大学物理--几何光学

合集下载

大学物理几何光学(一)

大学物理几何光学(一)

大学物理几何光学(一)引言概述:大学物理几何光学是光学的基础课程之一,它揭示了光的传播和反射、折射的规律,并研究了透镜、光的像、光的干涉和衍射等现象。

本文将从以下五个大点探讨大学物理几何光学的重要内容。

一、光的传播与反射1. 光的传播:光是电磁波,具有波动性和粒子性。

介绍光传播的特性和光速的性质。

2. 光的反射:介绍光在平面镜和曲面镜上的反射,包括入射角、反射率和反射成像原理。

3. 光的像的构成:探讨从光线追迹法的角度解释光的像的构成原理。

二、光的折射与光的像1. 光的折射:介绍光在不同介质中传播时的折射规律,包括折射定律和折射率的概念。

2. 透镜和光的像:详细阐述透镜的种类和工作原理,讨论光在凸透镜和凹透镜上的折射成像规律。

三、光的干涉与衍射1. 光的干涉:介绍干涉现象的原因和特点,包括光的相干性和双缝干涉实验。

2. 光的衍射:探讨衍射现象产生的原因和条件,例如单缝衍射和光栅衍射。

四、光的波动理论1. 光的波动性:介绍光的波动性和波动光的干涉和衍射现象与波动理论的关系。

2. 光的能量和光强度:解释光的能量和光强度的概念,以及它们与光的振幅和角频率之间的关系。

五、光的偏振与光的色散1. 光的偏振:阐述光的偏振现象的原理和特点,包括线偏振和圆偏振。

2. 光的色散:介绍光在介质中传播时的色散现象,并解释不同频率的光波在介质中传播速度不同的原因。

总结:本文通过概述了大学物理几何光学的重要内容,包括光的传播与反射、光的折射与光的像、光的干涉与衍射、光的波动理论以及光的偏振与光的色散。

理解这些基础知识对于深入学习光学以及应用到光学设备和技术中具有重要的意义。

大学物理第20章几何光学.ppt

大学物理第20章几何光学.ppt

心处.对于厚透镜,如果两侧的折射率相同,物方焦
距等于像方焦距.
21
三、成像公式
图中△PA1B1~△F1A2B2,△RB2A2~△F2H2A2
所以
f1 u
h/ h + h/
f2
h h + h/
两式相加得
f1 + f2 1
u
若系统两侧的折射率相同,此时有f1=f2= f 22
1+1 1
u f
注意式中u、、f 都是从相应的主平面算起的
一、光的直线传播定律
光在均匀介质中沿直线传播.
二、光的独立传播定律
不同的光线以不同的方向通过空间某一点时彼
此不发生影响.
三、折射定律和反射定律
1.折射定律
相对折射率 绝对折射率
sin i1 sin i2
n21
n2 n1
n cP
o
Q
i2 n2
N/ C
为光在介质中的速度
3
2.反射定律
A
N
B
7
n1
n2
n1
n2
F1
A
A
F2
物方焦点
像方焦点
物方焦距f1. u=f1, =∞
f1
n1 n2 n1
r
像方焦距f2. u=∞,=f2
f2
n2 n2 n1
r
1.焦距f1和f2可能是正数,也可能是负数 2. 一般地,n1≠n2,对于同一折射面, f1 ≠f2
f1 n1
f2 n2
8
3. 曲率半径 r↑→f1 ↑(f2↑),折射本领就越差 媒质的折射率与该侧焦距的比值来表示折射本 领,称为折射面的焦度,用Φ表示,
18

几何光学综合实验报告

几何光学综合实验报告

466.7
4
100.0
650.0
232.8
522.1
5
100.0
700.0
221.1
574.5
6
100.0
750.0
215.1
630.9
凸透镜焦距相关计算如下:
= 像屏位置 − 物屏位置
= 小像,透镜位置 − 大像透镜位置
由 =
2 −2
4
得:
表 2 凹透镜焦距
1 (mm)
97.384
2. 自组望远镜
表 3 望远镜数据表
1
物屏位置
(mm)
准直透镜位置
(mm)
物镜位置
(mm)
目镜位置
(mm)
100.0
200.0
811.9
1000.0
3. 自组望远镜并测量凹透镜焦距
表 4 自组望远镜并测量凹透镜焦距数据记录表
缩小实像位置 a(mm)
L2 位置 b(mm)
1
678.9
629.2
2
648.7
主光轴。其它通过透镜光心的直线皆为透镜的附光轴。
2.薄透镜成像公式:
在近轴光束的条件下,薄透镜成像公式为:
1

1
1


= +
…(1)
其中:
u:物距 v:像距 f:焦距
实物、实像时,u,v 为正;虚物、虚像时 u,v 为负。凸透镜 f 为正;凹透镜 f 为负。
3.位移法测凸透镜焦距:
当物体 AB 与像屏 M 的间距 > 4 时,透镜在 D 区间移动,可在屏上两次成像,一次成清晰放大的实像1 1,
同一高度,且连线(光轴)平行于导轨。

大学物理-11章:几何光学(1)

大学物理-11章:几何光学(1)

当透镜厚度与其曲率半径相比不可忽略不计时,称为厚透镜。
§3 薄透镜成像
二、薄透镜焦点和焦平面 焦点F,F'
像方焦平面:在近轴条件,过像方焦点F且与主轴垂直的平面。 物方焦平面:在近轴条件,过物方焦点F且与主轴垂直的平面。
P'
F
O
F'
O
P
特点
①所有光线等光程 ②过光心的光线不改变方向
§3 薄透镜成像
ic
arcsin
n2 n1
就不再有折射光线而光全部被反射,这种对光
线只有反射而无折射的现象叫全反射.
光学纤维—直径约为几微米的单根(多根)玻璃(透明塑料)纤维 原理:利用全反射规律
内层:n1 1.8 外层:n2 1.4
i2 ic
i2 ic 的光线在两层介质间多次
全反射从一端传到另一端
n0
i0
相当于光用相1 同B n的d时l 间在真
空中传播的路c 程A
为什么要引入光程的概念?
同频率的两束光波,分别在两种不同的介质中传播,在相同 的传播时间内,两光波所传播的几何路程不同:
t l1 l2 l1 l2
1 2 c / n1 c / n2
t c n1l1 n2l2
相同的时间内传播的几何路程不同,但光程相同。 借助光程,可将光在各种介质中走过的路程 折算为在真空中的路程,便于比较光在不同 介质中传播所需时间长短。
如果有另一点C’位于线外,则对应于C’,必可在 OO’线上找到它的垂足C’’
因为 AC' AC'' C' B C'' B AC'C' B AC''C'' B 而非极小值.

几何光学物理光学知识点

几何光学物理光学知识点

几何光学物理光学知识点光学是研究光的传播、反射、折射、干涉和衍射现象的学科。

几何光学是光学的一个分支,主要研究光的传播直线性质和光的反射、折射的基本规律。

以下是几何光学的一些重要的知识点。

1.光的传播直线性质:光的传播遵循直线传播定律,即光在一种介质中以直线传播,称为光的直线传播性质。

2.光的反射定律:光在光滑表面上发生反射时,入射角等于反射角。

3. 光的折射定律:光从一种介质进入另一种介质时,入射角、折射角和两种介质的折射率之间满足折射定律,即n1*sin(θ1)=n2*sin(θ2),其中n1和n2分别为两种介质的折射率,θ1和θ2分别为入射角和折射角。

4.球面镜和薄透镜的成像公式:对于球面镜,成像公式为1/f=1/v+1/u,其中f为焦距,v为像距,u为物距。

对于薄透镜,成像公式为1/f=1/v-1/u。

5.凸凹透镜成像规律:凸透镜成像规律是物体距离凸透镜距离为f的位置,像无论在哪里都在凸透镜的反面,正立,放大,属于放大系统。

凹透镜成像规律是物体距离凹透镜越远,像越近,倒立,缩小,属于缩小系统。

6.光的干涉现象:光的干涉是指两束或多束光波叠加形成明暗相间的干涉条纹。

干涉分为相干光的干涉和非相干光的干涉,其中相干光干涉又分为同一光源光的干涉和不同光源光的干涉。

7.杨氏双缝干涉实验:是杨振宁做的关于光的干涉实验,实验证明了光的波动性。

8.杨氏实验的解释:杨氏双缝干涉实验的解释是光波从两个缝中通过后分别传播到屏幕上的不同位置,根据光的相位差和干涉条件,形成干涉条纹。

9.光的衍射现象:光的衍射是指光波通过一个小孔或物体边缘时,发生弯曲和扩散的现象。

根据衍射的级数,分为一级衍射、二级衍射、多级衍射。

10.衍射光栅:是利用衍射现象进行光学分析和测量的重要工具。

光栅是一种周期性结构,通过多级衍射产生许多衍射光束,形成明暗相间的衍射条纹。

11.真实像和虚像:根据物体和像的位置关系,成像可以分为真实像和虚像。

大学物理--几何光学

大学物理--几何光学

B
B
B
ndl n dl
A
A
而由公理:两点间直线距离最短 A
B
dl 的极小值为直线AB A
所以光在均匀介质中沿直线传播
2.光的反射定律
Q点发出的光经 反射面Σ到达P点
P’是P点关于Σ 面的对称点。
P,Q,O三点 确定平面Π。
直线QP’与反射 面Σ交于O点。
nQO OP
则易知当i’=i时,QO + OP为光程最短的路径。
•直接用真空中的光速来计算光在不同介质中通过一定 几何路程所需要的时间。
t nl ct cc
•光程表示光在介质中通过真实路程所需时间内,在真空
中所能传播的路程。
分区均匀介质:
k
nili
i 1
,
t
c
1 c
k i 1
nili
连续介质:
ndl (l)
二、费马原理
1.表述:光在空间两定点间传播时,实际光程为一特 定的极值。
'
nl
nl '
n r 2 r s 2 2 r r s cos
n
r 2
s '
2
r
2
r s '
r cos
A
l
i -i` l '
P
-u
-u`
C
P` -s` O
-r
-s
对给定的物点,不同的入射点,对应着不同
的入射线和反射线,对应着不同的 。
由费马原理可知 :当 d PAP' 0 时,
2. 光的折射反射定律:
(1) 光的反射定律:反射线位于入射面内,反射线和 入射线分居法线两侧,反射角等于入射角,即

大学物理光学第一章答案

大学物理光学第一章答案

i1《1的条件下,取小角近似
于是有
sin i1 i1 ,cos i1 cos i2 1
x n 1 i1t n

12如图所示,在水中有两条平行线1和2,光线2射到水和平行平板玻璃的分界面上。
• •
(1)两光线射到空气中是否还平行? (2)如果光线1发生全反射,光线2能否进入空气? 解: 我们先推到一下光线经过几个平行界面的多层媒质时出射光线的方向。 因为界面都是平行的,所以光线在同一媒质中上界面的的折射角与下界面的入射角相等,如下图所示:
• • • • •
解得
S0 R
sin i sin u
S0 ' R
sin i ' sin u '
u u ' (i ' i)
又根据折射定律 进一步得到 由此可见,只在
n sin i n 'sin u
S0 n ' sin i ' R n sin u
以及角度关系
S0 '
f 如设该透镜在空气中和在水中的焦距分别为 f1 ,2 ,按上式有 f2 n 1 L f1 ( nL 1) n0 1.50 1 ( f1 10.0) f1 则 f2 3 1.50 1 4
4 f1 40cm

• •
• •
3用一曲率半径为20cm的球面玻璃和一平玻璃粘合成空气透镜,将其浸入水中(见图),设玻璃壁厚可忽略,水和空气的折射 率分别为4/3和1,求此透镜的焦距f。此透镜是会聚的还是发散的? 1 n 4 r 解:以 nL 1 ,0 3 , 20cm , r2 代入薄透镜焦距公式 f 1 n 1 1 ( L 1)( ) n0 r1 r2 算出该空气薄透镜(置于水中)的焦距为 f= - 80cm ,它是发散透镜。

大学物理第6章-几何光学

大学物理第6章-几何光学
n1 sin i n2 sin r
6.1.3 全反射
当光从光密介质入射到光疏介质的界面上,入射角 达到或大于
ic
arcsin
n2 n1
时,就会出现没有折射光
而只有反射光的现象,这
种现象称为全反射。 ic 称 为全反射临界角。
r
n2
i
ic ic
n1
6.2 光在平面上的反射和折射
2.1 平面反射成像 由反射定律可知,从点光源发出的所有光线,经平 面镜反射后,其反向延长线都交于一点 。
B
n
P
O
p
n'
C
P
p'
由折射定律和几何关系可以求出球面折射成像的 横 向放大率
m y' n p' y n' p
m 0 表示像是倒立的,m 0 表示像是正立的; m 1 表示成放大像, m 1 表示成缩小像。
例[6-2] 点光源位于一玻璃球心点左侧25cm处。已 知玻璃球半径是10cm,折射率为1.5,空气折射率 近似为1,求像点的位置。
虹膜
角膜 水状液
晶状体
视网膜 视神经
近视:远处物体成像在视网膜前面一点。 矫正近视的方法是配戴凹透镜,把无限远处 的物体成像在近视眼的远点处。
远视:远处物体成像在视网膜后面一点。 矫正远视的方法是配戴凸透镜,把明视距离 处的物体成像在远视眼的近点处。
物体对瞳孔中心的张角称为视角。物体在视网膜上 所成像的大小与视角有关,如果物体的视角非常小, 整个物体看上去就缩成了一个点。一般要求视角大 于1′,才能对物体不同部分进行分辨。
R1
R2
把物点放在主光轴上的一点,物点经透镜折射成的 像在无限远,这点称为物方焦点。 f 是物方焦距。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二.几何光学的基本定律 1. 光的直线传播定律:光在均匀介质中沿直线传播 2. 光的折射反射定律:
(1) 光的反射定律:反射线位于入射面内,反射线和 入射线分居法线两侧,反射角等于入射角,即
i1 i1
法线
i1 i1
分界面
(2) 光的折射定律:折射线位于入射面内,折射线与入 射线分居法线两侧,入射角的正弦与折射角的正弦之 比为一与入射角无关的常数,即
三.全反射
全反射:
光学纤维
i2
O
A1 i1
A2
A3
n2 x n1
只有反射而无折射的 现象称为全反射。
P
ic
全反射的条件:
y
1 n1 n2
1
2 i1 ic
n2 0 1 n2 其中: ic sin sin 90 sin n1 n1
应用:光学纤维
四.棱镜 棱镜是一种由多个平面界面组合而成的光学元件。 光通过棱镜时,产生两个或两个以上界面的连续折射, 传播方向发生偏折。最常用的棱镜是三棱镜。
即: i
i θ达最小值 0
i1
B
A
n1
n2
i2
最小偏向角: 0 2i1 A
此时,入射角 i 0 A 1
D

i
' 2
C
' i1
E
2
若此时三棱镜处于空气中 : 即 n1 = 1, 则由折射定律有
n2 sin i1 sin i 2
sin
0 A
2 sin A 2
2.应用
§3.单心光束 实像和虚像 一.单心光束、实像、虚像 1.发光点:只有几何位置而没有大小的发射光束的 光源。
若光线实际发自于某点,则称该点为实发光点;
若某点为诸光线反向延长线的交点,则该点称为 虚发光点。 2.单心光束:只有一个交点的光束,称单心光束。 此交点也称为光束的顶点。
发散单心光束
会聚单心光束
由费马原理可知 : 当
d PAP' d
0 时,
PAP' 取得极值(此处是恒定值). 由 d PAP' d n n 2r r s sin ' 2r s ' r sin 0 l l



r s s' r 1 1 1 s' s 化简有 : 0 即: ' ' ' l l l l rl l
n n

PAP
'
nl nl
'
r 2
r s 2 2 r r s cos s ' r 2 r s ' r cos A
2
r 2
l
P -u
C
i -i` l ' -u` P` -s` O -r
-s
对给定的物点,不同的入射点,对应着不同 的入射线和反射线,对应着不同的 。
则易知当i’=i时,QO + OP为光程最短的路径。
3.光的折射定律: A点发出的光线入射到两种介质的平面分界面上, 折射后到达B点。 ① 折射线在入射线和法线决定的平面内 如图:只需证明折射点C点在交线OO’上即可. 反证法:设有另一点C’位 于OO’线外,则在OO’上 必可找到其垂足C’’,
Y M A i1 O n1 Z n2 C A’ C‘ B‘ P O’ X

D
光轴
顶点
M
n d
Q -P O

h
r
C P´ Q´
D
符号规则:
★(1)线段:光轴方向上,以顶点为起点,沿光线
进行方向为正,反之为负;垂直方向上,主光轴上方 为正,反之为负。 (2)球面的曲率半径:球心在球面顶点的右方为 正,反之为负。(自左向右为正方向)
(3)物距:自参考点(球面顶点、薄透镜的光心)到 物点,沿光线方向为正,反之为负。 (4)象距:自参考点(球面顶点、薄透镜的光心) 到象点,沿光线方向为正,反之为负。 (5)物高和象高:物高和象高垂直于光轴,向上为 正,反之为负。
3.实像、虚像 当顶点为光束的发出点时,该顶点称为光源、物 点。
当单心光束经光学系统折射或反射后,仍能找 到一个顶点,称光束保持了其单心性。该顶点称为 象点。
实象:有实际光线会聚的象点。 虚象:无实际光线会聚的象点。 (光束反向延长线的交点)。
实 像
光学系统
P
P
P‘ P’
光学系统
虚 像
二、物空间与像空间
2 2
l
'
r r s s
2
r
2
s r 2 r s ' r
' 2 ' 2

r s r s '
' 1 1 1 s s 由: ' ' l r l l l
M
P
C D A B M’
平面镜是一个不破坏光束 单心性、理想成像的完善的光 学系统。并且也是唯一的一个。
P‘
二、光在平面介面上的折射 光束单心性的破坏
● O×
z
A1
i2
B1
i2+△i2 A2
B2
n2
P2 P1

P`
i1
n1 x
i1+△i1
P
y
折射后,光束的单 心性已被破坏!
介质n1中的发光点P发出单心光束经介面XOZ折射 后进入介质n2,现取其中一微元光束,在XOY平面内, 其折射光束的反向延长线交于P’点,并与OY轴交于P1、 P2两点。
2 2 2 2
Z O n1 n2
A
A’
x1 , y1
i1 C i2
M
x,0
B‘
P O’
X
n2 ( x2 x) y2
B x2 , y2
光程取极值,光程对x求一阶导数, 令其为0
d n (x x ) n ( x x) 0 dx (x x ) y ( x x) y
第 ?章 几何光学
本章主要内容有:几何光学的基本规 律、费马原理、与成象有关的基本概念、近轴成 象理论、眼睛及常用光学仪器的放大本领。
§1 几何光学的基本定律
一. 光源和光线
1. 光源
光源—任何发光物体:太阳、烛焰、钨丝白炽灯、 日光灯、高压水银荧光灯等 点光源—可看成几何上的点,只有空间位置无体积的光源 2. 光线和光束 光线—光能传播方向的几何线 光束—有一定几何关系的一些光线的集合
(1)必须是均匀介质,即同一介质的折射率处处
相等,折射率不是位置的函数。 (2)必须是各向同性介质,即光在介质中传播时 各个方向的折射率相等,折射率不是方向的函数。
(3)光强不能太强,否则巨大的光能量会使线 性叠加原理不再成立而出现非线性情况。
(4)光学元件的线度应比光的波长大得多,否
则不能把光束简化为光线。
•光程表示光在介质中通过真实路程所需时间内,在真 空中所能传播的路程。 k 1 k ni li , t ni li 分区均匀介质: c c i 1 i 1 连续介质:
ndl
(l )
二、费马原理 1.表述:光在空间两定点间传播时,实际光程为一特 定的极值。 2.表达式:
物空间
光 学 系 统
像空间
光 学 系 统
实物成实象
实物成虚实象
光 学 系 统
虚物成实象
§4 光在平面介面上的反射和折射
一般情况下,光在介面上反射和折射后,其单心性不再保持。但只要 满足适当的条件,可以近似地得到保持。接下来的两节,主要研究在不同 介面反射、折射时,光束单心性的保持情况。
一、光在平面上的反射 点光源P发出单心光束, 经平面镜反射后,形成一束发 散光束,其反向延长线交于一 点P‘,且与P点对称。

B
A
n dl 极值
B A
dl A n
B
或 : n dl 0
3.说明: 意义:费马原理是几何光学的基本原理,用以描 述光在空间两定点间的传播规律。 极值的含义:极小值,极大值,恒定值。一般情 况下,实际光程大多取极小值。
三. 由费马原理导出几何光学定律
1.直线传播定律: 在均匀介质中折射率为常数
B
ndl n dl
A A
B
B
而由公理:两点间直线距离最短
A
dl 的极小值为直线AB
A
B

所以光在均匀介质中沿直线传播
2.光的反射定律
Q点发出的光经 反射面Σ到达P点
P’ 是 P 点关于 Σ 面的对称点。 P,Q,O三点 确定平面Π。 直线QP’与反射 面Σ交于O点。
n QO OP
有 AC > AC , C B > C B
C‘’
i2
B
即光程ΔAC’B> ΔAC’’B 这与费马原理矛盾!
所以折射点在交线上,折射线在入射线和法线所决 定的平面内 ②折射线、入射线分居法线两侧 A、B、C点坐标如图,沿此方向入射必有 x x1 ACB光程为:
Y
n1 AC n2 CB n1 ( x x1 ) y1
§2 费马原理
费马原理是一个描述光线传播行为的原理. 一.光程 在均匀介质中,光程为光在介质中通过的几何 路程 l 与该介质的折射率 n 的乘积:
nl
c l n u c u
l ut u c
•直接用真空中的光速来计算光在不同介质中通过一定 几何路程所需要的时间。
相关文档
最新文档