数学文化高考考点
高考文科数学必考知识点

高考文科数学必考知识点高考文科数学必考知识点主要包括数与代数、函数与方程、几何与空间、统计与概率四个模块,下面将对每个模块的重点内容进行详细介绍。
一、数与代数1. 整式与分式整式是只包含有限个非负整数次幂的代数式,如2x²+3x-1;分式是由多项式除以非零多项式得到的表达式,如(2x²+3x-1)/(x+2)。
必考知识点包括整式的加减乘除运算、分式的约分和等值变形。
2. 方程与不等式方程是含有未知数的等式,如2x+3=7;不等式是含有未知数的不等式,如2x+3>7。
必考知识点包括一元一次方程及其应用、一元二次方程及其应用、一元一次不等式及其应用。
3. 指数与对数指数是用来表示乘法的重复操作,如2³=2×2×2;对数是指数运算的逆运算,如log₂8=3。
必考知识点包括指数与幂、对数的定义和性质。
4. 等比数列与等差数列等差数列是指相邻两项之差相等的数列,如1, 3, 5, 7, ...;等比数列是指相邻两项之比相等的数列,如2, 4, 8, 16, ...。
必考知识点包括等差数列与等比数列的通项公式、求和公式及其应用。
二、函数与方程1. 函数函数是一个映射关系,将一个集合的每个元素都对应到另一个集合中的唯一元素,如y=x ²。
必考知识点包括函数的定义、函数的图像、函数的性质以及常见的基本函数。
2. 二次函数二次函数是一个以x的二次多项式形式表示的函数,如y=ax²+bx+c。
必考知识点包括二次函数的图像、二次函数的最值、零点及其应用。
3. 指数函数与对数函数指数函数是以变量为指数的函数,如y=2ˣ;对数函数是指数函数的逆运算,如y=log₂x。
必考知识点包括指数函数与对数函数的图像、性质和应用。
4. 三角函数三角函数是描述角度与边长之间关系的函数,如y=sin(x)。
必考知识点包括三角函数的图像、周期性、相关性质以及应用。
数学高考必考知识点

数学高考必考知识点一、代数1. 集合与函数- 集合的基本概念、运算及其性质- 函数的定义、性质和常见类型(如线性函数、二次函数、指数函数、对数函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 不等式与方程- 一元一次不等式和方程的解法- 二元一次不等式组和方程组的解法- 一元二次方程的解法及其判别式- 不等式的解集表示和基本性质3. 数列- 等差数列和等比数列的通项公式、求和公式- 数列的极限概念及其计算- 数列的递推关系和通项公式的求解二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式- 相似与全等的判定和应用2. 立体几何- 空间几何体的性质和计算(如棱柱、棱锥、圆柱、圆锥、球等) - 空间向量及其在立体几何中的应用- 立体几何中的表面积和体积计算3. 解析几何- 直线和圆的解析表达式- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程- 坐标变换和参数方程三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件的概念- 排列组合的基本原理和公式2. 统计- 数据的收集、整理和描述- 均值、中位数、众数、方差、标准差等统计量的计算- 概率分布(如二项分布、正态分布)的概念和应用四、数学分析1. 极限与连续- 数列极限的概念和性质- 函数极限的定义和计算- 连续函数的性质和判断2. 导数与微分- 导数的定义、几何意义和物理意义- 常见函数的导数公式- 微分的概念和应用3. 积分- 不定积分的概念和基本积分表- 定积分的定义、性质和计算- 微积分基本定理及其应用五、数学解题技巧- 快速准确的计算方法- 图形和代数方法的结合使用- 逻辑推理和证明技巧- 常见数学问题的解题策略六、数学思维与应用- 数学建模和实际问题的应用- 创新思维在数学问题解决中的运用- 数学与其他学科的交叉融合七、复习策略- 定期复习和巩固基础知识- 针对性练习和模拟考试- 错题分析和知识点查漏补缺以上是数学高考必考知识点的概览。
文科艺术生数学知识点

文科艺术生数学知识点
1.基础运算:加法、减法、乘法和除法。
这是数学运算的基础,包括
整数、小数和分数等的四则运算。
2.百分数:了解百分数的定义和使用方法,能够计算百分比、比例和
利润等问题。
3.平均数:了解平均数的概念和计算方法,能够求一组数据的平均数。
4.比例和比例关系:了解比例的概念和比例关系的应用,能够解决有
关比例的问题。
5.几何图形:了解常见的几何图形的特征和性质,如圆、矩形、三角
形和正方形等。
6.数据分析:了解如何收集、整理和分析数据,包括制作简单的统计
图表和解读图表。
7.数量关系:了解数量关系和变量之间的关系,能够进行简单的方程
式推导和解答。
8.概率和统计:了解概率和统计的基本概念,能够计算概率、解决统
计问题和应用概率统计的方法。
9.金融数学:了解如何计算利息、本金和投资回报率等金融数学知识,能够进行简单的财务分析。
10.日常生活应用:了解如何在日常生活中应用数学知识,如购物打折、计算时间和距离等。
在学习数学知识时,文科艺术生可以借助教材、辅导资料和在线学习
资源等,注重理解数学概念和方法的应用,培养数学思维和解决实际问题
的能力。
此外,通过数学与文科艺术学科的交叉学习,可以拓宽思维视野,提高综合素质。
高考数学必考点《数学文化》精选100题

第 1 页 共 75 页高考数学必考点《数学文化》精选100题1.密位制是度量角的一种方法.把一周角等分为6000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如密位7写成“007-”,478密位写成“478-”,1周角等于6000密位,记作1周角6000=-,1直角1500=-.如果一个半径为2的扇形,它的面积为76π,则其圆心角用密位制表示为( ) A .1250-B .1750-C .2100-D .3500-2.天干地支纪年法源于中国,中国自古便有十天干与十二地支,十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.今年是辛丑年,也是伟大、光荣、正确的中国共产党成立100周年,则中国共产党成立的那一年是( )A .辛酉年B .辛戊年C .壬酉年D .壬戊年3.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用n a 表示解下()9,n n n *≤∈N个圆环所需的移动最少次数,若11a =,且1121,22,n n n a n a a n ---⎧=⎨+⎩为偶数为奇数,则解下5个环所需的最少移动次数为( ) A .7B .13C .16D .224.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积12=(弦+矢)⨯矢,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心高中数学资料共享群(734924357) 第 2 页 共 75 页角为 23π,半径等于20米的弧田,按照上述经验公式计算所得弧田面积约是( )(参考数据: 3.14π≈1.73≈)A .220平方米B .246平方米C .223平方米D .250平方米5.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (,,,a b cd N +∈),则b d a c++是x 的更为精确的不足近似值或过剩近似值.我们知道 2.71828e =⋅⋅⋅,若令2714105e <<,则第一次用“调日法”后得4115是e 的更为精确的过剩近似值,即27411015e <<,若每次都取最简分数,那么第二次用“调日法”后可得e 的近似分数为( )A .6825 B .4115 C .2710 D .1456.如图,洛书(古称龟书),是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取3个数,则选取的3个数之和为奇数的方法数为( )A .30B .40C .44D .707.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的第 3 页 共 75 页 “弓”,掷铁饼者的手臂长约4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为(参考数据1.414≈,1.732≈)( )A .1.012米B .2.043米C .1.768米D .2.945米8.在地球公转过程中,太阳直射点的纬度随时间周而复始不断变化,太阳直射点回归运动的一个周期就是一个回归年.某科研小组以某年春分(太阳直射赤道且随后太阳直射点逐渐北移的时间)为初始时间,统计了连续400天太阳直射点的纬度值(太阳直射北半球时取正值,直射南半球时取负值).设第x 天时太阳直射点的纬度值为,y 该科研小组通过对数据的整理和分析.得到y 与x 近似满足23.43929110.01720279y sin x =.则每400年中,要使这400年与400个回归年所含的天数最为接近.应设定闰年的个数为(精确到1)( ) 参考数据182.62110.01720279π≈ A .95B .96C .97D .989.“中国剩余定理”又称“孙子定理”,讲的是关于整除的问题.现有这样一个整除问题:将1到2021这2021个正整数中能被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则数列{}n a 各项的和为( )A .137835B .137836C .135809D .13581010.我国古代以天为主,以地为从,天和干相连叫天干,地和支相连叫地支,合起来叫天干地支.天干有十个,就是甲、乙、丙、丁、戊、己、庚、辛、壬、癸,地支有十二个,依次是子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.古人把它们按照甲子、乙丑、丙寅……的顺序而不重复地搭配起来,从甲子到癸亥共六十对,叫做一甲子.我国古人用这六十对干支来表示年、月、日、时的序号,周而复始,不断循环,这就是干支纪年法(即农历).干支纪年历法,是屹立于世界民族之林的科学历法之一.今年(2020高中数学资料共享群(734924357) 第 4 页 共 75 页年)是庚子年,小华的爸爸今年6月6日是56周岁生日,小华爸爸出生那年的农历是( )A .庚子B .甲辰C .癸卯D .丙申11.《周髀算经》是中国最古老的天文学和数学著作,书中提到:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是40.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为( )A .6.5尺B .13.5尺C .14.5尺D .15.5尺12.英国数学家泰勒(B . Taylor ,1685-1731)以发现泰勒公式和泰勒级数闻名于世。由泰勒公式,我们能得到111111!2!3!!(1)!e e n n θ=+++++++(其中e 为自然对数的底数,()()01,!12...21n n n n θ<<=⨯-⨯-⨯⨯⨯),其拉格朗日余项是.(1)!n e R n θ=+可以看出,右边的项用得越多,计算得到的e 的近似值也就越精确。若3(1)!n +近似地表示e 的泰勒公式的拉格朗日余项,n R n R 不超过11000时,正整数n 的最小值是( ) A .5B .6C .7D .813.攒尖是古代中国建筑中屋顶的一种结构形式依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,设正六棱锥的侧面等腰三角形的顶角为2θ,则侧棱与底面内切圆半径的比为( )第 5 页 共 75 页A.3sin θ B.3cos θ C .12sin θ D .12cos θ14.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,为探究下面“瓦当”图案的面积,向半径为10的圆内投入1000粒芝麻,落入阴影部分的有400粒.则估计“瓦当”图案的面积是( )A .40B .40πC .4D .4π15.明朝早期,郑和在七下西洋的过程中,将中国古代天体测量方面所取得的成就创造性应用于航海,形成了一套自成体系且行之有效的先进航海技术——“过洋牵星术”.简单地说,就是通过观测不同季节、时辰的日月星辰在天空运行的位置和测量星辰在海面以上的高度来判断方位,其采用的主要工具为牵星板,由12块正方形木板组成,最小的一块边长约为2厘米(称一指).观测时,将木板立起,一手拿着木板,手臂垂直,眼睛到木板的距离大约为72厘米,使牵星板与海平面垂直,让板的下边缘与海平面重合,上边缘对着所观测的星辰,与其相切,依高低不同替换、调整木板,木板上边缘与被观测星辰重合时所用的是几指板,观测的星辰离海平面的高度就是几指,然后就可以推算出船在海中的地理纬度.如图所示,若在一次观测中,所用的牵星板为九指板,则sin 2α=( )A .1235 B.17 C .817 D .81516.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,高中数学资料共享群(734924357) 第 6 页 共 75 页问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,可求得该女子第2天所织布的尺数为( )A .2031 B .531 C .1031 D .403117.筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明代科学家徐光启在《农政全书》中用图1描绘了筒车的工作原理.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.将筒车抽象为一个几何图形(圆),筒车的半径为2m ,筒车的轴心O 到水面的距离为1m ,筒车每分钟按逆时针转动2圈.规定:盛水筒M 对应的点P 从水中浮现(即0P 时的位置)时开始计算时间,设盛水筒M 从0P 运动到点P 时所用时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m ).若以筒车的轴心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy (如图2),则h 与t 的函数关系式为( )A .2sin 1156h t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞B .2sin 1156h t ππ⎛⎫=++ ⎪⎝⎭,[)0,t ∈+∞ C .2sin 16h t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞ D .2sin 16h t ππ⎛⎫=++ ⎪⎝⎭,[)0,t ∈+∞ 18.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC的面积S =根据此公式,若cos (2)cos 0a B b c A +-=,且2224b c a ,则ABC的面积为()AB.CD.19.我国古代数学论著中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯二百五十四,请问底层几盏灯?意思是:一座7层塔共挂了254盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯()A.32盏B.64盏C.128盏D.196盏20.我国古代数学名著《九章算术》中有如下“两鼠穿墙”问题:有两只老鼠同时从墙的两面相对着打洞穿墙.大老鼠第一天打进11尺,以后每天进度是前一天的2倍.小老鼠第一天也打进1尺,以后每天进度是前一天的一半.如果墙的厚度为10尺,则两鼠穿透此墙至少在第()A.3天B.4天C.5天D.6天21.中国古代重要的数学著作《孙子算经》下卷有题:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知{}32,A x x n n N*==+∈,{}53,B x x n n N*==+∈,{}72,C x x n n N*==+∈,若x A B C∈⋂⋂,则下列选项中符合题意的整数x为()A.8B.127C.37D.2322.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作.割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想得到6sin的近似值为()第7页共75页高中数学资料共享群(734924357) 第 8 页 共 75 页A .30πB .60πC .90π D .180π 23.电影《刘三姐》中有一个“舟妹分狗”的片段.其中,罗秀才唱道:三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀舟妹唱道;九十九条圩上卖,九十九条腊起来,九十九条赶羊走,剩下三条,财主请来当奴才(讽刺财主请来对歌的三个奴才).事实上,电影中罗秀才提出了一个数学问题:把300条狗分成4群,每群都是单数,1群少,3群多,数量多的三群必须都是一样的,否则就不是一少三多,问你怎样分?舟妹已唱出其中一种分法,即{}3,99,99,99,那么,所有分法的种数为( ) A .6B .9C .10D .1224.我国古代数学家著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何.”,其意思是“今有人持金出五关,第一关收税金为持金的12,第2关收税金为剩余的13,第3关收税金为剩余税金的14,第4关收税金为剩余税金的15,第5关收税金为剩余税金的16”5关所税金之和,恰好重1斤.则在此问题中,第3关收税金为( )斤A .110 B .310 C .13 D .91025.朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问第 9 页 共 75 页 中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升.”在该问题中前5天共分发多少升大米?( )A .1170B .1440C .1512D .177226.中国的少数民族有不少具有鲜明特色的建筑,如图①所示的建筑为坐落于广西三江林溪河上的程阳永济桥,是典型的侗族建筑,该类建筑由桥、塔、亭组成,其中塔、亭建在石桥上,具有多层结构,被称为世界十大最不可思议桥梁之一,因为行人过往能够躲避风雨,故名“风雨桥”.已知程阳永济桥上的塔从上往下看,其边界构成的曲线可以看作正六边形结构,如图①所示,且各层的六边形的边长均为整数,从内往外依次成等差数列.若这四层六边形的周长之和为156,且图①,则最外层六边形的周长为( )A .54B .48C .42D .3027.如图是隋唐天坛,古叫圜丘,它位于唐长安城明德门遗址东约950米,即今西安市雁塔区陕西师范大学以南.天坛初建于隋而废弃于唐末,比北京明清天坛早1000多年,是隋唐王朝近三百年里的皇家祭天之处.某数学兴趣小组为了测得天坛的直径,在天坛外围测得60AB =米,60BC =米,40CD =米,60ABC ∠=︒,120BCD ∠=︒,据此可以估计天坛的最下面一层的直径AD 大约为( ).(结果精确到1米)1.414≈1.732≈2.236≈2.646≈)A .39米B .43米C .49米D .53米高中数学资料共享群(734924357) 第 10 页 共 75 页28.《孙子算经》记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,一共五级.现每个级别的诸侯分别有1,2,3,4,5人,按照如下规则给他们分发一批苹果:同一等级的诸侯所得苹果数依次为1a ,2a ,3a ,…,且满足()*1k k a a k k N +=+∈;任一等级诸侯所得苹果数量最多的比高一级的诸侯所得苹果数最少的少一个.现已知等级为男的诸侯所得苹果数为1,则这批苹果共有( )个.A .158B .159C .160D .16129.祖暅(公元5-6世纪,祖冲之之子,是我国齐梁时代的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为2b ,高皆为a 的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面于距平面β任意高d 处可横截得到S 圆及S 环两截面,可以证明S S =环圆总成立.据此,短轴长为6cm ,长轴为8cm 的椭球体的体积是( )3cmA .24πB .48πC .192πD .384π30.蹴鞠,又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知某鞠的表面上有四个点A 、B 、C 、D ,满足任意两点间的直线距离为,现在利用3D 打印技术制作模型,该模型是由鞠的内部挖去由ABCD 组成的几何体后剩余的部分,打印所用原料密度为31g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为( )(参考数据:取 3.14π= 1.41= 1.73=,精确到0.1) A .113.0gB .267.9gC .99.2gD .13.8g31.我国古代著名的数学专著《九章算术》里有一段叙述:今有良马和驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日后二马相逢.问:齐去长安多少里?( )A .1125B .1250C .2250D .250032.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( )A .132项B .133项C .134项D .135项33.1750年,欧拉在给哥德巴赫的一封信中列举了多面体的一些性质,其中一条是:如果用V 、E 和F 表示闭的凸多面体的顶点数、棱数和面数,则有如下关系:2V E F -+=.已知正十二面体有20个顶点,则正十二面体有( )条棱 A .30B .14C .20D .2634.龙马负图、神龟载书图像如图甲所示,数千年来被认为是中华传统文化的源头;其中洛书有云,神龟出于洛水,甲壳上的图像如图乙所示,其结构是戴九履一,左三右七,二四为肩,六八为足u ,以五居中,五方白圈皆阳数,四角黑点为阴数;若从阳数和阴数中分别随机抽出2个和1个,则被抽到的3个数的数字之和超过16的概率为( )A.1340B.720C.14D.31035.降雨量是气象部门观测的重要数据,日降雨量是指一天内降落在地面单位面积雨水层的深度(单位:毫米)。我国古代就有关于降雨量测量方法的记载,古代数学名著《数书九章》中有“天池盆测雨”题:天池盆(圆台形状)盆口直径二尺八寸,盆底直径为一尺二寸,盆深一尺八寸。若盆中积水深九寸,则平地降雨量是几寸(注:一尺等于十寸,一寸等于10厘米)?已知某隧道的积水程度与日降水量的关系如下表所示:如果某天该隧道的日降水量按照“天池盆测雨”题中数据计算,则该隧道的积水程度为()A.一级B.二级C.三级D.四级36.攒尖是古代中国建筑中屋顶的一种结构形式.宋代称为撮尖,清代称攒尖.依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,也有单檐和重檐之分,多见于亭阁式建筑.如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,若此正六棱锥的侧面等腰三角形的底角为 ,则侧棱与底面外接圆半径的比为()A .12cos αB .12sin αC .sin 3πsin 8αD .cos 3πcos 8α37.描金又称泥金画漆,是一种传统工艺美术技艺.起源于战国时期,在漆器表面,用金色描绘花纹的装饰方法,常以黑漆作底,也有少数以朱漆为底.描金工作分为两道工序,第一道工序是上漆,第二道工序是描绘花纹.现甲,乙两位工匠要完成A ,B ,C 三件原料的描金工作,每件原料先由甲上漆,再由乙描绘花纹.每道工序所需的时间(单位:h )如下:则完成这三件原料的描金工作最少需要( )A .43hB.46h C .47h D .49h38.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36的等腰三角形(另一种是顶角为108的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,12BC AC =.根据这些信息,可得sin126=( )A B C D39.“九天揽月”是中华民族的伟大梦想,我国探月工程的进展与实力举世瞩目.近期,“嫦娥四号”探测器实现历史上的首次月背着陆,月球上“嫦娥四号”的着陆点,被命名为天河基地,如图是“嫦娥四号”运行轨道示意图.圆形轨道距月球表面100千米,椭圆形轨道的一个焦点是月球球心,一个长轴顶点位于两轨道相切的变轨处,另一个长轴顶点距月球表面15千米,则椭圆形轨道的焦距为()A.85km B.42.5km C.50km D.100km40.《九章算术》是我国古代内容极为丰富的数学名著.书中有如下问题:“今有委米依垣内角,下周四尺. 高三尺.何积及为米几何?”其意思为:“ 在屋内墙角处堆放米,米堆底部的弧长为4尺.米堆的高为3尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()A.7斛B.3斛C.9斛D.12斛41.我国南宋数学家杨辉1261年所著的《详解九章算法》就给出了著名的杨辉三角,由此可见我国古代数学的成就是非常值得中华民族自豪的.以下关于杨辉三角的猜想中错误的是()A .由“与首末两端‘等距离’的两个二项式系数相等”猜想:C n m =C n n -mB .由“在相邻的两行中,除1以外的每一个数都等于它‘肩上’两个数的和”猜想:11r r r n nn C C C -+=+ C .由“第n 行所有数之和为2n ”猜想:C n 0+C n 1+C n 2+…+C n n =2nD .由“111=11,112=121,113=1331”猜想:115=1510105142.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A B 、间的距离为4,动点P 满足PA PB=P A B 、、不共线时,PAB △面积的最大值是( )A .3 B C .D .343.古希腊时期,的矩形称为黄金矩形,称为黄金分割比例.下图为希腊的一古建筑.其中部分廊、檐、顶的连接点为图中所示相关对应点,图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均近似为黄金矩形.若A 与D 间的距离大于18.7m ,C 与F 间的距离小于12m .则该古建筑中A 与B 间的距离可能是( )(参考数据:10.6182≈,70.6180.38≈,30.6180.236≈)A .29mB .29.8mC .30.8mD .32.8m44.《几何原本》第二卷中的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的定理都能够通过图形实现证明,并称之为无字证明.现有如图所示的图形,点F 在半圆O 上,且OF AB ⊥,点C 在直径AB 上运动.设AC a =,BC b =,则由FC OF ≥可以直接证明的不等式为( )A .)0,02a b a b +≥>>B .()2220,0a b ab a b +≥>>C .)20,0ab a b a b≤>>+ D .)0,02a b a b +≤>> 45.我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个1c 键的8个白键与5个黑键(如图)的音频恰成一个公比为1c 的频率正好是中音c 的2倍.已知标准音1a 的频率为440Hz ,那么频率为的音名是( )A .dB .fC .eD .#d46.刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n很大时,用圆内接正n边形的周长近似等于圆周长,并计算出精确度很高的圆周率π31416≈..在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想.运用此思想,当π取3.1416时可得sin1︒的近似值为()A.0.00873B.0.01745C.0.02618D.0.03491 47.3D打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知利用3D 打印技术制作如图所示的模型.该模型为在圆锥底内挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为,母.打印所用原料密度为31 g/cm,不考虑打印损耗,制作该模型所需原料的质量约为()(取π 3.14=,精确到0.1)A.609.4g B.447.3g C.398.3g D.357.3g 48.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积=12(弦×矢+矢×矢),弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到弧田弧的距离之差,现有一弧田,其弧田弦AB等于6米,其弧田弧所在圆为圆O,若用上述弧田面积计算公式算得该弧田的面积为72平方米,则cos①AOB=()A.125B.325C.15D.72549.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷。
高考数学108知识点

高考数学108知识点高考数学是每年高中毕业生必须参加的一项重要考试,对于学生而言,掌握数学知识点是迈向高考成功的关键。
本文将为大家详细介绍高考数学中的108个知识点,希望能够帮助大家更好地备考。
1. 代数与函数代数与函数是高考数学的基础,主要包括数的性质、整式的加减乘除、方程与不等式、函数及其性质等内容。
2. 三角函数三角函数是高考数学中的重点,包括三角函数的基本概念、单位圆及其性质、三角恒等变换等内容。
3. 平面向量平面向量是高考数学中的难点,包括向量的基本概念、向量的运算、向量的线性相关性等内容。
4. 空间几何空间几何是高考数学的重要部分,包括点、直线、平面的位置关系、曲线与曲面的方程、空间向量与直线的位置关系等内容。
5. 解析几何解析几何是高考数学中的基础,包括平面直角坐标系、向量表示的直线与平面、二次曲线及其参数方程等内容。
6. 概率与统计概率与统计是高考数学的必考内容,包括事件与概率、随机变量及其分布、统计量与抽样分布等内容。
7. 数列与数学归纳法数列与数学归纳法是高考数学的重要知识点,包括数列的概念、数列的通项公式与分部求和公式、数学归纳法的应用等内容。
8. 导数与微分导数与微分是高考数学的难点,包括函数的极限与连续性、导数与微分的概念与性质、基本初等函数的导数等内容。
9. 不定积分与定积分不定积分与定积分是高考数学的重点,包括不定积分的概念与性质、定积分的概念与性质、定积分的计算等内容。
10. 空间解析几何空间解析几何是高考数学的难点,包括空间直角坐标系、方向余弦与方向角、空间曲线与曲面的方程等内容。
11. 多元函数与偏导数多元函数与偏导数是高考数学的重点,包括多元函数的概念与性质、偏导数的定义与计算、隐函数与参数方程等内容。
12. 微分方程微分方程是高考数学的难点,包括微分方程的基本概念、常微分方程的解法、变量可分离方程与齐次方程等内容。
13. 矩阵与行列式矩阵与行列式是高考数学的重点,包括矩阵的基本概念与运算、行列式的性质与计算、矩阵的初等变换与逆矩阵等内容。
高考数学考点大全总结概括

高考数学考点大全总结概括高考数学必考知识点一一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。
2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。
3. 幂函数与指数函数的性质。
4. 对数函数的性质:底数为正数时的定义、性质与常见公式。
5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。
6. 数列的概念及常见数列的通项公式和求和公式。
二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。
2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。
3. 圆的性质:圆周角、弧长和面积公式。
4. 球和立体几何的基本概念:体积、表面积和投影等。
三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。
2. 随机变量的概念及其分布函数和密度函数。
3. 统计的基本概念:总体、样本、参数和统计量。
4. 样本调查与统计分析的方法和步骤。
四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。
2. 平面的方程:一般式、点法式、两点式和法向量式等。
3. 空间几何基本概念:点、直线、平面的关系与位置。
4. 空间直角坐标系:空间直角坐标系的建立与距离公式。
五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。
2. 数学证明的基本方法:直接证明、间接证明、反证法等。
3. 数学建模的基本流程和方法。
4. 数学问题的模型转化与解决策略。
以上是高考必背的最完整的高中数学知识点。
希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。
75个高中数学高考知识点总结

75个高中数学高考知识点总结高中数学高考知识点总结(共75个)1.数集与函数:数集的性质,集合的表示方法,集合的运算,函数的定义及性质,一元二次函数的图像与性质,复合函数的概念与性质等。
2.数论与代数:整数与有理数的运算性质,整式的运算性质,整式的因式分解与化简,多项式函数的概念与性质,复数的概念与运算性质等。
4.空间几何与立体几何:空间直线及其方程,空间平面及其方程,空间曲线及其方程,球面的定义与性质,空间几何体的表面积与体积等。
5.三角函数与三角恒等式:二次角与辅助角的概念,三角函数的定义及性质,三角函数的图像与变换,三角函数的基本恒等式等。
6.三角函数的应用:三角函数在坐标系中的应用,三角函数在三角恒等式中的应用,三角函数在物理问题中的应用等。
7.数列与数列的极限:数列的概念及性质,数列的极限及其性质,数列极限的运算法则,常用数列的极限等。
8.函数的极限与连续:函数的极限的定义及性质,函数的极限的运算法则,函数的连续性及其性质,连续函数的运算与初等函数的连续性等。
9.导数与导数应用:导数的定义及性质,函数的导数与函数的图像,导数的四则运算法则,函数的单调性与极值点等。
10.积分与定积分:定积分的概念及性质,定积分的计算方法,不定积分的概念与性质,不定积分的计算方法等。
11.微分方程:微分方程的基本概念与解法,可分离变量的微分方程,一阶线性微分方程,二阶齐次线性微分方程等。
12.概率与统计:随机事件与概率,随机变量及其分布,频率与概率的估计,统计图表的绘制与分析等。
13.线性规划:线性规划问题的建模,线性规划的基本概念与性质,线性规划的图形解法与解的存在性等。
14.解析几何:平面解析几何的基本概念与性质,平面曲线的方程与性质,空间解析几何的基本概念与性质等。
15.逻辑与集合论:命题与命题的连接词,逻辑等价命题,简单命题与复合命题,命题的充分必要条件与等价条件等。
以上是高中数学高考的主要知识点总结,包含了数学的基本概念、性质和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是5级地震震波的最大振幅的
A.10倍 C.50倍
B.20倍
√D.100倍
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 对公式 M=lg A-lg A0 进行转化得 M=lg AA0,即AA0=10M,A=A0·10M. 当M=7时,地震震波的最大振幅为A7=A0·107, 当M=5时,地震震波的最大振幅为A5=A0·105. 则AA75=AA00··110075=100.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8.《九章算术》中有这样一个问题:“今有圆堢壔,周四丈八尺,高一丈一尺.问
积几何?术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢壔就是圆柱体,
它的体积为“周自相乘,以高乘之,十二而一”,意思是圆柱体的体积为V=112 × 底面圆的周长的平方×高,则由此可推得圆周率π的取值为
A.3 2f
B.3 22f
C.12 25f
√D.12 27f
解析 由题意知,这十三个单音的频率构成首项为 f、公比为12 2的等比数列, 则第八个单音的频率为(12 2)7f=12 27f.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.(2019·湖南长沙雅礼中学模拟)我国古代数学著作《九章算术》有如下问题:
A.4
B.5
√C.6
D.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 由题意知,由细到粗每段的重量组成一个等差数列,记为{an},设公差为d, 则有aa19+ +aa21= 0=24, ⇒22aa11+ +d1= 7d2=,4 ⇒da=1=1811.56, 所以该金箠的总重量 M=10×1156+10× 2 9×18=15. 因为 48ai=5M,所以有 481156+i-1×18=75,解得 i=6.
“今有金箠,长5尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几
何?”,意思是“现有一根金箠,长5尺,一头粗,一头细,在粗的一端截下1尺,
重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”设该金箠由粗
到细是均匀变化的,其重量为M,现将该金箠截成长度相等的10段,记第i段的重
量为ai(i=1,2,…,10),且a1<a2…<a10,若48ai=5M,则i等于
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12.(2019·晋中调研)艾萨克·牛顿(1643年1月4日—1727年3月31日),英国皇家学会 会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线” 的方法求函数 f(x)零点时给出一个数列{xn}:满足 xn+1=xn-f′fxnxn,我们把该数列
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11.(2019·达州模拟)里氏震级是由古登堡和里克特制定的一种表明地震能量大小的
标度,用来表示测震仪衡量地震能量的等级,地震能量越大,地震仪记录的震波的
振幅就越大,其计算公式为M=lg A-lg A0,其中A,A0分别是距震中100公里处接 收到的所关注的这个地震和0级地震的震波的最大振幅,则7级地震震波的最大振幅
3 R·r),其中R,r分别表示上、下底面的半径,h为高)
√A.2寸
B.3寸 C.4寸 D.5寸
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 由三视图可知,该器具的上底面半径为12寸,下底面半径为6寸,高为12寸. 因为所接雨水的深度为 6 寸,所以水面半径为12×(12+6)=9(寸), 则盆中水的体积为13π×6×(62+92+6×9)=342π(立方寸), 所以这一天该地的平均降雨量约为π3×421π22≈2(寸).
问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样
下底长的2倍与上底长的和与下底宽相乘,再次相加,再乘以高,最后除以6.则这个问题
中的刍童的体积为 A.13.25立方丈
√B.26.5立方丈
C.53立方丈
D.106立方丈
解析 由算法可知,刍童的体积
V=[2上底长+下底长×上底宽+62下底长+上底长×下底宽]×高, =[2×3+4×2+62×4+3×3]×3=26.5(立方丈).
3.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.干支是天干和地支
的总称.天干、地支互相配合,配成六十组为一周,周而复始,依次循环.甲、乙、
丙、丁、戊、己、庚、辛、壬、癸为天干;子、丑、寅、卯、辰、巳、午、未、申、
酉、戌、亥为地支.如:公元1984年为农历甲子年、公元1985年为农历乙丑年,公
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.(2018·北京)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算 出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分
成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一 个单音的频率的比都等于 12 2.若第一个单音的频率为f,则第八个单音的频率为
出的i等于
A.7
B.10
√C.8
D.23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 根据框图可列表如下: N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 i 011 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6.(2019·长沙模拟)如图所示是2002年8月在北京召开的国际数学家大会会标图案,该图案
的设计基础是赵爽弦图,以纪念我国古代数学家赵爽用此图证明了勾股定理.如图是用4个
全等的直角三角形以斜边为边长拼成的一个正方形.假设直角三角形的直角边长分别为3,5,
在正方形ABCD中随机取一点,则此点取自四边形EFGH内的概率是
√A.127
B.18
2
4
C.9
D.25
解析 因为直角三角形的直角边长分别为3,5, 所以正方形ABCD的面积为32+52=34,易知四边形EFGH的面积为(5-3)2=4. 故此点取自四边形 EFGH 内的概率 P=344=127.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
元1986年为农历丙寅年.则2049年为农历
A.己亥年
√B.己巳年
C.己卯年
D.戊辰年
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 方法一 2 049-1 983=66, 66除以10所得余数为6,即对应的天干为“己”; 66除以12所得的余数为6,即对应的地支为“巳”, 所以2 049年为农历己巳年. 方法二 易知(年份-3)除以10所得的余数对应天干,则2 049-3=2 046,2 046除 以10所得的余数是6,即对应的天干为“己”. (年份-3)除以12所得的余数对应地支,则2 049-3=2 046,2 046除以12所得的 余数是6,即对应的地支为“巳”,所以2049年为农历己巳年.
√A.3
B.3.1
C.3.14
D.3.2
解析 设圆柱体的底面半径为r,高为h,由圆柱的体积公式,得体积为V=πr2h. 由题意知 V=112×(2πr)2×h,所以 πr2h=112×(2πr)2×h,解得 π=3.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9.我国古代数学名著《数书九章》中有“天池盆测雨”题,与题中描绘的器具形 状一样(大小不同)的器具的三视图如图所示(单位:寸).若在某地下雨天时利用该 器具接的雨水的深度为6寸,则这一天该地的平均降雨量约为(注:平均降雨量等 于器具中积水的体积除以器具口的面积.参考公式:圆台的体积V= 1 πh(R2+r2+
称为牛顿数列.如果函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列{xn}为牛顿数列, xn-2
设 an=lnxn-1,已知 a1=1,xn>2,{an}的前 n 项和为 Sn,则 S2 018+1 等于
A.2 018
√C.22 018
B.2 019 D.22 019
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 模拟)我国古代《九章算术》里,记载了一个“商功”的例子:
今有刍童,上广二丈,袤三丈,下广三丈,袤四丈,高三丈.问积几何?其意思是:今有
上下底面皆为长方形的草垛(如图所示),上底宽2丈,长3丈;下底宽3丈,长4丈,高3丈.
图 所 示 的 程 序 框 图 是 为 了 得 到 大 衍 数 列 的 前 100 项 而 设 计 的 , 那 么 在 两 个
“
”中,可以先后填入
A.n是偶数?n≥100?
B.n是奇数?n≥100?
C.n是偶数?n>100?
√D.n是奇数?n>100?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2018·晋中榆社中学模拟)大衍数列,来源于《乾坤谱》中对《易传》“大衍
之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一
项,都代表太极衍生过程中曾经经历过的两仪数量总和,是中华传统文化中隐
藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇
数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如