,y ′=4y 解析:设伸缩变换为⎩⎪⎨⎪⎧x ′=λ·x ,λ>0,y ′=μ·y ,μ>0,可将其代入第二个方程,得2λx -μy =4,把x -2y =2化为2x -4y =4,比较系数得λ=1,μ=4.此时,⎩⎪⎨⎪⎧x ′=x ,y ′=4y ,即把直线x -2y =2图象上所有点的横坐标不变,纵坐标扩大到原来的4倍可得到直线2x ′-y ′=4.【例2】 x 2+y 2=4或x =0 解析:以O 为极点,Ox 为极轴,建立极坐标系,如图所示,过P 作PR 垂直直线y =2,则|PQ |=|PR |.设P (ρ,θ),Q (ρ0,θ),则有ρ0=2sin θ. ∵|PR |=|PQ |,∴|2-ρsin θ|=|ρ-2sin θ|. ∴ρ=±2或sin θ=±1.即为点P 的轨迹的极坐标方程,化为直角坐标方程为x 2+y 2=4或x =0.【例3】 (1)(x -1)2+(y +1)2=2 x -2y -2=0 (2)655解析:(1)由ρcos θ=x ,ρsin θ=y ,得曲线C 直角坐标方程(x -1)2+(y +1)2=2, l 的直角坐标方程x -2y -2=0.(2)设圆C 的圆心C (1,-1)到直线l 的距离为d ,则d =|1-2×(-1)-2|5=55,所以|AB |=2(2)2-⎝⎛⎭⎪⎫552=655. 【例4-1】 2 解析:曲线C :⎩⎨⎧x =2+2cos θ,y =2sin θ(θ为参数)表示以(2,0)为圆心,2为半径的圆.则圆心到直线x -3y =0的距离d =|2-3×0|12+(3)2=1, ∴直线被C 截得的弦长|AB |=2r 2-d 2=2(2)2-12=2. 【例4-2】 75 解析:将方程⎩⎪⎨⎪⎧x =1+45t ,y =-1-35t (t 为参数)化为普通方程3x +4y +1=0,将方程ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4化为普通方程x 2+y 2-x +y =0,此圆的圆心为⎝ ⎛⎭⎪⎫12,-12,半径为22,则圆心到直线的距离d =110,弦长=2r 2-d 2=212-1100=75. 演练巩固提升 1.y ′=3sin 2x ′ 解析:由⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,得⎩⎪⎨⎪⎧x =2x ′,y =13y ′.将其代入y =sin x ,得13y ′=sin 2x ′,即y ′=3sin 2x ′.2.ρsin θ=1 解析:曲线ρcos θ+ρsin θ=1在直角坐标系下的方程为x +y=1,曲线⎩⎪⎨⎪⎧y =t +1,x =t 的普通方程为y =x +1,两直线的交点坐标为⎩⎪⎨⎪⎧y =x +1,y =-x +1,即得(0,1),与极轴平行的方程为y =1,则该直线的极坐标方程为ρsin θ=1.3.22解析:把曲线C 1:ρ(2cos θ+sin θ)=1化成直角坐标方程,得2x +y =1;把曲线C 2:ρ=a (a >0)化成直角坐标方程,得x 2+y 2=a 2. ∵C 1与C 2的一个交点在极轴上,∴2x +y =1与x 轴交点⎝ ⎛⎭⎪⎫22,0在C 2上,即⎝⎛⎭⎪⎫222+0=a 2.又∵a >0,∴a =22. 4.(1)(0,0),⎝ ⎛⎭⎪⎫22,7π4 (2)⎩⎪⎨⎪⎧x =-1+t ,y =1(t 为参数)或⎩⎪⎨⎪⎧x =-1-45t ,y =1+35t (t 为参数) 解析:(1)直线l的方程:y -1=-1(x +1),即y =-x ,C :ρ=4cos θ,即x 2+y 2-4x =0,联立方程得2x 2-4x =0,∴A (0,0),B (2,-2);极坐标为A (0,0),B ⎝ ⎛⎭⎪⎫22,7π4. (2)d =r 2-⎝⎛⎭⎪⎫2322=1, C :(x -2)2+y 2=4,设直线l 的方程为kx -y +k +1=0, ∴|2k +k +1|k 2+1=1.∴k =0或k =-34.∴l :⎩⎪⎨⎪⎧x =-1+t ,y =1(t 为参数)或⎩⎪⎨⎪⎧x =-1-45t ,y =1+35t (t 为参数).5.(1)3x -y +2=0 y =x 2(2)8 解析:(1)直线l 的普通方程为3x -y +2=0.∵ρcos 2θ=sin θ,∴ρ2cos 2θ=ρsin θ.∴曲线C 的直角坐标方程为y =x 2.(2)将⎩⎪⎨⎪⎧x =12t ,y =2+32t 代入y =x 2得t 2-23t -8=0,由参数t 的几何意义知|MA |·|MB |=|t 1t 2|=8.。

2019-2020学年高三数学第一轮复习 选修4-4 坐标系与参数方程(选考)导学案 理.doc

2019-2020学年高三数学第一轮复习 选修4-4 坐标系与参数方程(选考)导学案 理.doc

2019-2020学年高三数学第一轮复习 选修4-4 坐标系与参数方程(选考)导学案 理编制人: 审核: 下科行政:学习目标:1、能在极坐标中用极坐标表示点的位置,理解在极坐标系中和平面直角坐标系中表示点的位置的区别,能进行极坐标系与直角坐标系的互化;2、能在极坐标中给出简单图形(如过极点的直线、过极点或圆心在极点的圆的方程,能进行极坐标方程与直角坐标方程的互化;3、了解参数方程、了解参数的含义4、能选择适当的参数写出直线、图像圆锥曲线的参数方程。

【课前预习案】一、基础知识梳理1、极坐标系的定义在平面内取一个定点O 叫做 ,自极点O 引一条射线OX 叫做 ;再选定一个长度单位,一个角度单位(通常取弧度)及正方向(取逆时针方向为正方向),这样就建立极坐标系,设M 是平面上的任一点,极点O 与点M 的距离OM 叫做点M 的,记为ρ;以极轴OX 为始边,射线OM 为终边的XOM ∠叫做点M 的极角,记为θ,有序数对(,)ρθ叫做点M 的极坐标极坐标的四要素:(1)极点 (2)极轴(3)长度单位 (4)角度单位和它的正方向 由0ρ≥,当极角θ的取值范围是[0,2]π时,平面上的点(极点除外)与极坐标(,)ρθ(0ρ≠)建立一一对应关系,规定:极点的极径为0,极角可取任意角2、直角坐标与极坐标的互化互化前提:原点与极点重合X 轴正半轴与极轴重合取相同的长度单位222cos sin tan (0)x y x y y x x ρρθρθθ⎧=+=⎧⎪⇒⎨⎨==≠⎩⎪⎩二、练一练1、在平面直角坐标系xoy 中,点P的直角坐标为(1,,若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标是2、极坐标方程cos )ρθθ=+表示的曲线是( )(A )圆 (B )椭圆 (C )双曲线 ( D )抛物线【课内探究案】一、讨论、展示、点评、质疑探究一求点的极坐标例1、在极坐标中,若等边ABC ∆的两个顶点是A (2,)4π,B 5(2,)4π,那么顶点C 的坐标可能是( )(A )3(4,)4π (B )3)4π (C ))π ( D )(3,)π高考链接(10广东)(1)在极坐标系(,)ρθ(02θπ≤≤)中,曲线2sin ρθ=与cos 1ρθ=-的交点的极坐标为(11北京)在极坐标中,圆2sin ρθ=-的圆心的极坐标是( )(A )(1,)2π (B )(1,)2π- (C )(1,0) ( D )(1,)π探究二、极坐标与直角坐标互化例2、极坐标中,曲线4sin ρθ=-和cos 1ρθ=相交于点A,B ,则A,B 之间的距离AB =高考链接1、在极坐标系中,点(2,)3π到圆2cos ρθ=的圆心的距离为( )(A )2 (B (C ( D2、已知曲线12,C C 的极坐标方程分别为2cos(cos()1024ππρθθ=-+-+=,则曲线1C 的点到曲线2C 的最远距离为探究三、直线和圆的极坐标方程(只需了解)例3、1、过极点、极角为θ的直线方程为 2、与极轴平行并与极轴距离等于a 的直线方程为3、与极轴所在直线垂直且与极点距离为a 的直线方程为4、圆心为(,0)r ,半径为r 的圆的极坐标方程为5、圆心为(,0)r -,半径为r 的圆的极坐标方程为6、圆心为(,)2r π,半径为r 的圆的极坐标方程为7、圆心为(,)2r π-,半径为r 的圆的极坐标方程为 8、圆心为极点,半径为r 的圆的极坐标方程为 高考链接:过点(2,)3π且平行于极轴的直线的极坐标方程为直线参数方程的一般形式是:00(x x at t y y bt =+⎧⎨=+⎩为参数) 其中直线倾斜角α的正切为tan b a α=(其中0a ≠) 圆心在000(,)M x y ,半径为r 的圆的参数方程是00cos (sin x x r y y r θθθ=+⎧⎨=+⎩为参数)1、若直线1223x t y t =-⎧⎨=+⎩(t 为参数)与直线41x ky +=垂直,则k = 2、已知直线:20l x y +-=与圆1:1x C y θθ⎧=+⎪⎨=+⎪⎩(θ为参数),它们公共点个数为3、(09广东)若直线112:2x t l y kt =-⎧⎨=+⎩(t 为参数)与直线2:12x s l y s =⎧⎨=-⎩(s 为参数)垂直,则k =4、(11广东)已知两曲线参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(0θπ≤≤)与254x t y t⎧=⎪⎨⎪=⎩(t 为R ),它们的交点坐标为5、(12广东)在平面直角坐标系xoy 中,曲线1C 和2C的参数方程分别为x t y =⎧⎪⎨=⎪⎩t 为参数)和x y θθ⎧=⎪⎨=⎪⎩(θ为参数),则曲线1C 和2C 的交点坐标为6、(11陕西)在平面直角坐标系xoy 中,以原点为极点,X 轴的正半轴为极轴建立极坐标系,设点A,B 分别在曲线13cos :4sin x C y θθ=+⎧⎨=+⎩(θ为参数)和曲线2:1C ρ=上,则AB = 7、曲线3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)的离心率 8、已知直线l 的参数方程是415315x t y t ⎧=+⎪⎪⎨⎪=--⎪⎩(t 为参数),以原点为极点,X 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为)4πρθ=+所截得的弦长为。

高考数学(理)一轮复习教案选修4-4坐标系与参数方程第2讲参数方程

高考数学(理)一轮复习教案选修4-4坐标系与参数方程第2讲参数方程

第2讲 参数方程【20XX 年高考会这样考】考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 【复习指导】复习本讲时,应紧紧抓住直线的参数方程、圆的参数方程、圆锥曲线的参数方程的建立以及各参数方程中参数的几何意义,同时要熟练掌握参数方程与普通方程互化的一些方法.基础梳理1.参数方程的意义在平面直角坐标系中,如果曲线上的任意一点的坐标x ,y 都是某个变量的函数⎩⎨⎧x =f (t ),y =f (t ),并且对于t 的每个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫曲线的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式(1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量. (2)圆的参数方程⎩⎨⎧x =r cos θ,y =r sin θ(θ为参数).(3)圆锥曲线的参数方程椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎨⎧x =a cos θ,y =b sin θ(θ为参数).双曲线x 2a 2-y 2b 2=1的参数方程为⎩⎨⎧x =a sec φ,y =tan φ(φ为参数).抛物线y 2=2px 的参数方程为⎩⎨⎧x =2pt 2,y =2pt(t 为参数). 双基自测1.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+t (t 为参数)所表示的图形分别是( ).A .直线、直线B .直线、圆C .圆、圆D .圆、直线解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=xρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎪⎨⎪⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 D2.若直线⎩⎨⎧x =1-2t ,y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________.解析 参数方程⎩⎪⎨⎪⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -63.二次曲线⎩⎨⎧x =5cos θ,y =3sin θ(θ是参数)的左焦点的坐标是________.解析 题中二次曲线的普通方程为x 225+y 29=1左焦点为(-4,0). 答案 (-4,0)4.(2011·广州调研)已知直线l 的参数方程为:⎩⎨⎧x =2t ,y =1+4t (t 为参数),圆C 的极坐标方程为ρ=22sin θ,则直线l 与圆C 的位置关系为________.解析 将直线l 的参数方程:⎩⎪⎨⎪⎧x =2t ,y =1+4t 化为普通方程得,y =1+2x ,圆ρ=22sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为2-11+4,因为该距离小于圆的半径,所以直线l 与圆C 相交.答案 相交5.(2011·广东)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________. 解析 由⎩⎪⎨⎪⎧x =5cos θ,y =sin θ(0≤θ<π)得,x 25+y 2=1(y ≥0)由⎩⎨⎧x =54t 2,y =t(t ∈R )得,x =54y 2,∴5y 4+16y 2-16=0. 解得:y 2=45或y 2=-4(舍去).则x =54y 2=1又θ≥0,得交点坐标为⎝ ⎛⎭⎪⎫1,255. 答案 ⎝⎛⎭⎪⎫1,255考向一 参数方程与普通方程的互化【例1】►把下列参数方程化为普通方程: (1)⎩⎨⎧x =3+cos θ,y =2-sin θ;(2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t .[审题视点] (1)利用平方关系消参数θ; (2)代入消元法消去t .解 (1)由已知⎩⎨⎧cos θ=x -3,sin θ=2-y ,由三角恒等式cos 2θ+sin 2θ=1,可知(x -3)2+(y -2)2=1,这就是它的普通方程. (2)由已知t =2x -2,代入y =5+32t 中,得y =5+32(2x -2),即3x -y +5-3=0就是它的普通方程.参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围.【训练1】(2010·陕西)参数方程⎩⎨⎧x =cos α,y =1+sin α(α为参数)化成普通方程为________.解析 由⎩⎪⎨⎪⎧ x =cos α,y =1+sin α,得⎩⎪⎨⎪⎧x =cos α, ①y -1=sin α, ②①2+②2得:x 2+(y -1)2=1. 答案 x 2+(y -1)2=1考向二 直线与圆的参数方程的应用【例2】►已知圆C :⎩⎨⎧ x =1+cos θ,y =sin θ(θ为参数)和直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(其中t 为参数,α为直线l 的倾斜角).(1)当α=2π3时,求圆上的点到直线l 距离的最小值; (2)当直线l 与圆C 有公共点时,求α的取值范围.[审题视点] (1)求圆心到直线l 的距离,这个距离减去圆的半径即为所求;(2)把圆的参数方程化为直角坐标方程,将直线的参数方程代入得关于参数t 的一元二次方程,这个方程的Δ≥0.解 (1)当α=2π3时,直线l 的直角坐标方程为3x +y -33=0,圆C 的圆心坐标为(1,0),圆心到直线的距离d =232=3,圆的半径为1,故圆上的点到直线l 距离的最小值为3-1.(2)圆C 的直角坐标方程为(x -1)2+y 2=1,将直线l 的参数方程代入圆C 的直角坐标方程,得t 2+2(cos α+3sin α)t +3=0,这个关于t 的一元二次方程有解,故Δ=4(cos α+3sin α)2-12≥0,则sin 2⎝ ⎛⎭⎪⎫α+π6≥34,即sin ⎝ ⎛⎭⎪⎫α+π6≥32或sin⎝ ⎛⎭⎪⎫α+π6≤-32.又0≤α<π,故只能sin ⎝ ⎛⎭⎪⎫α+π6≥32,即π3≤α+π6≤2π3,即π6≤α≤π2.如果问题中的方程都是参数方程,那就要至少把其中的一个化为直角坐标方程.【训练2】 已知直线l 的参数方程为⎩⎨⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎨⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长. 解 由⎩⎨⎧ x =1+t ,y =4-2t 消参数后得普通方程为2x +y -6=0,由⎩⎨⎧x =2cos θ+2,y =2sin θ消参数后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255,所以所求弦长为222-⎝⎛⎭⎪⎫2552=855. 考向三 圆锥曲线的参数方程的应用【例3】►求经过点(1,1),倾斜角为135°的直线截椭圆x 24+y 2=1所得的弦长.[审题视点] 把直线方程用参数表示,直接与椭圆联立,利用根与系数的关系及弦长公式可解决.解由条件可知直线的参数方程是⎩⎪⎨⎪⎧x =1-22t ,y =1+22t(t 为参数),代入椭圆方程可得⎝ ⎛⎭⎪⎫1-22t 24+⎝⎛⎭⎪⎫1+22t 2=1, 即52t 2+32t +1=0.设方程的两实根分别为t 1、t 2,则由二次方程的根与系数的关系可得⎩⎪⎨⎪⎧t 1+t 2=-625,t 1t 2=25,则直线截椭圆的弦长是|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫-6252-4×25=425.普通方程化为参数方程:化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系x =f (t )(或y =φ(t )),再代入普通方程F (x ,y )=0,求得另一关系y =φ(t )(或x =f (t )).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标).普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样.【训练3】(2011·南京模拟)过点P (-3,0)且倾斜角为30°的直线和曲线⎩⎪⎨⎪⎧x =t +1t ,y =t -1t(t 为参数)相交于A 、B 两点,求线段AB 的长.解直线的参数方程为⎩⎪⎨⎪⎧x =-3+32s ,y =12s(s 为参数),又曲线⎩⎪⎨⎪⎧x =t +1t ,y =t -1t(t 为参数)可以化为x 2-y 2=4,将直线的参数方程代入上式,得s 2-63s +10=0,设A 、B 对应的参数分别为s 1,s 2.∴s 1+s 2=63,s 1s 2=10.∴|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2=217.如何解决极坐标方程与参数方程的综合问题从近两年的新课标高考试题可以看出,对参数方程的考查重点是直线的参数方程、圆的参数方程和圆锥曲线的参数方程的简单应用,特别是利用参数方程解决弦长和最值等问题,题型为填空题和解答题.【示例】►(本题满分10分)(2011·新课标全国)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数).M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.第(1)问:利用代入法;第(2)问把曲线C 1、曲线C 2均用极坐标表示,再求射线θ=π3与曲线C 1、C 2的交点A 、B 的极径即可. [解答示范] (1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2.由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos α,y2=2+2sin α,即⎩⎨⎧x =4cos α,y =4+4sin α. 从而C 2的参数方程为⎩⎨⎧x =4cos α,y =4+4sin α(α为参数).(5分)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3, 射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3. 所以|AB |=|ρ2-ρ1|=2 3.(10分)很多自主命题的省份在选考坐标系与参数方程中的命题多以综合题的形式命题,而且通常将极坐标方程、参数方程相结合,以考查考生的转化与化归的能力.【试一试】(2011·江苏)在平面直角坐标系xOy 中,求过椭圆⎩⎨⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎨⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.[尝试解答] 由题设知,椭圆的长半轴长a =5,短半轴长b =3,从 而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0.故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0..精品资料。

最新高考数学(理)一轮复习细讲精练选修4-4坐标系与参数方程教学设计

最新高考数学(理)一轮复习细讲精练选修4-4坐标系与参数方程教学设计

选修4-4 坐标系与参方程第1讲坐标系[最新考纲]1.解坐标系的作用.了解在平面直角坐标系伸缩变换作用下平面图形的变情况.2.会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互.3.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.知识梳1.极坐标系(1)极坐标系的建立:在平面上取一个定点O,叫做极点,从O点引一条射线Ox,叫做极轴,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就确定了一个极坐标系.设M是平面内一点,极点O与点M的距离OM叫做点M的极径,记为ρ,以极轴Ox为始边,射线OM为终边的角叫做点M的极角,记为θ.有序对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).(2)极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,它的直角坐标是(x,y),极坐标为(ρ,θ),则它们之间的关系为x=ρcos θ,y=ρsin_θ.另一种关系为ρ2=x2+y2,tan θ=y x .2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin (θ0-α). 几个特殊位置的直线的极坐标方程 (1)直线过极点:θ=θ0和θ=π-θ0; (2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ; (3)直线过M ⎝⎛⎭⎪⎫b ,π2且平行于极轴:ρsin θ=b . 3.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos_θ; (3)当圆心位于M ⎝⎛⎭⎪⎫a ,π2,半径为a :ρ=2a sin_θ.诊 断 自 测1.点P 的直角坐标为(-2,2),那么它的极坐标可表示为________. 解析 直接利用极坐标与直角坐标的互公式. 答案 ⎝⎛⎭⎪⎫2,3π42.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 解析 ∵ρ=2sin θ+4cos θ, ∴ρ2=2ρsin θ+4ρcos θ. ∴x 2+y 2=2y +4x , 即x 2+y 2-2y -4x =0. 答案 x 2+y 2-4x -2y =03.(2014·西安五校一模)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcos θ=-1的交点的极坐标为________.解析 ρ=2sin θ的直角坐标方程为x 2+y 2-2y =0,ρcos θ=-1的直角坐标方程为x =-1,联立方程,得⎩⎨⎧x 2+y 2-2y =0,x =-1,解得⎩⎨⎧x =-1,y =1,即两曲线的交点为(-1,1),又0≤θ<2π,因此这两条曲线的交点的极坐标为⎝⎛⎭⎪⎫2,3π4.答案 ⎝⎛⎭⎪⎫2,3π44.在极坐标系中,直线l 的方程为ρsin θ=3,则点⎝ ⎛⎭⎪⎫2,π6到直线l 的距离为________.解析 ∵直线l 的极坐标方程可为y =3,点⎝ ⎛⎭⎪⎫2,π6为直角坐标为(3,1),∴点⎝ ⎛⎭⎪⎫2,π6到直线l 的距离为2. 答案 25.在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R )的距离是________.解析 将极坐标方程转为平面直角坐标系中的一般方程求解,极坐标系中的圆ρ=4sin θ转为平面直角坐标系中的一般方程为:x 2+y 2=4y ,即x 2+(y -2)2=4,其圆心为(0,2),直线θ=π6转为平面直角坐标系中的方程为y =33x ,即3x -3y =0.∴圆心(0,2)到直线3x -3y =0的距离为 |0-3×2|3+9= 3. 答案3考点一 极坐标与直角坐标的互【例1】 (1)把点M 的极坐标⎝ ⎛⎭⎪⎫-5,π6成直角坐标;(2)把点M 的直角坐标(-3,-1)成极坐标. 解 (1)∵x =-5cosπ6=-523,y =-5sin π6=-52, ∴点M 的直角坐标是⎝ ⎛⎭⎪⎫-523,-52.(2)ρ=-32+-2=3+1=2,tan θ=-1-3=33. ∵点M 在第三象限,ρ>0,∴最小正角θ=7π6. 因此,点M 的极坐标是⎝⎛⎭⎪⎫2,7π6.规律方法 (1)在由点的直角坐标为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在曲线的方程进行互时,一定要注意变量的范围.要注意转的等价性. 【训练1】 (1)把点M 的极坐标⎝⎛⎭⎪⎫8,2π3成直角坐标;(2)把点P 的直角坐标(6,-2)成极坐标.(ρ>0,0≤θ<2π) 解 (1)x =8cos 2π3=-4,y =8sin 2π3=43,因此,点M 的直角坐标是(-4,43). (2)ρ=62+-22=22,tan θ=-26=-33,又因为点在第四象限,得θ=11π6. 因此,点P 的极坐标为⎝⎛⎭⎪⎫22,11π6. 考点二 直角坐标方程与极坐标方程的互【例2】 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程. 解 (1)∵ρcos ⎝ ⎛⎭⎪⎫θ-π3=1,∴ρcos θ·cos π3+ρsin θ·sin π3=1. 又⎩⎨⎧x =ρcos θy =ρsin θ,∴12x +32y =1.即曲线C 的直角坐标方程为x +3y -2=0. 令y =0,则x =2;令x =0,则y =233.∴M (2,0),N ⎝ ⎛⎭⎪⎫0,233. ∴M 的极坐标为(2,0),N 的极坐标为⎝ ⎛⎭⎪⎫233,π2.(2)M ,N 连线的中点P 的直角坐标为⎝⎛⎭⎪⎫1,33,P 的极角为θ=π6.∴直线OP 的极坐标方程为θ=π6(ρ∈R ). 规律方法 直角坐标方程与极坐标方程的互,关键要掌握好互公式,研究极坐标系下图形的性质,可转为我们熟悉的直角坐标系的情境.【训练2】 ⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ. (1)把⊙O 1和⊙O 2的极坐标方程为直角坐标方程; (2)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程.解 以极点的原点,极轴为x 轴正半轴建立平面直角坐标系,两坐标系中取相同的长度单位.(1)ρ=4cos θ,两边同乘以ρ,得ρ2=4ρcos θ;ρ=-4sin θ,两边同乘以ρ,得ρ2=-4ρsin θ. 由ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2, 得⊙O 1,⊙O 2的直角坐标方程分别为x 2+y 2-4x =0和x 2+y 2+4y =0.(2)由⎩⎨⎧x 2+y 2-4x =0, ①x 2+y 2+4y =0. ②①-②得-4x -4y =0,即x +y =0为所求直线方程.考点三 曲线极坐标方程的应用【例3】 (2014·广州调研)在极坐标系中,求直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长.解 由ρsin ⎝ ⎛⎭⎪⎫θ+π4=2,得22(ρsin θ+ρcos θ)=2可为x +y -22=0.圆ρ=4可为x 2+y 2=16,由圆中的弦长公式得:2r 2-d 2=242-⎝ ⎛⎭⎪⎫2222=4 3.故所求弦长为4 3.规律方法 在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转为直角坐标方程解决.【训练3】 (2012·江苏卷)在极坐标系中,已知圆C 经过点P (2,π4),圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解 在ρsin ⎝⎛⎭⎪⎫θ-π3=-32中令θ=0,得ρ=1, 所以圆C 的圆心坐标为(1,0).因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,所以圆C 的半径PC = 22+12-2×1×2cosπ4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.因忽视极坐标系下点的极坐标不唯一性致误【典例】 (10分)在极坐标系下,若点P (ρ,θ)的一个极坐标为⎝ ⎛⎭⎪⎫4,2π3,求以⎝ ⎛⎭⎪⎫ρ2,θ2为坐标的不同的点的极坐标. [错解展示]甲:解 ⎝ ⎛⎭⎪⎫4,2π3为直角坐标为(-2,23),故该点与原点的中点坐标为(-1,3),为极坐标为⎝ ⎛⎭⎪⎫2,2π3.乙:解 ∵ρ=4,θ=2π3,故ρ2=2,θ2=π3, 因此所求极坐标为⎝⎛⎭⎪⎫2,π3.[规范解答] ∵⎝ ⎛⎭⎪⎫4,2π3为点P (ρ,θ)的一个极坐标.∴ρ=4或ρ=-4. (2分) 当ρ=4时,θ=2k π+2π3(k ∈Z ), ∴ρ2=2,θ2=k π+π3(k ∈Z ). (4分)当ρ=-4时,θ=2k π+5π3(k ∈Z ), ∴ρ2=-2,θ2=k π+5π6(k ∈Z ). (6分)∴⎝ ⎛⎭⎪⎫ρ2,θ2有四个不同的点: P 1⎝ ⎛⎭⎪⎫2,2k π+π3,P 2⎝⎛⎭⎪⎫2,2k π+4π3(k ∈Z ),P 3⎝ ⎛⎭⎪⎫-2,2k π+5π6,P 4⎝⎛⎭⎪⎫-2,2k π+11π6(k ∈Z ) (10分) [反思感悟] 甲生解法中将直角坐标系的中点坐标公式应用于极坐标系中的中点,事实上(ρ,θ)与⎝ ⎛⎭⎪⎫ρ2,θ2的关系并不是点(ρ,θ)与极点的中点为⎝ ⎛⎭⎪⎫ρ2,θ2,从几何意义上讲点⎝ ⎛⎭⎪⎫ρ2,θ2应满足该点的极角为θ的12,极径为ρ的12.乙生解法中满足⎝ ⎛⎭⎪⎫ρ2,θ2的几何意义,但由于极坐标系内点的极坐标的不唯一性,还应就点(ρ,θ)的其他形式的极坐标进行讨论. 【自主体验】下列各点中与极坐标⎝⎛⎭⎪⎫-2,π6不表示同一个点的极坐标是________. ①⎝⎛⎭⎪⎫2,7π6 ②⎝ ⎛⎭⎪⎫2,-7π6 ③⎝ ⎛⎭⎪⎫-2,-11π6 ④⎝⎛⎭⎪⎫-2,13π6 解析 因为与⎝ ⎛⎭⎪⎫-2,π6表示同一点的坐标有⎝ ⎛⎭⎪⎫-2,π6+2k π或⎝⎛⎭⎪⎫2,π6+k +,其中k ∈Z ,所以易得只有②不同. 答案 ②一、填空题1.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是________(填序号). ①⎝ ⎛⎭⎪⎫1,π2;②⎝⎛⎭⎪⎫1,-π2;③(1,0);④(1,π)解析 圆的方程可为ρ2=-2ρsin θ,由⎩⎨⎧x =ρcos θ,y =ρsin θ,得x 2+y 2=-2y ,即x 2+(y +1)2=1,圆心为(0,-1), 为极坐标为⎝ ⎛⎭⎪⎫1,-π2.答案 ②2.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是______(填序号). ①两个圆;②两条直线;③一个圆和一条射线;④一条直线和一条射线. 解析 由(ρ-1)(θ-π)=0(ρ≥0)得,ρ=1或θ=π.其中ρ=1表示以极点为圆心,半径为1的圆,θ=π表示以极点为起点与Ox 反向的射线. 答案 ③3.在极坐标系中,点⎝ ⎛⎭⎪⎫2,π3到圆ρ=2cos θ的圆心的距离为________.解析 点⎝ ⎛⎭⎪⎫2,π3为直角坐标为(1,3),方程ρ=2cos θ为普通方程为x 2+y 2-2x =0,故圆心为(1,0),则点(1,3)到圆心(1,0)的距离为 3. 答案34.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ(cos θ+sin θ)=1与ρ(sinθ-cos θ)=1的交点的极坐标为________.解析 曲线ρ(cos θ+sin θ)=1为直角坐标方程为x +y =1,ρ(sin θ-cos θ)=1为直角坐标方程为y -x =1.联立方程组⎩⎨⎧x +y =1,y -x =1,得⎩⎨⎧x =0,y =1,则交点为(0,1),对应的极坐标为⎝ ⎛⎭⎪⎫1,π2.答案 ⎝⎛⎭⎪⎫1,π25.(2014·汕头调研)在极坐标系中,ρ=4sin θ是圆的极坐标方程,则点A ⎝ ⎛⎭⎪⎫4,π6到圆心C 的距离是________.解析 将圆的极坐标方程ρ=4sin θ为直角坐标方程为x 2+y 2-4y =0,圆心坐标为(0,2).又易知点A ⎝ ⎛⎭⎪⎫4,π6的直角坐标为(23,2),故点A 到圆心的距离为-232+-2=2 3.答案 2 36.在极坐标系中,过圆ρ=6cos θ-22sin θ的圆心且与极轴垂直的直线的极坐标方程为________.解析 由ρ=6cos θ-22sin θ⇒ρ2=6ρcos θ-22ρsin θ,所以圆的直角坐标方程为x 2+y 2-6x +22y =0,将其为标准形式为(x -3)2+(y +2)2=11,故圆心的坐标为(3,-2),所以过圆心且与x 轴垂直的直线的方程为x =3,将其为极坐标方程为ρcos θ=3. 答案 ρcos θ=37.(2014·华南师大模拟)在极坐标系中,点M ⎝ ⎛⎭⎪⎫4,π3到曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上的点的距离的最小值为________.解析 依题意知,点M 的直角坐标是(2,23),曲线的直角坐标方程是x +3y -4=0,因此所求的距离的最小值等于点M 到该直线的距离,即为|2+23×3-4|12+32=2.答案 28.在极坐标系中,曲线C 1:ρ=2cos θ,曲线C 2:θ=π4,若曲线C 1与C 2交于A 、B 两点,则线段AB =________.解析 曲线C 1与C 2均经过极点,因此极点是它们的一个公共点.由⎩⎨⎧ρ=2cos θ,θ=π4,得⎩⎨⎧ρ=2,θ=π4,即曲线C 1与C 2的另一个交点与极点的距离为2,因此AB = 2.答案29.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成图形的面积是________. 解析 θ=0,θ=π3,ρcos θ+ρsin θ=1三直线对应的直角坐标方程分别为:y =0,y =3x ,x +y =1,作出图形得围成图形为如图△OAB ,S =3-34.答案3-34二、解答题10.设过原点O 的直线与圆(x -1)2+y 2=1的一个交点为P ,点M 为线段OP 的中点,当点P 在圆上移动一周时,求点M 轨迹的极坐标方程,并说明它是什么曲线. 解 圆(x -1)2+y 2=1的极坐标方程为ρ=2cos θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2,设点P 的极坐标为(ρ1,θ1),点M 的极坐标为(ρ,θ),∵点M 为线段OP 的中点,∴ρ1=2ρ,θ1=θ,将ρ1=2ρ,θ1=θ代入圆的极坐标方程,得ρ=cos θ.∴点M 轨迹的极坐标方程为ρ=cosθ⎝⎛⎭⎪⎫-π2≤θ≤π2,它表示圆心在点⎝ ⎛⎭⎪⎫12,0,半径为12的圆.11.(2012·辽宁卷)在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示); (2)求圆C 1与C 2的公共弦的参方程. 解 (1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ. 解⎩⎨⎧ρ=2,ρ=4cos θ,得ρ=2,θ=±π3, 故圆C 1与圆C 2交点的坐标为⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3.注:极坐标系下点的表示不唯一.(2)法一 由⎩⎨⎧x =ρcos θ,y =ρsin θ,得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参方程为⎩⎨⎧x =1,y =t ,-3≤t ≤ 3. ⎝⎛⎭⎪⎪⎫或参方程写成⎩⎨⎧x =1,y =y ,-3≤y ≤3法二 将x =1代入⎩⎨⎧x =ρcos θ,y =ρsin θ,得ρcos θ=1,从而ρ=1cos θ. 于是圆C 1与C 2的公共弦的参方程为 ⎩⎨⎧x =1,y =tan θ,-π3≤θ≤π3. 12.在直角坐标系xOy 中,曲线C 1的参方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参).M是C 1上的动点,P 点满足OP →=2 OM →,P 点的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB . 解 (1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2.由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos α,y 2=2+2sin α,即⎩⎨⎧x =4cos α,y =4+4sin α.从而C 2的参方程为⎩⎨⎧x =4cos α,y =4+4sin α.(α为参)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3, 射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3. 所以AB =|ρ2-ρ1|=2 3.第2讲 参方程[最新考纲]1.了解参方程,了解参的意义.2.能选择适当的参写出直线、圆和椭圆的参方程.3.掌握直线的参方程及参的几何意义,能用直线的参方程解决简单的相关问题.知 识 梳1.曲线的参方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函⎩⎨⎧x =ft ,y =gt并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的参方程,其中变量t 称为参. 2.一些常见曲线的参方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参).(2)圆的方程(x -a )2+(y -b )2=r 2的参方程为⎩⎨⎧x =a +r cos θy =b +r sin θ(θ为参).(3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参方程为⎩⎨⎧x =a cos θy =b sin θ(θ为参).(4)抛物线方程y 2=2px (p >0)的参方程为⎩⎨⎧x =2pt 2y =2pt(t 为参).诊 断 自 测1.极坐标方程ρ=cos θ和参方程⎩⎨⎧x =-1-t ,y =2+t (t 为参)所表示的图形分别是________.①直线、直线;②直线、圆;③圆、圆;④圆、直线. 解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=xρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎨⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 ④2.若直线⎩⎨⎧x =1-2t ,y =2+3t(t 为实)与直线4x +ky =1垂直,则常k =________.解析 参方程⎩⎨⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -63.(2012·北京卷)直线⎩⎨⎧x =2+t ,y =-1-t (t 为参)与曲线⎩⎨⎧x =3cos α,y =3sin α(α为参)的交点个为________.解析 直线方程可为x +y -1=0,曲线方程可为x 2+y 2=9,圆心(0,0)到直线x +y -1=0的距离d =12=22<3.∴直线与圆相交有两个交点. 答案 24.已知直线l :⎩⎪⎨⎪⎧x =1-2t ,y =2+2t (t 为参)上到点A (1,2)的距离为42的点的坐标为________.解析 设点Q (x ,y )为直线上的点,则|QA |=-1+2t 2+-2-2t2=2t2+-2t2=42,解之得,t =±22,所以Q (-3,6)或Q (5,-2). 答案 (-3,6)和(5,-2)5.(2013·广东卷)已知曲线C 的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参方程为________. 解析 由ρ=2cos θ知,ρ2=2ρcos θ 所以x 2+y 2=2x ,即(x -1)2+y 2=1, 故其参方程为⎩⎨⎧x =1+cos θ,y =sin θ(θ为参).答案 ⎩⎨⎧x =1+cos θ,y =sin θ(θ为参)考点一 参方程与普通方程的互【例1】 把下列参方程为普通方程,并说明它们各表示什么曲线; (1)⎩⎪⎨⎪⎧x =1+12t ,y =2+32t (t 为参);(2)⎩⎨⎧x =1+t 2,y =2+t (t 为参);(3)⎩⎪⎨⎪⎧x =t +1t ,y =1t -t(t 为参).解 (1)由x =1+12t 得t =2x -2.∴y =2+32(2x -2).∴3x -y +2-3=0,此方程表示直线. (2)由y =2+t 得t =y -2,∴x =1+(y -2)2. 即(y -2)2=x -1,此方程表示抛物线. (3)⎩⎪⎨⎪⎧x =t +1t y =1t -t①②∴①2-②2得x 2-y 2=4,此方程表示双曲线.规律方法 参方程为普通方程:参方程为普通方程的基本思路是消去参,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代的)消去法,不要忘了参的范围.【训练1】 将下列参方程为普通方程. (1)⎩⎨⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参);(2)⎩⎪⎨⎪⎧x =12t+e -t ,y =12t-e -t(t 为参).解 (1)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2]. (2)由参方程得e t =x +y ,e -t =x -y , ∴(x +y )(x -y )=1,即x 2-y 2=1.考点二 直线与圆参方程的应用【例2】 在直角坐标系xOy 中,直线l 的参方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|PA |+|PB |. 解 (1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5. (2)将l 的参方程代入圆C 的直角坐标方程. 得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根, 所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.规律方法 (1)过定点P 0(x 0,y 0),倾斜角为α的直线参方程的标准形式为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参),t 的几何意义是直线上的点P 到点P 0(x 0,y 0)的量,即t =|PP 0|时为距离.使用该式时直线上任意两点P 1、P 2对应的参分别为t 1、t 2,则|P 1P 2|=|t 1-t 2|,P 1P 2的中点对应的参为12(t 1+t 2). (2)对于形如⎩⎨⎧x =x 0+at ,y =y 0+bt(t 为参),当a 2+b 2≠1时,应先为标准形式后才能利用t 的几何意义解题.【训练2】 已知直线l 的参方程为⎩⎨⎧x =1+t ,y =4-2t (参t ∈R ),圆 C 的参方程为⎩⎨⎧x =2cos θ+2,y =2sin θ(参θ∈[0,2π]),求直线l 被圆C 所截得的弦长. 解 由⎩⎨⎧x =1+t ,y =4-2t消参后得普通方程为2x +y -6=0,由⎩⎨⎧x =2cos θ+2,y =2sin θ消参后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为 2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255, 所以所求弦长为222-⎝ ⎛⎭⎪⎫2552=855.考点三 极坐标、参方程的综合应用【例3】 已知P 为半圆C :⎩⎨⎧x =cos θ,y =sin θ(θ为参,0≤θ≤π)上的点,点A的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参方程.解 (1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)点M 的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0). 故直线AM 的参方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t (t 为参).规律方法 涉及参方程和极坐标方程的综合题,求解的一般方法是分别为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程. 【训练3】 (2013·福建卷)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程; (2)圆C 的参方程为⎩⎨⎧x =1+cos α,y =sin α(α为参),试判断直线l 与圆C 的位置关系.解 (1)由点A (2,π4)在直线ρcos(θ-π4)=a 上,可得a = 2. 所以直线l 的方程可为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.转思想在解题中的应用【典例】 已知圆锥曲线⎩⎨⎧x =2cos θy =3sin θ(θ是参)和定点A (0, 3),F 1、F 2是圆锥曲线的左、右焦点.(1)求经过点F 1且垂直于直线AF 2的直线l 的参方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.[审题视点] (1)先将圆锥曲线参方程为普通方程,求出F 1的坐标,然后求出直线的倾斜角度,再利用公式就能写出直线l 的参方程.(2)直线AF 2是已知确定的直线,利用求极坐标方程的一般方法求解. 解 (1)圆锥曲线⎩⎨⎧x =2cos θy =3sin θ为普通方程x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =-3,于是经过点F 1且垂直于直线AF 2的直线l的斜率k ′=33,直线l 的倾斜角是30°, 所以直线l 的参方程是⎩⎨⎧x =-1+t cos 30°y =t sin 30°(t 为参),即⎩⎪⎨⎪⎧x =32t -1,y =12t(t 为参).(2)直线AF 2的斜率k =-3,倾斜角是120°, 设P (ρ,θ)是直线AF 2上任一点, 则ρsin 60°=1-θ,ρsin(120°-θ)=sin 60°,则ρsin θ+3ρcos θ= 3.[反思感悟] (1)本题考查了极坐标方程和参方程的求法及应用.重点考查了转与归能力.(2)当用极坐标或参方程研究问题不很熟练时,可以转成我们比较熟悉的普通方程求解.(3)本题易错点是计算不准确,极坐标方程求解错误. 【自主体验】已知直线l 的参方程为⎩⎨⎧ x =4-2ty =t -2(t 为参),P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l 的距离的最大值. 解 将直线l 的参方程⎩⎨⎧x =4-2ty =t -2(t 为参)转为普通方程为x +2y =0,因为P为椭圆x 24+y 2=1上任意一点,故可设P (2cos θ,sin θ),其中θ∈R . 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫θ+π45. 所以当θ=k π+π4,k ∈Z 时,d 取得最大值2105.一、填空题1.(2014·芜湖模拟)直线⎩⎪⎨⎪⎧x =-2-2t ,y =3+2t (t 为参)上与点A (-2,3)的距离等于2的点的坐标是________.解析 由题意知(-2t )2+(2t )2=(2)2,所以t 2=12,t =±22,代入⎩⎪⎨⎪⎧x =-2-2t ,y =3+2t (t 为参),得所求点的坐标为(-3,4)或(-1,2).答案 (-3,4)或(-1,2)2.(2014·海淀模拟)若直线l :y =kx 与曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(参θ∈R )有唯一的公共点,则实k =________.解析 曲线C 为普通方程为(x -2)2+y 2=1,圆心坐标为(2,0),半径r =1.由已知l 与圆相切,则r =|2k |1+k2=1⇒k =±33. 答案 ±333.已知椭圆的参方程⎩⎨⎧x =2cos ty =4sin t(t 为参),点M 在椭圆上,对应参t =π3,点O 为原点,则直线OM 的斜率为________. 解析 当t =π3时,x =1,y =23,则M (1,23),∴直线OM 的斜率k =2 3. 答案 2 34.(2013·湖南卷)在平面直角坐标系xOy 中,若l :⎩⎨⎧x =t ,y =t -a(t 为参)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参)的右顶点,则常a 的值为________.解析 ∵x =t ,且y =t -a , 消去t ,得直线l 的方程y =x -a , 又x =3cos φ且y =2sin φ,消去φ, 得椭圆方程x 29+y 24=1,右顶点为(3,0),依题意0=3-a , ∴a =3. 答案 35.直线3x +4y -7=0截曲线⎩⎨⎧x =cos α,y =1+sin α(α为参)的弦长为________.解析 曲线可为x 2+(y -1)2=1,圆心(0,1)到直线的距离d =|0+4-7|9+16=35,则弦长l =2r 2-d 2=85.答案 856.已知直线l 1:⎩⎨⎧x =1-2t ,y =2+kt(t 为参),l 2:⎩⎨⎧x =s ,y =1-2s(s 为参),若l 1∥l 2,则k =________;若l 1⊥l 2,则k =________.解析 将l 1、l 2的方程为直角坐标方程得l 1:kx +2y -4-k =0,l 2:2x +y -1=0,由l 1∥l 2,得k 2=21≠4+k1⇒k =4,由l 1⊥l 2,得2k +2=0⇒k =-1.答案 4 -17.(2012·广东卷)在平面直角坐标系xOy 中,曲线C 1和C 2的参方程分别为⎩⎨⎧x =t ,y =t(t 为参)和⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参),则曲线C 1与C 2的交点坐标为________.解析 曲线C 1的普通方程为y 2=x (y ≥0),曲线C 2的普通方程为x 2+y 2=2. 由⎩⎨⎧y 2=x y ,x 2+y 2=2,解得⎩⎨⎧x =1,y =1,即交点坐标为(1,1).答案 (1,1)8.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎨⎧x =3+cos θ,y =sin θ(θ为参)和曲线C 2:ρ=1上,则|AB |的最小值为________.解析 消掉参θ,得到关于x 、y 的一般方程C 1:(x -3)2+y 2=1,表示以(3,0)为圆心,以1为半径的圆;C 2:x 2+y 2=1,表示的是以原点为圆心的单位圆,|AB |的最小值为3-1-1=1. 答案 19.(2012·湖南卷)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =______.解析 ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的普通方程为2x +y -1=0,ρ=a (a >0)对应的普通方程为x 2+y 2=a 2.在2x +y -1=0中,令y =0,得x =22.将⎝ ⎛⎭⎪⎫22,0代入x 2+y 2=a 2得a =22. 答案22二、解答题10.(2013·新课标全国Ⅰ卷)已知曲线C 1的参方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t(t 为参),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参方程为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎨⎧x =4+5cos t ,y =5+5sin t消去参t ,为普通方程(x -4)2+(y -5)2=25, 即C 1:x 2+y 2-8x -10y +16=0. 将⎩⎨⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsinθ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0. 由⎩⎨⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎨⎧x =1,y =1或⎩⎨⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2.11.(2013·新课标全国Ⅱ卷)已知动点P 、Q 都在曲线C :⎩⎨⎧x =2cos t ,y =2sin t (t 为参)上,对应参分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参方程;(2)将M 到坐标原点的距离d 表示为α的函,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α). M 的轨迹的参方程为⎩⎨⎧x =cos α+cos 2α,y =sin α+sin 2α,(α为参,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹通过坐标原点.12.(2012·新课标全国卷)已知曲线C 1的参方程是⎩⎨⎧x =2cos φ,y =3sin φ(φ为参),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝⎛⎭⎪⎫2,π3.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围. 解 (1)由已知可得A ⎝⎛⎭⎪⎫2cos π3,2sin π3,B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1). (2)设P (2cos φ,3sin φ), 令S =|PA |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ. 因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].。

【最高考系列】(教师用书)高考数学一轮总复习 坐标系与参数方程课堂过关 理(选修4-4)

【最高考系列】(教师用书)高考数学一轮总复习 坐标系与参数方程课堂过关 理(选修4-4)

选修4-4 坐标系与参数方程第1课时 坐 标 系(对应学生用书(理)191~193页)1. (选修44P 17习题第7题改编)已知点M 的直角坐标是(-1,3),求点M 的极坐标.解:⎝⎛⎭⎪⎫2,2k π+2π3(k∈Z )都是极坐标. 2. (选修44P 32习题第4题改编)求直线xcos α+ysin α=0的极坐标方程.解:由ρcos θcos α+ρsin θsin α=0,得cos(θ-α)=0,取θ-α=π2.3. 若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,求该曲线的直角坐标方程.解:∵ ρ=2sin θ+4cos θ,∴ ρ2=2ρsin θ+4ρcos θ,∴ 由互化公式知x 2+y 2=2y +4x ,即x 2+y 2-2y -4x =0.4. 在极坐标系中,求曲线ρ=2sin θ与ρcos θ=-1(0≤θ<2π)的交点的极坐标.解:由ρ=2sin θ,得ρ2=2ρsin θ,其普通方程为x 2+y 2=2y ,ρcos θ=-1的普通方程为x =-1,联立⎩⎪⎨⎪⎧x 2+y 2=2y ,x =-1,解得⎩⎪⎨⎪⎧x =-1,y =1,故交点(-1,1)的极坐标为⎝⎛⎭⎪⎫2,3π4. 5. (选修44P 33习题第14题改编)求极坐标方程分别为ρ=cos θ与ρ=sin θ的两个圆的圆心距.解:圆心分别为⎝ ⎛⎭⎪⎫12,0和⎝ ⎛⎭⎪⎫0,12,故圆心距为22.1. 极坐标系是由距离(极径)与方向(极角)确定点的位置的一种方法,由于终边相同的角有无数个且极径可以为负数,故在极坐标系下,有序实数对(ρ,θ)与点不一一对应.这点应与直角坐标系区别开来.2. 在极坐标系中,同一个点M 的坐标形式不尽相同,M(ρ,θ)可表示为(ρ,θ+2n π)(n∈Z ).3. 极坐标系中,极径ρ可以为负数,故M(ρ,θ)可表示为(-ρ,θ+(2n +1)π)(n∈Z ).4. 特别地,若ρ=0,则极角θ可为任意角.5. 建立曲线的极坐标方程,其基本思路与在直角坐标系中大致相同,即设曲线上任一点M(ρ,θ),建立等式,化简即得.6. 常用曲线的极坐标方程(1) 经过点A(a ,0)与极轴垂直的直线的极坐标方程为ρcos θ=a. (2) 经过点A(0,a)与极轴平行的直线的极坐标方程为ρsin θ=a. (3) 圆心在A(a ,0),且过极点的圆的极坐标方程为ρ=2acos θ.7. 以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位.平面内任一点P 的直角坐标(x ,y)与极坐标(ρ,θ)可以互换,公式是⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ 和⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x . [备课札记]题型1 求极坐标方程, 1) 如图,AB 是半径为1的圆的一条直径,C 是此圆上任意一点,作射线AC ,在AC 上存在点P ,使得AP·AC=1,以A 为极点,射线AB 为极轴建立极坐标系.(1) 求以AB 为直径的圆的极坐标方程; (2) 求动点P 的轨迹的极坐标方程; (3) 求点P 的轨迹在圆内部分的长度.解:(1) 易得圆的极坐标方程为ρ=2cos θ.(2) 设C(ρ0,θ),P(ρ,θ),则ρ0=2cos θ,ρ0ρ=1.∴ 动点P 的轨迹的极坐标方程为ρcos θ=12.(3) 所求长度为 3. 备选变式(教师专享)求以点A(2,0)为圆心,且过点B ⎝⎛⎭⎪⎫23,π6的圆的极坐标方程. 解:由已知圆的半径为AB =22+(2 3)2-2×2×2 3cos π6=2.又圆的圆心坐标为A(2,0),所以圆过极点, 所以圆的极坐标方程是ρ=4cos θ.题型2 极坐标方程与直角坐标方程的互化, 2) 在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1、C 2的极坐标方程,并求出圆C 1、C 2的交点坐标(用极坐标表示).解: 圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程ρ=4cos θ. 解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ,得ρ=2,θ=±π3,故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3.注:极坐标系下点的表示不唯一. 变式训练圆O 1和圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ. (1) 把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2) 求经过圆O 1、圆O 2两个交点的直线的直角坐标方程.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1) 由ρ=4cos θ,得ρ2=4ρcos θ.所以x 2+y 2=4x.即x 2+y 2-4x =0为圆O 1的直角坐标方程.同理x 2+y 2+y =0为圆O 2的直角坐标方程.(2) 由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+y =0,相减得过交点的直线的直角坐标方程为4x +y =0.题型3 极坐标的应用, 3) 若两条曲线的极坐标方程分别为ρ=1与ρ=2cos ⎝⎛⎭⎪⎫θ+π3,它们相交于A 、B 两点,求线段AB 的长.解:(解法1)联立方程⎩⎪⎨⎪⎧ρ=1,ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3,得交点坐标为A(1,0),B ⎝ ⎛⎭⎪⎫1,-2π3(注意坐标形式不唯一).在△OAB 中,根据余弦定理,得AB 2=1+1-2×1×1×cos 2π3=3,∴ AB = 3.(解法2)由ρ=1,得x 2+y 2=1.∵ ρ=2cos ⎝⎛⎭⎪⎫θ+π3=cos θ-3sin θ, ∴ ρ2=ρcos θ-3·ρsin θ,∴ x 2+y 2-x +3y =0.由⎩⎨⎧x 2+y 2=1,x 2+y 2-x +3y =0,得A(1,0)、B ⎝ ⎛⎭⎪⎫-12,-32,∴ AB =⎝ ⎛⎭⎪⎫1+122+⎝ ⎛⎭⎪⎫0+322= 3. 备选变式(教师专享)(2014·南通期末)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A 、B 两点,且AB =3,求直线l 的方程.解:设直线l 的方程为θ=θ0(ρ∈R ),A(0,0)、B(ρ1,θ0), 则AB =|ρ1-0|=|2sin θ0|.又AB =3,故sin θ0=±32.解得θ0=π3+2k π或θ0=-π3+2k π,k ∈Z .所以直线l 的方程为θ=π3或θ=2π3(ρ∈R ).1. 在极坐标系中,求圆ρ=2cos θ的垂直于极轴的两条切线方程.解:在极坐标系中,圆心坐标ρ=1,θ=0,半径r =1,所以左切线方程为θ=π2,右切线满足cos θ=2ρ,即ρcos θ=2.2. 已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝⎛⎭⎪⎫4,π3,求|CP|.解:由ρ=4cos θ得ρ2=4ρcos θ,即x 2+y 2=4x ,所以(x -2)2+y 2=4,圆心C(2,0).点P 的极坐标为⎝⎛⎭⎪⎫4,π3,即ρ=4,θ=π3,所以x =ρcos θ=4cos π3=2,y =ρsinθ=4sin π3=23,即P(2,23),所以|CP|=2 3.3. (2014·常州期末)在极坐标系中,已知点P ⎝ ⎛⎭⎪⎫23,π6,直线l :ρcos ⎝⎛⎭⎪⎫θ+π4=22,求点P 到直线l 的距离.解:点P 的直角坐标为(3,3),直线l 的普通方程为x -y -4=0,从而点P 到直线l 的距离为|3-3-4|2=2+62.4. (2014·苏州期末)在极坐标系中,求点M ⎝⎛⎭⎪⎫2,π6关于直线θ=π4的对称点N 的极坐标,并求MN 的长.解:M ⎝ ⎛⎭⎪⎫2,π6关于直线θ=π4的对称点为N ⎝⎛⎭⎪⎫2,π3.故MN =2OMsin π12=4×6-24=6- 2.1. 在极坐标系中,求点⎝⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离.解:在极坐标系中,点⎝⎛⎭⎪⎫2,π6化为直角坐标为(3,1),直线ρsin θ=2化为直角坐标方程为y =2.(3,1)到y =2的距离1,即为点⎝⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离1.2. 在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=a ,且点A 在直线上. (1) 求a 的值及直线的直角坐标方程;(2) 圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线与圆的位置关系.解:(1) 由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝⎛⎭⎪⎫θ-π4=a 上,可得a = 2. 所以直线的方程可化为ρcos θ+ρsin θ=2, 从而直线的直角坐标方程为x +y -2=0.(2) 由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆心为(1,0),半径r =1,因为圆心到直线的距离d =22<1,所以直线与圆相交.3. (2014·苏锡常镇二模)如图,在极坐标系中,设极径为ρ(ρ>0),极角为θ(0≤θ<2π).圆A 的极坐标方程为ρ=2cos θ,点C 在极轴的上方,∠AOC =π6.△OPQ 是以OQ为斜边的等腰直角三角形,若C 为OP 的中点,求点Q 的极坐标.解:点C 的极角为π6.将点C 代入极坐标方程ρ=2cos θ,得点C 的极坐标为⎝⎛⎭⎪⎫3,π6. ∴ 点P 的极坐标为⎝⎛⎭⎪⎫23,π6. 则点Q 的极角为π6-π4+2π=23π12.∴ 点Q 的极坐标为⎝⎛⎭⎪⎫26,23π12. 4. (2014·无锡期末)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ,如图,曲线C 与x 轴交于O 、B 两点,P 是曲线C 在x 轴上方图象上任意一点,连结OP 并延长至M ,使PM =PB ,当P 变化时,求动点M 轨迹的长度.解:设M(ρ,θ),θ∈⎝⎛⎭⎪⎫0,π2,则OP =2cos θ,PB =2sin θ.∴ ρ=OP +PB =2cos θ+2sin θ,∴ ρ2=2ρsin θ+2ρcos θ.转化为普通方程:x 2+y 2=2x +2y ,∴ M 的轨迹方程为(x -1)2+(y -1)2=2(x>0,y>0). ∴ 点M 的轨迹长度为2π.由于平面上点的极坐标的表示形式不唯一,即(ρ,θ),(ρ,2π+θ),(-ρ,π+θ),(-ρ,-π+θ),都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程ρ=θ,点M ⎝ ⎛⎭⎪⎫π4,π4可以表示为⎝ ⎛⎭⎪⎫π4,π4+2π或⎝ ⎛⎭⎪⎫π4,π4-2π或⎝ ⎛⎭⎪⎫-π4,5π4等多种形式,其中,只有⎝ ⎛⎭⎪⎫π4,π4的极坐标满足方程ρ=θ.请使用课时训练(A )第1课时(见活页).第2课时 参 数 方 程(对应学生用书(理)194~196页)1. (选修44P 56习题第2题改编)若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t(t 为参数),求直线的斜率.解:k =y -2x -1=-3t 2t =-32.∴ 直线的斜率为-32.2. (选修44P 56习题第2题改编)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ (θ为参数)化为普通方程.解:转化为普通方程:y =x -2,x ∈[2,3],y ∈[0,1].3. 求直线⎩⎪⎨⎪⎧x =3+at ,y =-1+4t (t 为参数)过的定点.解:y +1x -3=4a,-(y +1)a +4x -12=0对于任何a 都成立,则x =3,且y =-1.∴ 定点为(3,-1).4. 若直线的参数方程为⎩⎨⎧x =1+3t ,y =2-3t(t 为参数),求直线的倾斜角.解:由直线的参数方程知,斜率k =y -2x -1=-3t 3t =-33=tan θ,θ为直线的倾斜角,所以该直线的倾斜角为150°.5. 平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t +1(参数t∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ+1,y =sin θ(参数θ∈[0,2π)),求圆心C 到直线l 的距离.解:直线方程可化为x -y +1=0,圆的方程可化为(x -1)2+y 2=1.由点到直线的距离公式可得,圆心C(1,0)到直线l 的距离为|2|12+(-1)2= 2.1. 参数方程是用第三个变量(即参数)分别表示曲线上任一点M 的坐标x 、y 的另一种曲线方程的形式,它体现了x 、y 的一种间接关系.2. 参数方程是根据其固有的意义(物理、几何)得到的,要注意参数的取值范围.3. 一些常见曲线的参数方程(1) 过点P 0(x 0,y 0),且倾斜角是α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+lcos α,y =y 0+lsin α(l 为参数). l是有向线段P 0P 的数量.(2) 圆方程(x -a)2+(y -b)2=r 2的参数方程是⎩⎪⎨⎪⎧x =a +rcos θ,y =b +rsin θ(θ为参数).(3) 椭圆方程x 2a 2+y2b 2=1(a>b>0)的参数方程是⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数).(4) 双曲线方程x 2a 2-y2b 2=1(a>0,b>0)的参数方程是⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数).(5) 抛物线方程y 2=2px(p>0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).4. 在参数方程与普通方程的互化中注意变量的取值范围.[备课札记]题型1 参数方程与普通方程的互化, 1) 将参数方程⎩⎪⎨⎪⎧x =2⎝ ⎛⎭⎪⎫t +1t ,y =4⎝ ⎛⎭⎪⎫t -1t (t 为参数)化为普通方程.解:(解法1)因为⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=4,所以⎝ ⎛⎭⎪⎫x 22-⎝ ⎛⎭⎪⎫y 42=4.化简得普通方程为x 216-y 264=1.(解法2)因为⎩⎪⎨⎪⎧x =2⎝ ⎛⎭⎪⎫t +1t ,y =4⎝ ⎛⎭⎪⎫t -1t ,所以t =2x +y 8,1t =2x -y 8,相乘得(2x +y )(2x -y )64=1.化简得普通方程为x 216-y264=1.备选变式(教师专享)平面直角坐标系下,曲线C 1:⎩⎪⎨⎪⎧x =2t +2a ,y =-t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数).若曲线C 1、C 2有公共点,求实数a 的取值范围.解:将曲线C 1、C 2的参数方程化为普通方程,得C 1:x +2y -2a =0,C 2:x 2+(y -2)2=4. 因为曲线C 1与C 2有公共点,所以圆心到直线的距离|4-2a|5≤2,解得2-5≤a ≤2+ 5.题型2 求参数方程, 2) 已知直线l 经过点P(1,1),倾斜角α=π6.(1) 写出直线l 的参数方程;(2) 设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 解:(1) 直线的参数方程为⎩⎪⎨⎪⎧x =1+tcos π6,y =1+tsin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t (t 为参数). (2) 把直线⎩⎪⎨⎪⎧x =1+32t ,y =1+12t 代入x 2+y 2=4,得⎝⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫1+12t 2=4,即t 2+(3+1)t -2=0,故t 1t 2=-2,则点P 到A 、B 两点的距离之积为2.变式训练(2014·南通二模)在平面直角坐标系xOy 中,直线l 经过点P(0,1),曲线C 的方程为x 2+y 2-2x =0,若直线l 与曲线C 相交于A 、B 两点,求PA·PB 的值.解:设直线l 的参数方程为⎩⎪⎨⎪⎧x =tcos α,y =1+tsin α(t 为参数,α为倾斜角).设A 、B 两点对应的参数值分别为t 1、t 2. 将⎩⎪⎨⎪⎧x =tcos α,y =1+tsin α代入x 2+y 2-2x =0, 整理可得t 2+2t(sin α-cos α)+1=0. 所以PA·PB=|t 1t 2|=1.题型3 参数方程的应用, 3) 已知点P(x ,y)是圆x 2+y 2=2y 上的动点. (1) 求2x +y 的取值范围;(2) 若x +y +a≥0恒成立,求实数a 的取值范围.解:(1) 设圆的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ,2x +y =2cos θ+sin θ+1=5sin(θ+φ)+1, ∴ -5+1≤2x+y≤5+1.(2) x +y +a =cos θ+sin θ+1+a≥0,∴ a ≥-(cos θ+sin θ)-1=-2sin ⎝ ⎛⎭⎪⎫θ+π4-1, ∴ a ≥2-1.备选变式(教师专享)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1) 求圆C 的圆心到直线l 的距离;(2) 设圆C 与直线l 交于点A 、B.若点P 的坐标为(3,5),求PA +PB.解:(1) 由ρ=25sin θ,得x 2+y 2-25y =0,即圆C 的直角坐标方程为x 2+(y -5)2=5.由⎩⎪⎨⎪⎧x =3-22t ,y =5+22t可得直线l 的普通方程为x +y -5-3=0.所以圆C 的圆心(0,5)到直线l 的距离为 |0+5-5-3|2=322.(2) 将l 的参数方程代入圆C 的直角坐标方程,得⎝ ⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1、t 2是上述方程的两个实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P(3,5), 故由上式及t 的几何意义得PA +PB =|t 1|+|t 2|=t 1+t 2=3 2.1. 在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ⎝ ⎛⎭⎪⎫θ为参数,0≤θ≤π2和⎩⎪⎨⎪⎧x =1-22t ,y =-22t (t 为参数),求曲线C 1和C 2的交点坐标. 解:曲线C 1的方程为x 2+y 2=5(0≤x≤5),曲线C 2的方程为y =x -1,由⎩⎪⎨⎪⎧x 2+y 2=5,y =x -1x =2或x =-1(舍去),则曲线C 1和C 2的交点坐标为(2,1). 2. 在平面直角坐标系xOy 中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.解:直线的普通方程为y =x -a.椭圆的标准方程为x 29+y 24=1,右顶点为(3,0),所以点(3,0)在直线y =x -a 上,代入解得a =3.3. (2014·苏北三市期末)在平面直角坐标系xOy 中,已知直线l 的参数方程是⎩⎪⎨⎪⎧x =22t ,y =22t +42(t 为参数),以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4.由直线l 上的点向圆C 引切线,求切线长的最小值. 解:∵ ρ=2cos θ-2sin θ,∴ ρ2=2ρcos θ-2ρsin θ,∴ 圆C 的直角坐标方程为x 2+y 2-2x +2y =0,即⎝ ⎛⎭⎪⎫x -222+⎝⎛⎭⎪⎫y +222=1,∴ 圆心直角坐标为⎝ ⎛⎭⎪⎫22,-22. 直线l 上的点向圆C 引切线长是 ⎝ ⎛⎭⎪⎫22t -222+⎝ ⎛⎭⎪⎫22t +22+422-1 =t 2+8t +40=(t +4)2+24≥26,所以直线l 上的点向圆C 引的切线长的最小值是2 6.4. (2014·南通一模)在平面直角坐标系xOy 中,设动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A(1,0)间的距离为d ,求d 的取值范围.解:由题设可知P(1+2cos α,2sin α),Q(1+2cos2α,2sin2α),于是PQ 的中点M(1+cos α+cos2α,sin α+sin2α).从而d 2=MA 2=(cos α+cos2α)2+(sin α+sin2α)2=2+2cos α.因为0<α<2π,所以-1≤cos α≤1,于是0≤d 2<4,故d 的取值范围是[0,2).1. (2014·南京、盐城期末)在极坐标系中,圆C 的方程为 ρ=2acos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数).若直线l 与圆C 相切,求实数a 的值.解:直线l :4x -3y -2=0,圆C :(x -a)2+y 2=a 2, 依题意,得|4a -2|42+(-3)2=|a|,解得a =-2或29. 2. 已知极坐标方程为ρcos θ+ρsin θ-1=0的直线与x 轴的交点为P ,与椭圆⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)交于点A 、B ,求PA ·PB 的值. 解:直线过点P(1,0),参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =22t (t 为参数). 代入椭圆方程x 24+y 2=1, 整理得52t 2+2t -3=0, 则PA·PB=|t 1t 2|=65. 3. (2014·泰州期末)已知在平面直角坐标系xOy 中,圆M 的参数方程为⎩⎪⎨⎪⎧x =532+2cos θ,y =72+2sin θ(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下,圆N 是以点⎝ ⎛⎭⎪⎫3,π3为圆心,且过点⎝⎛⎭⎪⎫2,π2的圆. (1) 求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程;(2) 求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.解:(1) 圆M :⎝ ⎛⎭⎪⎫x -5322+⎝ ⎛⎭⎪⎫y -722=4,⎝ ⎛⎭⎪⎫3,π3对应直角坐标系下的点为⎝ ⎛⎭⎪⎫32,32,⎝ ⎛⎭⎪⎫2,π2对应直角坐标系下的点为(0,2),∴ 圆N :⎝⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=1. (2) PQ =MN -3=4-3=1.4. 已知直线C 1:⎩⎪⎨⎪⎧x =1+tcos α,y =tsin α(t 为参数),C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数). (1) 当α=π3时,求C 1与C 2的交点坐标; (2) 过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.解: (1) 当α=π3时,C 1的普通方程为y =3(x -1), C 2的普通方程为x 2+y 2=1.联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点为(1,0),⎝ ⎛⎭⎪⎫12,-32. (2) C 1的普通方程为xsin α-ycos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2α,y =-12sin αcos α(α为参数). P 点轨迹的普通方程为⎝ ⎛⎭⎪⎫x -142+y 2=116. 故P 点轨迹是圆心为⎝ ⎛⎭⎪⎫14,0,半径为14的圆.1. 在直线的参数方程⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数)中t 的几何意义是表示在直线上过定点P 0(x 0,y 0)与直线上的任一点P(x ,y)构成的有向线段P 0P 的长度,且在直线上任意两点P 1、P 2的距离为P 1P 2=|t 1-t 2|=(t 1+t 2)2-4t 1t 2.2. 参数方程化为普通方程的关键是消参数:一要熟练掌握常用技巧(如整体代换);二要注意变量取值范围的一致性,这一点最易忽视.请使用课时训练(B )第2课时(见活页).[备课札记]。

2020高考数学一轮复习坐标系与参数方程学案理选修4_4

2020高考数学一轮复习坐标系与参数方程学案理选修4_4

【2019最新】精选高考数学一轮复习坐标系与参数方程学案理选修4_4考纲展示► 1.理解坐标系的作用.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.2.会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.4.了解参数方程,了解参数的意义.5.能选择适当的参数写出直线、圆和椭圆的参数方程.6.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.考点1 直角坐标方程与极坐标方程的互化1.极坐标系(1)设M是平面内一点,极点O与点M的距离OM叫做点M的________,记为ρ,以极轴Ox为始边,射线OM为终边的角叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).一般地,不作特殊说明,我们认为ρ≥0,0≤θ<2π.(2)极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,它的直角坐标是(x,y),极坐标为(ρ,θ),则它们之间的关系为x=________,y=________.另一种关系为ρ2=________,tan θ=________(x≠0).答案:(1)极径(2)ρcos θρsin θx2+y2 yx2.常用简单曲线的极坐标方程(1)几个特殊位置的直线的极坐标方程①直线过极点:θ=θ0和θ=π+θ0;②直线过点M(a,0)且垂直于极轴:ρcos θ=a;③直线过M 且平行于极轴:ρsin θ=b.(2)几个特殊位置的圆的极坐标方程①当圆心位于极点,半径为r :ρ=________;②当圆心位于M(a,0),半径为a :ρ=________;③当圆心位于M ,半径为a :ρ=________.答案:(2)①r ②2acos θ ③2asin θ[典题1] (1)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin =.①求圆O 和直线l 的直角坐标方程;②当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.[解] ①圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x2+y2=x +y ,即x2+y2-x -y =0.直线l :ρsin =,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.②由得⎩⎪⎨⎪⎧x =0,y =1, 故直线l 与圆O 公共点的一个极坐标为.(2)[2017·河南洛阳统考]已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos θ-=2.①将圆O1和圆O2的极坐标方程化为直角坐标方程;②求经过两圆交点的直线的极坐标方程.[解] ①由ρ=2知,ρ2=4,所以x2+y2=4.因为ρ2-2ρcos =2,所以ρ2-2ρ=2,所以x2+y2-2x -2y -2=0.②将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin=.[点石成金] (1)直角坐标方程化为极坐标方程,只要运用公式x=ρcos θ及y=ρsin θ直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.考点2 参数方程与普通方程的互化1.曲线的参数方程在平面直角坐标系xOy中,如果曲线上任意一点的坐标x,y都是某个变量t的函数并且对于t的每一个允许值,上式所确定的点M(x,y)都在这条曲线上,则称上式为该曲线的________,其中变量t称为________.答案:参数方程参数2.一些常见曲线的参数方程(1)过点P0(x0,y0),且倾斜角为α的直线的参数方程为(t为参数).(2)圆的方程(x-a)2+(y-b)2=r2的参数方程为(θ为参数).(3)椭圆方程+=1(a>b>0)的参数方程为(θ为参数).答案:(1)x0+tcos αy0+tsin α(2)a+rcos θb+rsin θ(3)acos θbsin θ3.直线参数方程的标准形式的应用(1)过点M0(x0,y0),倾斜角为α的直线l的参数方程是(t是参数,t可正、可负、可为0).若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.[典题2] (1)把下列参数方程化为普通方程,并说明它们各表示什么曲线:①(t为参数);②(t为参数);③(t为参数).[解] ①由x=1+t,得t=2x-2,∴y=2+(2x-2),∴x-y+2-=0,此方程表示直线.②由y=2+t,得t=y-2,∴x=1+(y-2)2,即(y-2)2=x-1,此方程表示抛物线.③∴①2-②2,得x2-y2=4,此方程表示双曲线.(2)[2017·重庆巴蜀中学模拟]已知曲线C的参数方程是(α为参数),直线l的参数方程为(t为参数),①求曲线C与直线l的普通方程;②若直线l与曲线C相交于P,Q两点,且|PQ|=,求实数m的值.[解] ①由得①的平方加②的平方,得曲线C的普通方程为x2+(y-m)2=1.由x=1+t,得t=x-1,代入y=4+t得y=4+2(x-1),所以直线l的普通方程为y=2x+2.②圆心(0,m)到直线l 的距离为d =,所以由勾股定理,得⎝ ⎛⎭⎪⎫|-m +2|52+2=1, 解得m =3或m =1.[点石成金] 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,不要忘了参数的范围. 在直角坐标系xOy 中,直线l 的参数方程为(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=2sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.解:(1)由ρ=2sin θ,得ρ2=2ρsin θ,从而有x2+y2=2y ,所以x2+(y -)2=3.(2)设P ,又C(0,),则|PC|=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32 =,故当t =0时,|PC|取得最小值,此时,P 点的直角坐标为(3,0).考点3 极坐标、参数方程的综合应用[典题3] 在直角坐标系xOy 中,直线l 的参数方程为(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=2sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,),求|PA|+|PB|.[解] (1)由ρ=2sin θ,得ρ2=2ρsin θ,∴x2+y2=2y ,即x2+(y -)2=5.(2)将l 的参数方程代入圆C 的直角坐标方程,得由于Δ=(-3)2-4×4=2>0,故可设t1,t2是上述方程的两实根,所以⎩⎨⎧t1+t2=32,t1·t2=4. 又直线l 过点P(3,),故由上式及t 的几何意义,得|PA|+|PB|=|t1|+|t2|=|t1+t2|=3.[点石成金] 1.涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程后求解.当然,还要结合题目本身特点,确定选择何种方程.2.过定点P0(x0,y0),倾斜角为α的直线的参数方程的标准形式为(t 为参数),t 的几何意义是直线上的点P 到点P0(x0,y0)的数量,即|t|=||,t 可正,可负.使用该式时直线上任意两点P1,P2对应的参数分别为t1,t2,则|P1P2|=|t1-t2|,P1P2的中点对应的参数为(t1+t2).[2017·黑龙江大庆模拟]在平面直角坐标方程xOy 中,已知直线l 经过点P ,倾斜角α=.在极坐标系(与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的极坐标方程为ρ=2cos.(1)写出直线l 的参数方程,并把圆C 的极坐标方程化为直角坐标方程;(2)设l 与圆C 相交于A ,B 两点,求|PA|+|PB|的值.解:(1)直线l 的参数方程为(t 为参数),即(t 为参数).由ρ=2cos ,得ρ=2cos θ+2sin θ,∴ρ2=2ρcos θ+2ρsin θ,∴x2+y2=2x +2y ,故圆C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)把(t 为参数)代入(x -1)2+(y -1)2=2,得t2-t -=0,设点A ,B 对应的参数分别为t1,t2,则t1+t2=,t1t2=-,∴|PA|+|PB|=|t1-t2|==.[方法技巧] 1.曲线的极坐标方程与直角坐标方程的互化思路:对于简单的我们可以直接代入公式ρcos θ=x,ρsin θ=y,ρ2=x2+y2,但有时需要作适当的变化,如将式子的两边同时平方、两边同时乘以ρ等.2.参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos2θ+sin2θ=1,1+tan2θ=. 3.利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法.[易错防范] 1.极径ρ是一个距离,所以ρ≥0,但有时ρ可以小于零.极角θ规定逆时针方向为正,极坐标与平面直角坐标不同,极坐标与P点之间不是一一对应的,所以我们又规定ρ≥0,0≤θ<2π,来使平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点.2.在将曲线的参数方程化为普通方程时,还要注意其中的x,y的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.真题演练集训1.[2016·新课标全国卷Ⅰ]在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.解:(1)消去参数t得到C1的普通方程x2+(y-1)2=a2.C1是以(0,1)为圆心,a为半径的圆.将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.(2)曲线C1,C2的公共点的极坐标满足方程组若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=-1(舍去)或a=1.a=1时,极点也为C1,C2的公共点,在C3上.所以a=1. 2.[2016·新课标全国卷Ⅱ]在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率.解:(1)由x=ρcos θ,y=ρsin θ可得圆C的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程,得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|=ρ1+ρ-4ρ1ρ2=.由|AB|=,得cos2α=,tan α=±.所以l的斜率为或-. 3.[2016·新课标全国卷Ⅲ]在直角坐标系xOy中,曲线C1的参数方程为(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.解:(1)C1的普通方程为+y2 =1,C2的直角坐标方程为x+y-4 =0. (2)由题意,可设点P的直角坐标为(cos α,sin α).因为C2是直线,所以|PQ|的最小值即为P到C2的距离d(α)的最小值,d(α)=|3cos α+sin α-4|2=sin-2.当且仅当α=2kπ+(k∈Z)时,d(α)取得最小值,最小值为,此时P的直角坐标为. 4.[2015·新课标全国卷Ⅰ]在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.解:(1)因为x=ρcos θ,y=ρsin θ,所以C1的极坐标方程为ρcos θ=-2,C2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3ρ+4=0,解得ρ1=2,ρ2=.故ρ1-ρ2=,即|MN|=.由于C2的半径为1,所以△C2MN的面积为. 5.[2015·新课标全国卷Ⅱ]在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2cos θ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.解:(1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.联立解得或所以C2与C3交点的直角坐标为(0,0)和.(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(2cos α,α).所以|AB|=|2sin α-2cos α|=4.当α=时,|AB|取得最大值,最大值为4.课外拓展阅读直线参数方程中参数t的几何意义过定点M0(x0,y0),倾斜角为α的直线的参数方程为(t为参数)①通常称①为直线l的参数方程的“标准式”.其中参数t的几何意义是:|t|是直线上任一点M(x,y)到M0(x0,y0)的距离,即|M0M|=|t|.当0<α<π时,sin α>0,所以,直线l的单位方向向量e的方向总是向上.此时,若t>0,则的方向向上;若t<0,则的方向向下;若t=0,则点M与点M0重合.即当点M在M0上方时,有t=||;当点M在M0下方时,有t=-||.该参数t经常用在直线截圆锥曲线的距离问题中,解题时通常过某定点作一直线与圆锥曲线相交于A,B两点,所求问题与定点到A,B两点的距离有关.解题时主要应用定点在直线AB上,利用参数t的几何意义,结合根与系数的关系进行处理,巧妙求出问题的解.[典例1] 在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线C:ρsin2θ=2acos θ(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.(1)求a的取值范围;(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.[思路分析] (1)由题意知,曲线C 的直角坐标方程为y2=2ax(a>0),将直线l 的参数方程代入曲线C 的直角坐标方程,令Δ>0即可求得结果;(2)设交点M ,N 对应的参数分别为t1,t2,由参数方程中t1,t2的几何意义,可得t1+t2=2(4+a),t1t2=2(16+4a),然后由|PM|,|MN|,|PN|成等比数列,可得|t1-t2|2=|t1t2|,代入求解即可.[解] (1)由题意,可得曲线C 的直角坐标方程为y2=2ax(a>0),将直线l 的参数方程(t 为参数)代入曲线C 的直角坐标方程,得t2-(4+a)t +16+4a =0,因为直线l 与曲线C 交于M ,N 两点, 所以Δ>0,即a>0或a<-4. 又a>0,所以a 的取值范围为(0,+∞). (2)设交点M ,N 对应的参数分别为t1,t2. 则由(1)知,t1+t2=2(4+a).t1t2 =2(16+4a), 若|PM|,|MN|,|PN|成等比数列,则|t1-t2|2=|t1t2|. 解得a =1或a =-4(舍去), 所以实数a 的值为1. [典例2]过点M(2,1)作曲线x2+4y2=16的弦AB ,若M 为线段AB 的三等分点,求线段AB 所在直线的方程. [思路分析] [解] 设直线AB 的参数方程为 ⎩⎪⎨⎪⎧ x =2+tcos αy =1+tsin α(t 为参数), 代入曲线方程,得 (cos2α+4sin2α)t2+4(cos α+2sin α)t -8=0, 令A ,B 对应的参数分别为t1,t2, 则t1+t2=-,① t1·t2=.②因为点M(2,1)是弦AB的三等分点,不妨令点M为靠近点B的一个三等分点,所以t1=-2t2,t1+t2=-t2,t1·t2=-2t=-2(t1+t2)2,③将①②代入③,得12tan2α+16tan α+3=0,可求得tan α=,则AB所在直线的方程为y-1=(x-2).。

《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分重点保分题教师用书题型专题(十九)选修4-4

《三维设计》2017届高三数学(理)二轮复习(通用版)第一部分重点保分题教师用书题型专题(十九)选修4-4

题型专题(十九) 选修4-4(坐标系与参数方程)[师说考点]1.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r2=0.几个特殊位置的圆的极坐标方程:(1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a ,0),半径为a :ρ=2a cos θ;(3)当圆心位于,半径为a :ρ=2a sin θ.2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴与此直线所成的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程:(1)直线过极点:θ=θ0和θ=π+θ0;(2)直线过点M (a ,0)且垂直于极轴:ρcos θ=a ;(3)直线过且平行于极轴:ρsin θ=b .[典例] (2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是 (t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.[解] (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)法一:由直线l 的参数方程 (t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k ,则直线l 的方程为kx -y =0.由圆C 的方程(x +6)2+y 2=25知,圆心坐标为(-6,0),半径为5.又|AB |=10,由垂径定理及点到直线的距离公式得= 25-⎝ ⎛⎭⎪⎫1022,即=904, 整理得k 2=53,解得k =±153,即直线l 的斜率为±153.法二:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为-153或153.[类题通法]极坐标方程与普通方程互化技巧(1)巧用极坐标方程两边同乘以ρ或同时平方技巧,将极坐标方程构造成含有ρcos θ,ρsin θ,ρ2的形式,然后利用公式代入化简得到普通方程.(2)巧借两角和差公式,转化ρsin(θ±α)或ρ=cos(θ±α)的结构形式,进而利用互化公式得到普通方程.(3)将直角坐标方程中的x 转化为ρcos θ,将y 换成ρsin θ,即可得到其极坐标方程.[演练冲关](2016·山西质检)已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.解:(1)C 1:ρsin ⎝⎛⎭⎪⎫θ+π6=32,C 2:ρ2=61+2sin 2θ. (2)∵M (3,0),N (0,1),∴P ⎝ ⎛⎭⎪⎫32,12, ∴OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32得ρ1=1,P ⎝⎛⎭⎪⎫1,π6.把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝⎛⎭⎪⎫2,π6. ∴|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1.[师说考点]几种常见曲线的参数方程(1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎨⎧x =a +r cos α,y =b +r sin α,其中α是参数. 当圆心在(0,0)时,方程为⎩⎨⎧x =r cos α,y =r sin α,其中α是参数. (2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =a cos φ,y =b sin φ,其中φ是参数. 椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎨⎧x =b cos φ,y =a sin φ,其中φ是参数. (3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.[典例] (2016·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.[解] (1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2,当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. [类题通法]有关参数方程问题的2个关键点(1)参数方程化为普通方程的关键是消参数,要根据参数的特点进行转化.(2)利用参数方程解决问题,关键是选准参数,理解参数的几何意义.[演练冲关](2016·郑州质检)平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m ,0),且倾斜角为π6,以O 为极点,x 轴正半轴为极轴,建立极坐标系.(1)写出曲线C 的极坐标方程与直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|P A |·|PB |=1,求实数m 的值. 解:(1)曲线C 的直角坐标方程为:(x -1)2+y 2=1,即x 2+y 2=2x ,即ρ2=2ρcos θ,所以曲线C 的极坐标方程为:ρ=2cos θ.直线l 的参数方程为⎩⎪⎨⎪⎧x =m +32t ,y =12t(t 为参数). (2)设A ,B 两点对应的参数分别为t 1,t 2,将直线l 的参数方程代入x 2+y 2=2x 中,得t 2+(3m -3)t +m 2-2m =0,所以t 1t 2=m 2-2m ,由题意得|m 2-2m |=1,解得m =1或m =1+2或m =1- 2.1.(2016·南昌模拟)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =1+t cos α,y =t sin α(t 是参数). (1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A 、B 两点,且|AB |=14,求直线的倾斜角α的值. 解:(1)由ρ=4cos θ得其直角坐标方程为(x -2)2+y 2=4.(2)将⎩⎨⎧x =1+t cos α,y =t sin α代入圆C 的方程得(t cos α-1)2+(t sin α)2=4,化简得t 2-2t cos α-3=0.设A 、B 两点对应的参数分别为t 1、t 2,则⎩⎨⎧t 1+t 2=2cos α,t 1t 2=-3,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12=14,∴4cos 2α=2,故cos α=±22,即α=π4或3π4.2.(2016·广西质检)已知直线l 的参数方程为⎩⎨⎧x =-1+t cos α,y =1+t sin α(t 为参数),曲线C 1的参数方程为⎩⎨⎧x =2+2cos t ,y =4+2sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,且曲线C 2的极坐标方程为ρ=4cos θ.(1)若直线l 的斜率为2,判断直线l 与曲线C 1的位置关系;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)斜率为2时,直线l 的普通方程为y -1=2(x +1),即y =2x +3.① 将⎩⎨⎧x =2+2cos t ,y =4+2sin t消去参数t ,化为普通方程得(x -2)2+(y -4)2=4,② 则曲线C 1是以C 1(2,4)为圆心,2为半径的圆,圆心C 1(2,4)到直线l 的距离d =|4-4+3|5=355<2, 故直线l 与曲线(圆)C 1相交.(2)C 2的直角坐标方程为x 2+y 2-4x =0,由⎩⎨⎧x 2+y 2-4x -8y +16=0,x 2+y 2-4x =0,解得⎩⎨⎧x =2,y =2,所以C 1与C 2交点的极坐标为⎝⎛⎭⎪⎫22,π4. 3.(2016·合肥质检)在直角坐标系xOy 中,曲线C :⎩⎨⎧x =2cos α+1,y =2sin α+1(α为参数),在以O 为极点,x 轴的非负半轴为极轴的极坐标系中,直线l :ρsin θ+ρcos θ=m .(1)当m =0时,判断直线l 与曲线C 的位置关系;(2)若曲线C 上存在点P 到直线l 的距离为22,求实数m 的取值范围.解:(1)曲线C 的普通方程为:(x -1)2+(y -1)2=2,是一个圆;当m =0时,直线l 的直角坐标方程为:x +y =0,圆心C 到直线l 的距离为d =|1+1|12+12=2=r ,r 为圆C 的半径,所以直线l 与圆C 相切.(2)由已知可得,圆心C 到直线l 的距离为d =|1+1-m |12+12≤322,解得-1≤m ≤5. 即所求实数m 的取值范围为[-1,5].4.(2016·贵阳模拟)极坐标系与直角坐标系xOy 有相同的长度单位,以原点为极点,以x 轴正半轴为极轴,曲线C 1的极坐标方程为ρ=4cos θ(ρ≥0),曲线C 2的参数方程为⎩⎨⎧x =m +t cos α,y =t sin α(t 为参数,0≤α<π),射线θ=φ,θ=φ+π4,θ=φ-π4与曲线C 1分别交于(不包括极点O )点A 、B 、C .(1)求证:|OB |+|OC |=2|OA |;(2)当φ=π12时,B 、C 两点在曲线C 2上,求m 与α的值.解:(1)证明:依题意|OA |=4cos φ,|OB |=4cos ⎝ ⎛⎭⎪⎫φ+π4,|OC |=4cos ⎝⎛⎭⎪⎫φ-π4, 则|OB |+|OC |=4cos ⎝ ⎛⎭⎪⎫φ+π4+4cos ⎝⎛⎭⎪⎫φ-π4=22(cos φ-sin φ)+22(cos φ+sin φ)=42cos φ=2|OA |.(2)当φ=π12时,B 、C 两点的极坐标分别为⎝⎛⎭⎪⎫2,π3、⎝ ⎛⎭⎪⎫23,-π6,化为直角坐标为B (1,3)、C (3,-3),所以经过点B 、C 的直线方程为y -3=-3(x -1),而C 2是经过点(m ,0)且倾斜角为α的直线,故m =2,α=2π3.5.(2016·合肥质检)已知直线l :⎩⎪⎨⎪⎧x =1+12t ,y =3+32t(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2-23ρsin θ=a (a >-3).(1)将曲线C 的极坐标方程化为直角坐标方程;(2)若曲线C 与直线l 有唯一公共点,求a 的值.解:(1)由ρ2-23ρsin θ=a 知其直角坐标方程为x 2+y 2-23y =a ,即x 2+(y -3)2=a +3(a >-3).(2)将l :⎩⎪⎨⎪⎧x =1+12t ,y =3+32t代入曲线C 的直角坐标方程得(1+12t )2+⎝ ⎛⎭⎪⎫32t 2=a +3,化简得t 2+t -a -2=0.∵曲线C 与直线l 仅有唯一公共点,∴Δ=1-4(-a -2)=0,解得a =-94.6.(2016·广州五校联考)在直角坐标系xOy 中,已知曲线C 1:⎩⎨⎧x =cos α,y =sin 2α(α为参数),在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρcos ⎝⎛⎭⎪⎫θ-π4=-22,曲线C 3:ρ=2sin θ.(1)求曲线C 1与C 2的交点M 的直角坐标;(2)设点A ,B 分别为曲线C 2,C 3上的动点,求|AB |的最小值.解:(1)曲线C 1:⎩⎨⎧x =cos α,y =sin 2α消去参数α,得y +x 2=1,x ∈[-1,1]. ① 曲线C 2:ρcos ⎝⎛⎭⎪⎫θ-π4=-22⇒x +y +1=0, ② 联立①②,消去y 可得:x 2-x -2=0⇒x =-1或x =2(舍去),所以M (-1,0).(2)曲线C 3:ρ=2sin θ⇒x 2+(y -1)2=1,是以(0,1)为圆心,半径r =1的圆. 设圆心为C ,点C ,B 到直线x +y +1=0的距离分别为d ,d ′,则d =|0+1+1|2=2,|AB |≥d ′≥d -r =2-1, 所以|AB |的最小值为2-1.7.(2016·武昌区调研)将圆x 2+y 2=1上每一点的横坐标变为原来的2倍,纵坐标变为原来的3倍,得曲线Γ.(1)写出Γ的参数方程;(2)设直线l :3x +2y -6=0与Γ的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为Γ上的点(x ,y ),依题意,得⎩⎨⎧x =2x 1,y =3y 1,即⎩⎪⎨⎪⎧x 1=x 2,y 1=y 3.由x 21+y 21=1,得⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫y 32=1. 即曲线Γ的方程为x 24+y 29=1.故Γ的参数方程为⎩⎨⎧x =2cos t y =3sin t (t 为参数). (2)由⎩⎪⎨⎪⎧x 24+y 29=1,3x +2y -6=0,解得⎩⎨⎧x =2,y =0或⎩⎨⎧x =0,y =3. 不妨设P 1(2,0),P 2(0,3),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫1,32,所求直线的斜率k =23.于是所求直线方程为y -32=23(x -1),即4x -6y +5=0.化为极坐标方程,得4ρcos θ-6ρsin θ+5=0.8.(2016·石家庄模拟)在极坐标系中,已知曲线C 1:ρ=2cos θ和曲线C 2:ρcos θ=3,以极点O 为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系.(1)求曲线C 1和曲线C 2的直角坐标方程;(2)若点P 是曲线C 1上一动点,过点P 作线段OP 的垂线交曲线C 2于点Q ,求线段PQ 长度的最小值.解:(1)C 1的直角坐标方程为(x -1)2+y 2=1,C 2的直角坐标方程为x =3.(2)设曲线C 1与x 轴异于原点的交点为A ,∵PQ ⊥OP ,∴PQ 过点A (2,0),设直线PQ 的参数方程为⎩⎨⎧x =2+t cos θ,y =t sin θ(t 为参数), 代入C 1可得t 2+2t cos θ=0,解得t 1=0,t 2=-2cos θ,可知|AP |=|t 2|=|2cos θ|.代入C 2可得2+t cos θ=3,解得t ′=1cos θ,可知|AQ |=|t ′|=⎪⎪⎪⎪⎪⎪1cos θ, ∴|PQ |=|AP |+|AQ |=|2cos θ|+⎪⎪⎪⎪⎪⎪1cos θ≥22,当且仅当|2cos θ|=⎪⎪⎪⎪⎪⎪1cos θ时取等号,∴线段PQ 长度的最小值为2 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4-4 坐标系与参数方程第一节坐标系1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标系的四要素:极点、极轴、长度单位、角度单位和它的正方向.四者缺一不可. (2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. 由极径的意义知ρ>0时,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)建立一一对应关系.约定极点的极坐标是极径ρ=0,极角可取任意角.②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ).一般不作特殊说明时,我们认为ρ≥0,θ可取任意实数. ④极坐标与直角坐标的重要区别:多值性. 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为: x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).这就是极坐标与直角坐标的互化公式. 把直角坐标化为极坐标时,一定要明确点所在的象限(即极角的终边的位置)和极角的范围,以便正确求出极角,否则点的极坐标将不唯一.4.简单曲线的极坐标方程[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝⎛⎭⎫2,-π3.( ) (3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( ) 答案:(1)× (2)√ (3)√ (4)× 二、选填题1.若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A.ρ=1cos θ+sin θ⎝⎛⎭⎫0≤θ≤π2B.ρ=1cos θ+sin θ⎝⎛⎭⎫0≤θ≤π4C.ρ=cos θ+sin θ⎝⎛⎭⎫0≤θ≤π2 D.ρ=cos θ+sin θ⎝⎛⎭⎫0≤θ≤π4 解析:选A ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2.2.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝⎛⎭⎫1,π2 B.⎝⎛⎭⎫1,-π2 C.(1,0)D.(1,π)解析:选B 由ρ=-2sin θ,得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝⎛⎭⎫1,-π2. 3.在极坐标系中,已知点P ⎝⎛⎭⎫2,π6,则过点P 且平行于极轴的直线方程是( ) A.ρsin θ=1 B.ρsin θ= 3 C.ρcos θ=1D.ρcos θ= 3解析:选A 先将极坐标化成直角坐标表示,P ⎝⎛⎭⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即(3,1),过点(3,1)且平行于x 轴的直线为y =1,再化为极坐标为ρsin θ=1.4.若点P 的直角坐标为(3,-3),则点P 的极坐标为______.解析:因为点P (3,-3)在第四象限,与原点的距离为23,且OP 与x 轴所成的角为-π6,所以点P 的极坐标为⎝⎛⎭⎫23,-π6. 答案:⎝⎛⎭⎫23,-π6 5.在极坐标系中A ⎝⎛⎭⎫2,-π3,B ⎝⎛⎭⎫4,2π3两点间的距离为________.解析:法一:(数形结合)在极坐标系中,A ,B 两点如图所示,|AB |=|OA |+|OB |=6.法二:∵A ⎝⎛⎭⎫2,-π3,B ⎝⎛⎭⎫4,2π3的直角坐标为A (1,-3),B (-2,23).∴|AB |=(-2-1)2+(23+3)2=6. 答案:6考点一 平面直角坐标系中的伸缩变换 [基础自学过关][题组练透]1.在平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .(1)求点A ⎝⎛⎭⎫13,-2经过φ变换所得点A ′的坐标; (2)求直线l :y =6x 经过φ变换后所得直线l ′的方程.解:(1)设点A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x ′=3x ,y ′=y2,∴⎩⎨⎧x ′=13×3=1,y ′=-22=-1.∴点A ′的坐标为(1,-1).(2)设P ′(x ′,y ′)是直线l ′上任意一点.由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x =x ′3,y =2y ′.代入y =6x ,得2y ′=6×x ′3=2x ′,即y ′=x ′,∴y =x 为所求直线l ′的方程.2.将圆x 2+y 2=1变换为椭圆x 225+y 216=1的一个伸缩变换公式φ:⎩⎪⎨⎪⎧x ′=λx ,y ′=μy(λ,μ>0),求λ,μ的值.解:将变换后的椭圆x 225+y 216=1改写为x ′225+y ′216=1,把伸缩变换公式φ:⎩⎪⎨⎪⎧x ′=λx ,y ′=μy (λ,μ>0)代入上式,得λ2x 225+μ2y 216=1,即⎝⎛⎭⎫λ52x 2+⎝⎛⎭⎫μ42y 2=1, 与x 2+y 2=1比较系数,得⎩⎨⎧⎝⎛⎭⎫λ52=1,⎝⎛⎭⎫μ42=1,所以⎩⎪⎨⎪⎧λ=5,μ=4.[名师微点]伸缩变换后方程的求法及注意点(1)平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎨⎧x =x ′λ,y =y ′μ代入y =f (x ),整理得y ′=h (x ′)即为所求.(2)解答该类问题应明确两点:一是根据平面直角坐标系中的伸缩变换公式的意义与作用求解;二是明确变换前的点P (x ,y )与变换后的点P ′(x ′,y ′)的坐标关系,用方程思想求解.考点二 极坐标与直角坐标的互化 [师生共研过关][典例精析]在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22(ρ≥0,0≤θ<2π). (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标. [解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 故圆O 的直角坐标方程为x 2+y 2-x -y =0, 直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为x -y +1=0. (2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1), 转化为极坐标为⎝⎛⎭⎫1,π2, 故直线l 与圆O 的公共点的极坐标为⎝⎛⎭⎫1,π2. [解题技法]1.极坐标方程与直角坐标方程的互化方法(1)直角坐标方程化为极坐标方程:将公式x =ρcos θ及y =ρsin θ直接代入直角坐标方程并化简即可.(2)极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.2.极角的确定方法由tan θ确定角θ时,应根据点P 所在象限取最小正角.在这里要注意:当x ≠0时,θ角才能由tan θ=yx 按上述方法确定.当x =0时,tan θ没有意义,这时可分三种情况处理:当x =0,y=0时,θ可取任何值;当x =0,y >0时,可取θ=π2;当x =0,y <0时,可取θ=3π2.[过关训练]已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρ·cos ⎝⎛⎭⎫θ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以圆O 1的直角坐标方程为x 2+y 2=4. 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2, 所以圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22. 考点三 极坐标方程的应用 [师生共研过关][典例精析](2019·安徽名校联考)在平面直角坐标系xOy 中,曲线C 1的方程为x 2+(y -2)2=4.以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,且在两坐标系下长度单位相同.M 为曲线C 1上异于极点的动点,点N 在射线OM 上,且|ON |·|OM |=20,记点N 的轨迹为C 2.(1)求曲线C 1,C 2的极坐标方程;(2)根据极坐标方程,判断曲线C 1,C 2的位置关系. [解] (1)曲线C 1的直角坐标方程是x 2+(y -2)2=4, 即x 2+y 2=4y .将x =ρcos θ,y =ρsin θ代入,得ρ2=4ρsin θ. 故曲线C 1的极坐标方程为ρ=4sin θ.设N (ρ,θ),M (ρ1,θ),由|ON |·|OM |=20, 即ρ·ρ1=20,得ρ1=20ρ.又ρ1=4sin θ,所以20ρ=4sin θ,所以ρsin θ=5. 故曲线C 2的极坐标方程为ρsin θ=5.(2)由⎩⎪⎨⎪⎧ρsin θ=5,ρ=4sin θ得sin 2θ=54,无实数解,因此曲线C 1和曲线C 2没有公共点,易知曲线C 1是圆,曲线C 2是直线,所以C 1与C 2相离.[解题技法]利用极坐标系解决问题的技巧(1)用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.(2)已知极坐标方程解答最值问题时,通常可转化为三角函数模型求最值问题,这种方法比在直角坐标系中求最值的运算量小.(3)根据极坐标方程判断曲线的位置关系时,只需联立曲线的极坐标方程得方程组,判断方程组解的情况即可.[提醒] 在曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性.[过关训练](2018·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.解:(1)由x =ρcos θ,y =ρsin θ得C 2的直角坐标方程为(x +1)2+y 2=4. (2)由(1)知C 2是圆心为A (-1,0),半径为2的圆.由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于点B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,点A 到l 1所在直线的距离为2,所以|-k +2|k 2+1=2,故k =-43或k =0.经检验,当k =0时,l 1与C 2没有公共点;当k =-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,点A 到l 2所在直线的距离为2,所以|k +2|k 2+1=2,故k =0或k =43.经检验,当k =0时,l 1与C 2没有公共点; 当k =43时,l 2与C 2没有公共点.综上,所求C 1的方程为y =-43|x |+2.[课时跟踪检测] 1.在平面直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.2.(2019·黄冈调研)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π6=2.已知点Q 为曲线C 1上的动点,点P 在线段O Q 上,且满足|O Q |·|OP |=4,动点P 的轨迹为C 2.(1)求C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△AOB 面积的最大值. 解:(1)设P 的极坐标为(ρ,θ)(ρ>0),Q 的极坐标为(ρ1,θ)(ρ1>0), 由题意知,|OP |=ρ,|O Q |=ρ1=2cos ⎝⎛⎭⎫θ-π6.由|O Q |·|OP |=4得C 2的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ-π6(ρ>0),化简得ρ=3cos θ+sin θ,因此C 2的直角坐标方程为⎝⎛⎭⎫x -322+⎝⎛⎭⎫y -122=1,但不包括点(0,0). (2)设点B 的极坐标为(ρB ,α)(ρB >0), 由题意知,|OA |=2,ρB =2cos ⎝⎛⎭⎫α-π6, 于是△AOB 的面积S =12|OA |·ρB ·sin ∠AOB=2cos ⎝⎛⎭⎫α-π6·⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3=2⎪⎪⎪⎪sin 2α-34≤32. 当α=0时,S 取得最大值32.所以△AOB 面积的最大值为32.3.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中, 得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.4.在平面直角坐标系xOy 中,圆C 的直角坐标方程为x 2+(y -1)2=1.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ(3cos θ+sin θ)=5.(1)求圆C 的极坐标方程和直线l 的直角坐标方程;(2)在圆上找一点A ,使它到直线l 的距离最小,并求点A 的极坐标. 解:(1)x 2+(y -1)2=1即x 2+y 2-2y =0,因为ρ2=x 2+y 2,ρsin θ=y ,所以圆C 的极坐标方程为ρ2=2ρsin θ,即ρ=2sin θ. ρ(3cos θ+sin θ)=5即3ρcos θ+ρsin θ=5, 因为ρcos θ=x ,ρsin θ=y ,所以直线l 的直角坐标方程为y =-3x +5.(2)曲线C :x 2+(y -1)2=1是以C (0,1)为圆心,1为半径的圆.设圆上点A (x 0,y 0)到直线l :y =-3x +5的距离最小,所以圆C 在点A 处的切线与直线l :y =-3x +5平行.即直线CA 与l 的斜率的乘积等于-1, 即y 0-1x 0×(-3)=-1.① 因为点A 在圆上,所以x 20+(y 0-1)2=1,②联立①②可解得x 0=-32,y 0=12或x 0=32,y 0=32. 所以点A 的坐标为⎝⎛⎭⎫-32,12或⎝⎛⎭⎫32,32. 又因为圆上点A 到直线l :y =-3x +5的距离最小, 所以点A 的坐标为⎝⎛⎭⎫32,32,点A 的极径为 ⎝⎛⎭⎫322+⎝⎛⎭⎫322=3,极角θ满足tan θ=3且θ为第一象限角,则可取θ=π3. 所以点A 的极坐标为⎝⎛⎭⎫3,π3. 5.(2019·山西八校第一次联考)在直角坐标系xOy 中,曲线C 的参数方程是⎩⎪⎨⎪⎧x =3+5cos α,y =4+5sin α(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系. (1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 分别交于异于原点的A ,B 两点,求△AOB 的面积.解:(1)将曲线C 的参数方程化为普通方程为(x -3)2+(y -4)2=25, 即x 2+y 2-6x -8y =0.∴曲线C 的极坐标方程为ρ=6cos θ+8sin θ. (2)设A ⎝⎛⎭⎫ρ1,π6,B ⎝⎛⎭⎫ρ2,π3. 把θ=π6代入ρ=6cos θ+8sin θ,得ρ1=4+33,∴A ⎝⎛⎭⎫4+33,π6. 把θ=π3代入ρ=6cos θ+8sin θ,得ρ2=3+43,∴B ⎝⎛⎭⎫3+43,π3. ∴S △AOB =12ρ1ρ2sin ∠AOB=12()4+33()3+43sin ⎝⎛⎭⎫π3-π6 =12+2534. 6.(2018·福州四校联考)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =2+sin α(α为参数),直线C 2的方程为y =3x .以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 1和直线C 2的极坐标方程; (2)若直线C 2与曲线C 1交于A ,B 两点,求1|OA |+1|OB |. 解:(1)由曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =2+sin α(α为参数),得曲线C 1的普通方程为(x-2)2+(y -2)2=1,则C 1的极坐标方程为ρ2-4ρcos θ-4ρsin θ+7=0. 由于直线C 2过原点,且倾斜角为π3,故其极坐标方程为θ=π3(ρ∈R ).(2)由⎩⎪⎨⎪⎧ρ2-4ρcos θ-4ρsin θ+7=0,θ=π3, 得ρ2-(23+2)ρ+7=0, 设A ,B 对应的极径分别为ρ1,ρ2, 则ρ1+ρ2=23+2,ρ1ρ2=7, ∴1|OA |+1|OB |=|OA |+|OB ||OA |·|OB |=ρ1+ρ2ρ1ρ2=23+27. 7.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos φ,y =sin φ(φ为参数),曲线C 2:x 28+y 24=1.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 1,C 2的极坐标方程;(2)射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (且A ,B 均异于原点O ),当0<α<π2时,求|OB |2-|OA |2的最小值.解:(1)易知曲线C 1的普通方程为(x -1)2+y 2=1, 所以C 1的极坐标方程为ρ=2cos θ, C 2的极坐标方程为ρ2=81+sin 2θ.(2)联立θ=α(ρ≥0)与C 1的极坐标方程得|OA |2=4cos 2α, 联立θ=α(ρ≥0)与C 2的极坐标方程得|OB |2=81+sin 2α,则|OB |2-|OA |2=81+sin 2α-4cos 2α=81+sin 2α-4(1-sin 2α)=81+sin 2α+4(1+sin 2α)-8 ≥281+sin 2α×4(1+sin 2α)-8=82-8, 当且仅当sin α=2-1时取等号,所以|OB |2-|OA |2的最小值为82-8.8.(2019·湖南长郡中学模拟)在直角坐标系中,已知曲线M 的参数方程为⎩⎨⎧x =1+22cos β,y =1+22sin β(β为参数),在极坐标系中,直线l 1的方程为α1=θ,直线l 2的方程为α2=θ+π2. (1)写出曲线M 的普通方程,并指出它是什么曲线;(2)设l 1与曲线M 交于A ,C 两点,l 2与曲线M 交于B ,D 两点,求四边形ABCD 面积的取值范围.解:(1)由⎩⎨⎧x =1+22cos β,y =1+22sin β(β为参数),消去参数β,得曲线M 的普通方程为(x -1)2+(y -1)2=8,∴曲线M 是以(1,1)为圆心,22为半径的圆. (2)设|OA |=ρ1,|OC |=ρ2, ∵O ,A ,C 三点共线,则|AC |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2(*),将曲线M 的方程化成极坐标方程,得ρ2-2ρ(sin θ+cos θ)-6=0,∴⎩⎪⎨⎪⎧ρ1+ρ2=2(sin θ+cos θ),ρ1ρ2=-6,代入(*)式得|AC |=28+4sin 2θ. 用θ+π2代替θ,得|BD |=28-4sin 2θ,又l 1⊥l 2,∴S 四边形ABCD =12|AC |·|BD |=12(28+4sin 2θ)(28-4sin 2θ) =249-sin 22θ,∵sin 22θ∈[0,1],∴S 四边形ABCD ∈[83,14].第二节参数方程1.曲线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程F (x ,y )=0叫做普通方程. 2.参数方程和普通方程的互化(1)参数方程化普通方程:利用两个方程相加、减、乘、除或者代入法消去参数. (2)普通方程化参数方程:如果x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),则得曲线的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t ).参数方程与普通方程互化的注意点(1)在参数方程与普通方程的互化中,一定要注意变量的范围以及转化的等价性. (2)普通方程化为参数方程,参数方程的形式不唯一,即如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同.3.直线、圆与椭圆的普通方程和参数方程[熟记常用结论]经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B为直线l 上的两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=⎪⎪⎪⎪t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)× 二、选填题1.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析:选B 由⎩⎪⎨⎪⎧ x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.2.若直线l :⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数)与曲线C :⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数)相切,则实数m 的值为( )A.-4或6B.-6或4C.-1或9D.-9或1解析:选A 由⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数),得直线l :2x +y -1=0,由⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数),得曲线C :x 2+(y -m )2=5,因为直线l 与曲线C 相切,所以圆心到直线的距离等于半径,即|m -1|22+12=5,解得m =-4或m =6.故选A.3.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=04.已知两曲线的参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),则它们的交点坐标为________.解析:消去参数θ得普通方程为x 25+y 2=1(0≤y ≤1),表示椭圆的一部分.消去参数t 得普通方程为y 2=45x ,表示抛物线,联立两方程,可知两曲线有一个交点,解得交点坐标为⎝⎛⎭⎫1,255.答案:⎝⎛⎭⎫1,2555.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)考点一 参数方程与普通方程的互化 [基础自学过关][题组练透]1.已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解:(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.即实数a 的取值范围为[-25,2 5 ].2.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数),设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离 d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45,当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.[名师微点]将参数方程化为普通方程消参的3种方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.[提醒] 将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.考点二 参数方程的应用 [师生共研过关][典例精析](2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. [解] (1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点需满足21+k 2<1, 解得k <-1或k >1, 即α∈⎝⎛⎭⎫π2,3π4或α∈⎝⎛⎭⎫π4,π2. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α⎝⎛⎭⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎫α为参数,π4<α<3π4.[解题技法]一般地,如果题目中涉及圆、椭圆上的动点或求最值范围问题时可考虑用参数方程,设曲线上点的坐标,将问题转化为三角恒等变换问题解决,使解题过程简单明了.[过关训练]已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|. 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255. 当sin(θ+α)=1时,|PA |取得最小值,最小值为255.考点三 参数方程与极坐标方程的综合应用 [师生共研过关][典例精析](2019·柳州模拟)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)求曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN 的中点为P ,求|AP ||AM |·|AN |的值.[解] (1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2 θ4=1,即ρ2=364+5sin 2θ.因为曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x , 所以曲线C 的极坐标方程为ρ2=364+5sin 2θ,曲线D 的直角坐标方程为x 2+y 2+2x -23y =0. (2)由点A ⎝⎛⎭⎫22,π4,得⎩⎨⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sin π3(t 为参数),代入x 29+y 24=1可得,314t 2+(8+183)t +16=0, 设M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[解题技法]参数方程与极坐标方程综合问题的解题策略(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[过关训练](2018·合肥质检)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4-θ.(1)求曲线C 的直角坐标方程;(2)已知直线l 过点 P (1,0)且与曲线C 交于A ,B 两点,若|PA |+|PB |=5,求直线l 的倾斜角α.解:(1)由ρ=22cos ⎝⎛⎭⎫π4-θ=2(cos θ+sin θ)⇒ρ2=2(ρcos θ+ρsin θ)⇒x 2+y 2=2x +2y ⇒(x -1)2+(y -1)2=2,故曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)由条件可设直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),代入圆的方程,有t 2-2t sin α-1=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=2sin α, t 1t 2=-1,|PA |+|PB |=|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+4=5,解得sin α=12或sin α=-12(舍去),故α=π6或5π6.[课时跟踪检测]1.设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围. 解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1), 所以,当直线l 经过圆C 的圆心时,直线l 的斜率k =52.(2)由圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数),得圆C 的圆心是C (1,-1),半径为2.由直线l 的参数方程⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),得直线l 的普通方程为y -4=k (x -3)(斜率存在), 即kx -y +4-3k =0.当直线l 与圆C 交于两个不同的点时,圆心到直线的距离小于圆的半径, 即|5-2k |k 2+1<2,解得k >2120.即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞.2.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x+2-tan α;当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.3.(2019·沈阳模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2a cos θ(a >0).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)设直线l 与曲线C 交于M ,N 两点,点P (-2,0),若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)由ρsin 2θ=2a cos θ(a >0)两边同乘以ρ得, 曲线C 的直角坐标方程为y 2=2ax (a >0).由直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t 为参数),消去t ,得直线l 的普通方程为x -y +2=0.(2)将⎩⎨⎧x =-2+22t ,y =22t代入y 2=2ax ,得t 2-22at +8a =0,由Δ>0得a >4,设M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=22a ,t 1t 2=8a , ∵|PM |,|MN |,|PN |成等比数列,∴|t 1-t 2|2=|t 1t 2|,∴(22a )2-4×8a =8a ,∴a =5.4.(2019·青岛调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|P Q |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|P Q |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 5.(2018·辽宁五校联合体模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求C 1的普通方程和C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)分别交C 1,C 2于A ,B 两点(A ,B 异于原点),当k ∈(1,3]时,求|OA |·|OB |的取值范围.解:(1)由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,可得(x -1)2+y 2=cos 2α+sin 2α=1,即C 1的普通方程为(x -1)2+y 2=1.方程ρcos 2θ=sin θ可化为ρ2cos 2θ=ρsin θ (*),将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入(*)式,可得x 2=y , 所以C 2的直角坐标方程为x 2=y . (2)因为A ,B 异于原点,所以联立⎩⎪⎨⎪⎧(x -1)2+y 2=1,y =kx ,可得A ⎝⎛⎭⎫2k 2+1,2k k 2+1;联立⎩⎪⎨⎪⎧y =kx ,y =x 2,可得B (k ,k 2). 故|OA |·|OB |=1+k 2·2k 2+1·1+k 2·|k |=2|k |.又k ∈(1,3],所以|OA |·|OB |∈(2,23].6.(2019·惠州调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ=tan θ.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A ,B 两点,点P 的极坐标为⎝⎛⎭⎫22,-π4,求1|PA |+1|PB |的值. 解:(1)由曲线C 1的参数方程消去参数t 可得,曲线C 1的普通方程为4x +3y -2=0. 由x =ρcos θ,y =ρsin θ可得,曲线C 2的直角坐标方程为y =x 2.(2)由点P 的极坐标为⎝⎛⎭⎫22,-π4,可得点P 的直角坐标为(2,-2),∴点P 在曲线C 1上.将曲线C 1的参数方程⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数)代入y =x 2,得9t 2-80t +150=0,设t 1,t 2是点A ,B 对应的参数, 则t 1+t 2=809,t 1t 2=503>0.∴1|PA |+1|PB |=|PA |+|PB ||PA |·|PB |=|t 1+t 2||t 1t 2|=815. 7.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且l 过点A ,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 1上的点到直线l 的距离的最大值;(2)过点B (-1,1)且与直线l 平行的直线l 1与曲线C 1交于M ,N 两点,求|BM |·|BN |的值. 解:(1)由直线l 过点A ,得2cos ⎝⎛⎭⎫π4-π4=a ,故a =2, 则易得直线l 的直角坐标方程为x +y -2=0.由点到直线的距离公式,得曲线C 1上的点到直线l 的距离d =|2cos α+3sin α-2|2=|7sin (α+φ)-2|2,⎝⎛⎭⎫其中tan φ=233,∴d max =7+22=14+222.即曲线C 1上的点到直线l 的距离的最大值为14+222. (2)由(1)知直线l 的倾斜角为3π4, 则直线l 1的参数方程为⎩⎨⎧x =-1+t cos3π4,y =1+t sin 3π4(t 为参数).易知曲线C 1的普通方程为x 24+y 23=1.把直线l 1的参数方程代入曲线C 1的普通方程, 得72t 2+72t -5=0, 设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=-107, 根据参数t 的几何意义可知|BM |·|BN |=|t 1t 2|=107. 8.(2019·郑州模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-32t ,y =m +12t (t为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝⎛⎭⎫θ-π6,直线l 与圆C 交于A ,B 两点. (1)若OA ⊥OB ,求直线l 的普通方程;(2)设P (3,1)是直线l 上的点,若|AB |=λ|PC |,求λ的值.解:(1)消去参数t ,得直线l 的普通方程为x +3y =3+3m ,将圆C 的极坐标方程ρ=8cos ⎝⎛⎭⎫θ-π6的两边同时乘ρ,。

相关文档
最新文档