轴对称与旋转知识点小结

合集下载

旋转平移和轴对称的知识点

旋转平移和轴对称的知识点

旋转平移和轴对称的知识点
嘿,朋友!今天咱来好好唠唠旋转、平移和轴对称这些超有意思的知识点!
先说旋转吧,你就想象一下,一个东西像个小陀螺一样围着一个中心点转圈,这就是旋转啦!比如说,家里的电风扇在呼呼转,那就是在做旋转运动呀!旋转可是有角度的哦,转多少度可是很关键的呢!
平移呢,就好像一个小玩具车在直直地往前跑,没有拐弯,也没有转圈,就是平平地移动。

就像你在操场上笔直地向前走,这就是平移呀!教室里的桌子从这边挪到那边,也是平移呢!
接下来就是轴对称啦!哎呀呀,这就像是有个神奇的镜子,能把一个东西分成两边,两边完全对称,可神奇啦!你看,蝴蝶的翅膀不就是轴对称的嘛!
旋转、平移和轴对称在生活中可到处都是呢!它们可不只是书本上的知识哟!你想想看,那些漂亮的图案、建筑,不都有它们的功劳嘛!它们就像隐藏在生活中的小魔法,让一切变得更有趣、更有秩序!难道不是吗?所以呀,好好了解它们,会发现好多好玩的东西呢!。

2024年初二数学期末考试轴对称知识点总结(二篇)

2024年初二数学期末考试轴对称知识点总结(二篇)

2024年初二数学期末考试轴对称知识点总结初中数学中,轴对称是一个重要的几何概念。

轴对称是指一个图形或者一个物体能够与某条轴线对称,即图形或物体的一部分关于轴线对称地出现在另一部分的相对位置。

轴对称的性质是常用的,它在初中数学的课本中会有详细的介绍和讲解。

以下是对初二数学期末考试轴对称知识点的总结:一、轴对称的定义和性质:1. 轴对称:如果一个图形、物体或者函数,相对于某条轴线可以对称地出现,那么就称这个图形、物体或者函数是轴对称的。

2. 轴线:轴线是指对称图形相对出现的那根线。

3. 轴对称的性质:轴对称的图形具有以下性质:- 轴线上的点不动。

- 对称轴的两侧对称,即轴线上的一点与该图形对称轴另一侧的点,关于对称轴中点对称。

- 对称轴的两侧的点与对称轴上的一点对称关系。

二、判断轴对称的方法:1. 观察法:通过观察图形是否关于某条线对称,可以判断图形是否轴对称。

如果图形可以重叠折叠,使得一个部分与另一个部分完全重合,那么这个图形就是轴对称的。

2. 对称线法:使用直尺将图形的两个对称部分的最近相对线段连接起来,如果这条线段与直尺重合,那么这条线段就是图形的对称线。

3. 折叠法:将纸张上的图形剪下来,然后将图形沿着一个假想的轴线折叠起来,如果两个对称的部分完全重合,那么这个图形就是轴对称的。

三、轴对称的常见图形:1. 一阶图形:一个点、一条线段、一条射线、一个无面积的抽象图形等。

2. 二阶图形:矩形、正方形、菱形、圆、椭圆等。

3. 三阶图形:五角星、六边形等。

四、轴对称和平移、旋转的关系:1. 平移:平移是图形在平面上沿水平方向或者垂直方向移动的变换,平移不改变图形的形状和大小,也不改变图形的轴对称性。

2. 旋转:旋转是图形围绕一个点或者直线进行旋转的变换,旋转不改变图形的形状和大小,但可能改变图形的轴对称性。

有些图形在旋转一定角度之后仍然保持轴对称,有些则不再保持轴对称。

五、轴对称的应用:1. 填充对称:将一个图形沿着对称轴镜像复制,用来填充平面空间。

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

轴对称、平移与旋转知识点章末重难点题型(举一反三)

轴对称、平移与旋转知识点章末重难点题型(举一反三)

专题1.5 轴对称、平移与旋转章末重难点题型【考点1 判断轴对称图形】【方法点拨】掌握轴对称图形的概念:把一个图形沿着某一条直线翻折,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。

注意:理解轴对称图形的定义应注意两点:(1)轴对称图形是一个图形,反映的是这个图形自身的性质。

(2)符合要求的“某条直线”可能不止一条,但至少要有一条。

【例1】(2019春•相城区期中)下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【答案】解:A、是轴对称图形,不合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.【变式1-1】(2018秋•思明区校级期中)如图,四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【答案】解:A、B、C不是轴对称图形,D是轴对称图形,故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【变式1-2】(2018秋•开封期中)下列四个图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【答案】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误;故选:C.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.【变式1-3】(2018秋•宜兴市校级期中)下列图形中,不是轴对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形的概念求解.【答案】解:只有第1个不是轴对称图形.故选:A.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.【考点2 轴对称性质的应用】【方法点拨】掌握轴对称的性质:1.成轴对称的两个图形全等。

初中数学 轴对称图形和旋转有什么关系

初中数学 轴对称图形和旋转有什么关系

初中数学轴对称图形和旋转有什么关系轴对称图形和旋转在数学中有密切的关系。

旋转是指以某个点为中心,按照一定的角度将图形绕着这个点旋转。

下面是轴对称图形和旋转之间的关系:1. 旋转不改变轴对称图形的对称性质:旋转操作不改变图形的形状、大小和方向,因此它也不会改变轴对称图形的对称性质。

如果一个图形是轴对称的,那么它的旋转后仍然是轴对称的。

这意味着,如果我们对一个轴对称图形进行旋转操作,它的对称轴位置和方向会随着旋转而改变。

2. 旋转改变轴对称图形的方向:通过旋转操作,我们可以改变轴对称图形的方向。

旋转可以使轴对称图形沿着旋转中心旋转一定的角度,从而改变图形的方向。

旋转的角度和方向决定了轴对称图形旋转后的新位置和相对关系。

3. 旋转构造新的轴对称图形:通过旋转操作,我们可以构造出新的轴对称图形。

例如,如果一个图形是轴对称的,那么对它进行旋转操作后,旋转后的图形也是轴对称的,但它的对称轴方向和位置发生了变化。

通过不同的旋转操作,我们可以得到各种不同方向的轴对称图形。

4. 旋转可以帮助解决轴对称图形的问题:在解决与轴对称图形相关的问题时,我们经常使用旋转操作来帮助我们更好地理解和解决问题。

通过旋转,我们可以改变轴对称图形的方向和位置,从而更好地研究和分析问题。

旋转操作还可以帮助我们发现图形的对称性质和规律。

总之,轴对称图形和旋转之间有密切的关系。

旋转操作不改变轴对称图形的形状、大小和对称性质,但可以改变图形的方向和位置。

通过旋转操作,我们可以构造新的轴对称图形,并且可以利用旋转操作帮助解决轴对称图形的问题。

希望以上内容能够帮助你理解轴对称图形和旋转之间的关系。

如果你还有其他问题,请随时提问。

《轴对称》知识点总结及章节检测解析

《轴对称》知识点总结及章节检测解析

《轴对称》知识点总结及章节检测解析一、知识点总结:1.轴对称的定义:如果一个图形经过其中一条直线折叠后,能够与自身完全重合,则这条直线被称为这个图形的轴对称线,这个图形是轴对称的。

2.旋转对称:如果一个图形能够围绕其中一点旋转一定的角度后,能够与自身完全重合,则这个图形是旋转对称的。

3.轴对称图形的特点:轴对称图形的特点是,对称轴两侧的各点关于对称轴对应,即对称轴上的一点与对应点互为图形的对称点。

4.轴对称的判定方法:判断一个图形是否为轴对称图形,可以按照以下方式进行判定:(1)观察是否能找到一个或多个对称轴;(2)沿对称轴将图形折叠,看是否能够重合。

5.制作轴对称图形:制作一个轴对称图形可按照以下步骤进行:(1)在纸上画出一条轴对称线;(2)沿着对称线将图形的一边折叠;(3)检查折叠后的图形与未折叠的图形是否重合,如重合则完成。

二、章节检测解析:以小学三年级数学教材为例,进行《轴对称》的章节检测解析。

教材章节:第三章图形与设计1.知识点掌握情况:首先,学生需要了解轴对称的概念、特点和判定方法,并能够制作轴对称图形。

2.基础练习题:对于基础的练习题,要求学生绘制给定图形的对称线,并判断是否为轴对称图形。

3.综合应用题:在综合应用题中,要求学生设计自己的轴对称图形,并描述其特点。

4.拓展思考题:为了拓展学生的思维,可以提出一些拓展思考题,如“如何判断一个图形是否为旋转对称图形”、“如何找到一个图形的所有对称轴”等。

总结:通过针对《轴对称》这一章节的检测解析,学生可以对轴对称的知识点进行复习和巩固。

同时,综合应用题和拓展思考题能够提高学生的思维能力和创造力。

轴对称平移旋转定义总结

轴对称平移旋转定义总结

一、轴对称1、轴对称图形概念轴对称图形:一个图形如果沿某条直线对折,对折后的两部分能完全重合,那么就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴.注:错误!对称轴是一条直线,不是线段,也不是射线.错误!一个轴对称图形的对称轴可以有一条,也可以有多条.错误!判断图形是不是轴对称图形的方法是折叠法,关键是看对折后的两部分能否完全重合.2、轴对称的概念把一个图形沿着某一条线直线翻折过去,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形的对应点叫作对称点.注:错误!对应点指两个图形重合时互相重合的点.错误!成轴对称的两个图形能够完全重合,这两个图形的形状和大小是相同的.错误!成轴对称是指两个图形某条直线成轴对称,只有一条对称轴.3、轴对称图形的性质轴对称图形或成轴对称的两个图形沿对称轴对折后的两部分是完全重合的,所以轴对称图形或成轴对称的两个图形的对应线段对折后重合的线段相等,对应角对折后重合的角相等.注:错误!轴对称图形或成轴对称的两个图形,如果对应线段或对应线段的延长线相交,那么交点在对称轴上.对应点的连线垂直于对称轴并且被对称轴分成相等的两部分.错误!成轴对称的两个图形的面积也相等.4、线段和角的轴对称性错误!线段是轴对称图形.把垂直并且平分一条线段的直线称为这条线段的垂直平分线.错误!角是轴对称图形,对称轴是它的角平分线所在的直线注:角平分线是一条射线,三角形的角平分线是一条线段,而角是轴对称图形,对称轴是角的平分线所在的直线.5、画图形的对称轴图形对称轴画法:错误!找出轴对称图形的任意一组对称点;错误!连接这组对称点;错误!画出对称点所连接线段的垂直平分线,这条垂直平分线就是该轴对称图形的对称轴.轴对称图形的性质:如果一个图形是轴对称图形,那么连接对称点的线段的垂直平分线就是该图形的对称轴.注:错误!画出轴对称图形的对称轴,关键是选取一些对称点如线段的端点、角的顶点,然后画对称点连线的垂直平分线.错误!轴对称图形的对称轴是一条直线,有时不只一条,甚至有无数条,如圆.6、画轴对称图形错误!先观察已知图形,并确定能代表已知图形的关键点;错误!分别作出这些关键点对称轴的对称点;错误!根据已知图形连接这些对称点,即可得到与已知图形成轴对称图形.二、平移1、平移的概念平面图形在平面上沿着一定的方向移动一定的距离,这种图形的平行移动称为平移;图形上每个点都沿同一个方向移动相同的距离;平移的方向:任意一对对应点从始点到终点的方向都可以看成平移的方向.平移的距离:连接任意一对对应点的线段长度都可以表示平移的距离对应点:平移前后,互相重合的点称为对称点;对应线段:平移前后,互相重合的线段称为对应线段;对应角:平移前后,互相重合的角称为对应角.注:错误!平移的前提示图形沿直线运动,而不是图形在曲面上沿曲线运动.错误!平移由平移的方向和距离决定.错误!平移可以是左右平移,也可以是上下平移,还可以按任意指定的方向对图形进行平移.错误!找平移图形的对应元素的关键是找对应点,由对应点确定对应角、对应线段.2、平移的特征平移特征:平移前后,图形的形状和大小不变,只是位置发生变化.对应点:对应点所连的线段平行或在同一条直线上且相等.对应角:对应角相等,对应角的两边分别平行或共线且方向一致.对应线段:对应线段平行或共线且相等.注:错误!对应线段、对应角必须在平移前后的两个图形中去找.错误!平移过程中,对应线段有可能在同一条直线上,对应点的连线也有可能在同一条直线上.错误!对应点所连的线段与对应线段不同.3、平移作图平移作图条件:1图形原来的位置;2平移方向;3平移距离平移步骤:1分析题目要求,找出平移方向和平移距离;2分析图形,找出构成图形的关键点;3沿一定的方向与距离平移各个关键点,确定关键点的对应点; 4顺次连接所作的各个对应点,并标上相应字母.5写出结论注:错误!图形上的每个点、每条线段平移的方向与距离一致的,所以确定图形的平移方向与距离,只要选择容易确定的一对对应点或一对对应线段即可.错误!作图过程要细心、认真,使作出的图形美观、正确.。

初中数学轴对称知识点总结归纳

初中数学轴对称知识点总结归纳

初中数学轴对称知识点总结归纳轴对称是几何学中的一个重要概念,关于轴对称的知识在初中数学中有着广泛的应用。

下面是初中数学轴对称的知识点总结归纳。

一、轴对称的定义及性质轴对称即物体围绕条线旋转180度后仍然与原来位置重合。

1.定义:轴对称是指平面内的点、线、图形等围绕条线旋转180度后仍然与原来位置重合。

2.性质:a.旋转中心即轴对称的轴上的任意点保持不动。

b.旋转中心与轴对称的物体上的任意点之间的距离保持不变。

二、轴对称的判断判断一个图形是否轴对称的方法有以下几种:1.观察法:观察图形是否看起来关于条线对称。

2.折叠法:将图形沿着条疑似对称轴对折,观察是否能够将两部分完全重合。

3.旋转法:将图形围绕一个疑似对称轴旋转180度,观察是否与原来位置完全重合。

4.对称性质法:观察图形是否具有对称性质,例如左右对称、上下对称等。

三、轴对称的应用1.确定轴对称图形:a.线段的中点是线段轴对称的轴。

b.两个且只有两个端点在同一直线上的线段是轴对称的轴。

c.两条平行线是轴对称的轴。

d.三个且只有三个顶点都在同一直线上的三角形是轴对称的轴。

e.按顺时针方向给出的相邻边相等的凸多边形是轴对称的轴。

f.所有与自己相似的图形都是轴对称的轴。

2.轴对称图形的性质:a.轴对称图形是左右对称的,即图形的左半部分和右半部分完全一样。

b.轴对称图形的最小单位即轴上的点称为轴对称图形的旋转中心。

c.轴对称图形的每个点的两边都有另一个对称点。

d.轴对称图形上的点与旋转中心距离相等的点是该图形上的点与旋转中心的对称点。

3.构造轴对称图形:a.已知轴对称图形的一部分,可以使用对称性质构造其他部分。

b.可以将点在轴上折叠,或者将线段、角度在轴上旋转,得到图形的对称部分。

四、轴对称图形的操作1.旋转:将轴对称的物体沿着轴旋转180度,使得物体的每个点都与轴上的对称点相重合。

2.平移:将轴对称的物体沿着与轴垂直的平行线平移,使得物体与原来位置的对称关系保持不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称与旋转知识点小

标准化工作室编码[XX968T-XX89628-XJ668-XT689N]
第五章轴对称与旋转知识点小结
一、轴对称与轴对称图形两者之间的联系
相同点:都是关于某一条直线折叠,两部分重合
不同点:轴对称是两个图形,轴对称图形是一个图形
联系:1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。

2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线轴对称。

二、轴对称变换的性质
1、轴对称变换不改变图形的形状和大小。

图形经过轴对称变换,长度、角度和面积等都不改变。

2、成轴对称的两个图形中,对应点的连线被对称轴垂直平分。

注:如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

三、旋转的性质
1、一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角。

2、旋转不改变图形的形状和大小。

只改变位置。

四、旋转的三要素:旋转中心、旋转方向、旋转角度。

五、找旋转角的三个步骤:
1、找出对应点
2、连接对应点和旋转中心
3、对应点和旋转中心连线的夹角即为旋转角。

相关文档
最新文档