圆周运动的应用
生活中的圆周运动

N
员受到的地球引力近似等于他在地面测得的 体重mg) F
F万
四、离心运动
当F合=mw2r时,物体做匀速圆周运动 当F合< mw2r时,物体逐渐远离圆心运动 当F合=0时,物体沿切线方向飞出 当F合> mw2r时,物体做逐渐靠近圆心的运动
生活中的圆周运动
一、火车转弯问题(水平面的圆周运动)
1、内外轨道一样高
N
F
2、实际应用中的处理
N
G
向心力由外侧轨道对车 轮轮缘的挤压力F提供
G
向心力由重力G和支持 力N的合力提供
当轨道平面与水平面之间的夹角为θ,转弯 半径为R时,质量为m的火车行驶速度v0多 大轨道才不受挤压?
FN
θБайду номын сангаас
F合
G
θ
L
h
二、拱形桥
1.质量为m的汽车在拱形桥上以速度v行驶,若桥面的圆弧半径
为R,试画出汽车受力分析图,并求出汽车通过桥的最高点时对
桥的压力.汽车的重力与汽车对桥的压力谁大?V越大,压力如 何变化?
FN
mg
二、拱形桥
2.当汽车通过凹形桥最低点时,汽车对桥的压力比汽车 的重力大还是小呢? FN
mg
三、航天器中的失重现象
做圆周运动的物体,在所受合外力突然消失 或不足以提供圆周运动所需向心力时,就做逐渐 远离圆心的运动,这种运动就叫离心运动。
四、离心现象的应用与危害
应用
危害
圆周运动规律及应用+答案

圆周运动的规律及其应用一、 匀速圆周运动的基本规律1.匀速圆周运动的定义:作 的物体,如果在相等时间内通过的 相等,则物体所作的运动就叫做匀速圆周运动。
2.匀速圆周运动是:速度 不变, 时刻改变的变速运动;是加速度 不变, 时刻改变的变加速运动。
3.描述匀速圆周运动的物理量 线速度:r Tr t s v ωπ===2,方向沿圆弧切线方向,描述物体运动快慢。
角速度:Tt πθω2== 描述物体转动的快慢。
转速n :每秒转动的圈数,与角速度关系n πω2= 向心加速度: v r rv a ωω===22描述速度方向变化快慢,其方向始终指向圆心。
向心力:向心力是按 命名的力,任何一个力或几个力的合力只要它的 是使物体产生 ,它就是物体所受的向心力.向心力的方向总与物体的运动方向 ,只改变线速度 ,不改变线速度 .==ma F v m r m rv m ωω==22。
二、 匀速圆周运动基本规律的应用【基础题】例1:上海锦江乐园新建的“摩天转轮”,它的直径达98m ,世界排名第五,游人乘坐时,转轮始终不停地匀速转动,每转一周用时25min.下列说法中正确的是 ( )A . 每时每刻,每个人受到的合力都不等于零 B. 每个乘客都在做加速度为零的匀速运动C. 乘客在乘坐过程中对座位的压力始终不变D. 在乘坐过程中每个乘客的线速度保持不变【同步练习】1.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是( )A .线速度B . 角速度C .向心加速度D .合外力2.质量一定的物体做匀速圆周运动时,如所需向心力增为原来的8倍,以下各种情况中可能的是( )A. 线速度和圆半径增大为原来的2倍B. 角速度和圆半径都增大为原来的2倍C. 周期和圆半径都增大为原来的2倍D. 频率和圆半径都增大为原来的2倍3.用细线将一个小球悬挂在车厢里,小球随车一起作匀速直线运动。
当突然刹车时,绳上的张力将( )A. 突然增大B. 突然减小C. 不变D. 究竟是增大还是减小,要由车厢刹车前的速度大小与刹车时的加速度大小来决定4.汽车驶过半径为R 的凸形桥面,要使它不至于从桥的顶端飞出,车速必须小于或等于( )A. 2RgB. RgC. Rg 2D. Rg 35.做匀速圆周运动的物体,圆半径为R ,向心加速度为a ,则以下关系式中不正确的是( )A. 线速度aR v =B. 角速度R a =ωC. 频率R a f π2=D. 周期aR T π2= 6.一位滑雪者连同他的滑雪板共70kg ,他沿着凹形的坡底运动时的速度是20m/s ,坡底的圆弧半径是50m ,试求他在坡底时对雪地的压力。
浅谈圆周运动在生活中的应用

浅谈圆周运动在生活中的应用圆周运动在生活中是很常见的,它的应用也很十分广泛。
首先,根据几何学,周长相同时,圆的面积比其他任何形状的面积都大,相同数量的材料要做成容积最大的东西,就是做成圆柱形。
自来水管、煤气管、下水道井盖等,就是这一原理的应用。
应用1. 圆周上的每个点到圆心的距离是一样的,这个原理被用到汽车轮胎上,使得汽车能够平稳行驶。
应用2. 从力学角度讲,圆形四周受力是一样的。
蒙古包就是应用这个原理,蒙古包的顶是天穹式,呈圆形,木架外边用白羊毛毡覆盖,因为他是圆形,立在草原上,大风雪阻力小,地震也不容易变形。
应用3. 汽车过拱形桥:也可看作圆周运动,桥对车的支持力为,又因为汽车对桥的压力和桥对汽车的支持力是一对作用力和反作用力,大小相等,所以压力大小也相等。
汽车过凹形桥:也可看作圆周运动,桥对车的支持力为,因为汽车对桥的压力和桥对汽车的支持力是一对作用力和反作用力,所以压力大小也相等。
应用4. 航天器中的失重现象:有人把航天器失重的原因说成是它离地球太远,从而摆脱了地球引力,这是错误的。
正是由于地球引力的存在,才使航天器连同其他的乘员有可能做环绕地球的圆周运动。
这里的分析仅仅针对圆轨道而言。
其实任何关闭了发动机,又不受阻力的飞行器的内部,都是一个完全失重的环境。
例如向空中任何方向抛出的容器,其中的所有物体都处于失重状态。
应用5. 游乐场的摩天轮的离心运动:做圆周运动的物体,由于惯性,总有沿着切线方向飞去的倾向。
但它没有飞去,这是因为向心力在“拉着”它,使它与圆心的距离保持不变。
一旦受力突然消失,物体就沿切线方向飞去。
除了向心力突然消失这种情况,在合力不足以提供所需的向心力时,物体虽然不会沿切线飞去,也会逐渐远离圆心,称为离心运动。
圆周运动的实例分析

圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
高一物理圆周运动的相关知识点

高一物理圆周运动的相关知识点圆周运动是物理学中的重要内容之一,它有着广泛的应用领域。
本文将介绍高一物理学习中与圆周运动相关的知识点,包括圆周运动的基本概念、运动规律以及一些实际应用。
一、圆周运动的基本概念圆周运动是指物体沿着固定半径的圆周轨道运动的一种形式。
在圆周运动中,物体所受到的合力始终指向轴心,使得物体保持在圆周上匀速运动。
这种运动可以用一些特殊的物理量来描述。
1. 角度角度是描述圆周运动位置关系的一个重要概念。
我们常用角度来衡量物体在圆周上所处的位置。
一圈对应的角度是360度,当物体运动一半圆周时,所对应的角度是180度。
2. 弧长弧长是圆周上两个位置之间的路径距离。
弧长与角度之间存在一定的关系,公式为:弧长 = 半径 ×弧度。
其中弧度是指圆周上的一个角度对应的弧长与半径的比值。
3. 角速度和角加速度角速度是指单位时间内物体运动的角度,通常用符号ω表示,公式为:ω = Δθ / Δt。
角加速度是指单位时间内的角速度变化率,通常用符号α表示,公式为:α = Δω / Δt。
二、圆周运动的运动规律圆周运动遵循一些基本的运动规律,这些规律对于解析和计算圆周运动的物理量十分重要。
1. 向心加速度在圆周运动中,物体所受到的合力指向轴心,这个合力会产生向心加速度。
向心加速度的大小可以用公式 ac = v² / R 来计算,其中v为物体的速度,R为圆周半径。
2. 牛顿第二定律在圆周运动中的应用牛顿第二定律 F = ma 在圆周运动中也适用。
对于处于圆周运动的物体,需要将合力分解为径向力和切向力两个分量来计算。
3. 圆周运动的力学能量在圆周运动中,存在着势能和动能的转换。
当物体沿圆周运动时,可能会发生重力势能转化为动能的情况。
三、圆周运动的实际应用圆周运动在日常生活和工程领域都有着广泛的应用。
1. 离心力与离心机离心力是圆周运动中的一种力,我们常见的离心机就是利用离心力分离混合物中不同密度成分的设备。
物体的圆周运动

物体的圆周运动物体的圆周运动是一种特殊的运动形式,它在物理学领域中有着广泛的应用和研究。
本文将介绍物体的圆周运动的原理和相关概念,并探讨其应用和意义。
一、圆周运动的原理物体的圆周运动是指物体在一个平面上以一定半径的圆轨道做匀速运动的现象。
圆周运动的原理可以通过向心力和离心力来解释。
1. 向心力当物体在圆轨道上运动时,会受到向心力的作用。
向心力的方向指向圆心,大小与物体的质量、圆周运动的半径和物体的线速度有关。
向心力的作用使得物体始终保持在圆轨道上,并向圆心靠近。
2. 离心力离心力是指物体在圆周运动中的超越向心力的力。
它的方向指向远离圆心的方向,与向心力方向相反。
离心力的大小与向心力大小相等,但方向相反。
离心力的作用使得物体始终倾向于离开圆心。
二、圆周运动的相关概念在理解物体的圆周运动时,需要了解一些相关的概念,如线速度、角速度和周期。
1. 线速度线速度是指物体在圆周运动中沿着圆轨道的路径长度与所花费的时间之比。
线速度的大小与物体运动的半径和角速度有关。
线速度可以通过公式v = rω来计算,其中v表示线速度,r表示半径,ω表示角速度。
2. 角速度角速度是指物体在圆周运动中角度增量与所花费的时间之比。
角速度的大小与物体运动周期和角度增量有关。
角速度的单位是弧度/秒。
角速度可以通过公式ω = Δθ/Δt来计算,其中ω表示角速度,Δθ表示角度增量,Δt表示时间。
3. 周期周期是指物体完成一次圆周运动所需要的时间。
周期可以通过公式T = 2π/ω来计算,其中T表示周期,π表示圆周率,ω表示角速度。
三、圆周运动的应用和意义圆周运动在现实生活和科学研究中有着广泛的应用和意义。
1. 行星公转行星围绕太阳做圆周运动的规律是天体力学中的一个重要问题。
研究行星的圆周运动可以揭示宇宙的结构和演化规律。
2. 粒子加速器粒子加速器利用向心力原理,将高能粒子沿着圆轨道进行加速运动,以便进行粒子物理实验。
圆周运动在粒子加速器的设计和操作中起着重要作用。
圆周运动轨迹方程及其应用

圆周运动轨迹方程及其应用圆周运动是一种最基本的运动方式之一,它的轨迹是一个圆形。
许多物理学和工程学领域都会涉及到圆周运动,而这些领域都需要对圆周运动的轨迹方程及其应用有深入的认识。
一、圆周运动的基本概念圆周运动指的是物体在圆形轨道上做匀速直线运动的一种运动方式。
在圆周运动中,物体的位移、速度和加速度都发生了变化。
位移是指物体从初始位置到终止位置所经过的路程,它可以用一个矢量表示。
速度是指物体在单位时间内沿着轨道移动的路程,它也可以用一个矢量表示。
加速度是指物体在单位时间内速度的变化率,它可以用一个矢量表示。
二、圆周运动轨迹方程的推导对于一个半径为r的圆,在圆心处建立坐标系,可以推导出圆周运动的轨迹方程。
假设物体在运动过程中沿圆周方向与x轴正半轴之间的夹角为θ,则物体的位置可以表示为:x=r*cosθy=r*sinθ上式就是圆周运动的轨迹方程。
这个方程非常重要,因为它可以描述物体在圆周运动中的位置。
三、圆周运动的速度与加速度由于圆周运动的轨迹是一个圆形,所以物体的速度和加速度也会随着位置的变化而变化。
速度可以用位移与时间的比值来计算,即V=dS/dt。
对于圆周运动,物体在任意位置的速度大小都是相同的,因为它的速度是一个常量。
加速度可以用速度与时间的比值来计算,即A=dV/dt。
对于圆周运动,物体在圆形轨道上的加速度是一个向心加速度,它的大小可以用下式计算:a=v^2/r上式中,v代表速度大小,r代表圆形轨道的半径。
向心加速度的方向指向圆心,所以它也被称为离心加速度。
四、圆周运动的应用圆周运动的轨迹方程和速度、加速度的计算公式在许多领域中都有广泛的应用。
在物理学中,圆周运动常常涉及到匀速转动和重力运动等问题。
物理学家可以通过对圆周运动的分析来解决这些问题。
在工程学中,圆周运动常常涉及到机器人的运动轨迹控制、磁盘驱动器的设计等。
工程师可以通过对圆周运动的轨迹方程和速度、加速度的计算公式的应用来解决这些问题。
圆周运动的应用领域与实例分析

圆周运动的应用领域与实例分析圆周运动是指物体在规定中心进行的匀速旋转运动,是自然界中常见且广泛应用的一种运动形式。
圆周运动在许多领域中发挥着重要的作用,下面将从物理学、机械工程和天文学等角度对其应用领域与实例进行详细分析。
一、物理学中的应用圆周运动在物理学中是一个基础概念,在力学、电磁学等学科中有着广泛的应用。
其中,最典型的应用是在力学中的离心力和向心加速度的研究。
离心力是指在圆周运动中由于惯性而产生的偏离轨迹的力,它的大小与物体质量和角速度成正比。
离心力的应用非常广泛,例如在离心机中,离心力可用于分离混合物中的不同组分。
离心机通过不同物质的质量差异以及离心力的作用,使得混合物中的成分分离出来,从而在生物科学、化学和制药等领域发挥了重要的作用。
向心加速度则是指在圆周运动中,物体向圆心靠拢时所受到的加速度。
向心加速度是圆周运动的基本性质,它决定了物体在圆周运动中的速度和轨迹。
向心加速度的研究在机械工程中有着广泛的应用,例如在离心泵中,向心加速度可以用来增加液体的压力,并将其输送到较远的地方。
二、机械工程中的应用圆周运动在机械工程中有许多应用领域,如轮胎的旋转、轴承的转动和摩擦等。
其中,最突出的应用是摆线与齿轮的设计与制造。
摆线是一种特殊的圆周运动,其轨迹为与定长线段接触的轮廓线。
摆线具有良好的传动性能和高效的运动特性,因此在工业制造中广泛应用于齿轮设计、漏斗锥形的设计等领域。
例如,在传动装置中,摆线齿轮的设计可以实现平稳的传递运动,提高传动效率。
另外,齿轮的设计与制造也是机械工程中圆周运动的重要应用。
齿轮的主要作用是将电动机的高速旋转转换为较低速度但更大的扭矩输出,广泛应用于各种机械设备中。
例如,在汽车行业中,齿轮传动系统通过将发动机的高速旋转转换为车轮的运动,实现汽车的前进和倒退。
三、天文学中的应用圆周运动在天文学中也有许多重要的应用,如行星轨道、恒星运动和星际空间探索等。
其中,行星轨道的研究和预测是最广泛的应用之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省昌乐一中高二复习学案编制:
审核:审批:班级:姓名:评价:编号:
第五章曲线运动专题三圆周运动
【课前延伸】
1、在一段半径为R的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽车拐弯时的安全速度是()
2、一辆600千克小车通过半径是12.1米的凸形桥,桥最多能承受4000N 的压力,为了安全起见,则小车在最高点处的速度有何要求?
【自主学习】
1、为什么所建的桥大多是凸形桥而没有凹形桥?
2、汽车转弯为什么要减速?
【课内探究】
例1:汽车以一定的速度在一宽阔水平路上匀速直线行驶,突然发现正前方有一堵长墙,为了尽可能避免碰到墙壁,司机紧急刹车好,还是马上转弯好?试定量分析并说明道理(“马上转弯”可近似地看作匀速圆周运动). 变式训练:一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为L(L<R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过多少?
例2:某兴趣小组设计了如图所示的玩具轨道,其中“2008”四个等高数字
用内壁光滑的薄壁细圆管弯成,固定在竖直平面内(所有数字均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切。
弹射装置将一个小物体(可视为质点)以v a=5m/s的水平初速度由a点弹出,从b点进入轨道,依次经过“8002”后从p点水平抛出。
小物体与地面ab段间的动摩擦因数μ=0.3,不计其它机械能损失。
已知ab段长L=1. 5m,数字“0”的半径R=0.2m,小物体质量m=0.01kg,g=10m/s2。
求:
(1)小物体从p点抛出后的水平射程。
(2)小物体经过数字“0”的最高点时管道对小物体作用力的大小和方向。
【当堂检测】
1. 如图所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 与转台中心的距离分别为r 、1.5 r .设本题中的最大静摩擦力等于滑动摩擦力,则下列说法正确的是 ( )
A .
B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为
3 C .转台的角速度一定满足关系r
g
μω≤
D .转台的角速度一定满足关系
2. 如图所示,竖直平面内有一光滑圆弧轨道,其半径为R 。
平台与轨道
的最高点等高,一小球从平台边缘的A 处水平射出,恰能沿圆弧轨道上的P 点的切线方向进入轨道内侧,轨道半径OP 与竖直线的夹角为45°。
试求:
(1)小球从平台上的A 点射出时的速度v o ;
(2)小球从平台上的射出点A 到圆轨道入射点P 之间的距离L; (3)球能否沿轨道通过圆弧的最高点?请说明理由。
【课后拓展】
(2010重庆高考)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞离水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为4
3d ,重力加速度为g .忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小
1v ,和球落地时的速度大小2v .
(2)问绳能承受的最大拉力多大?
(3)改变绳长,使球重复上述运动。
若绳仍在球运动到最低点时断掉,
要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?。