实验二 正弦脉宽调制(SPWM)变频调速实验

合集下载

电机控制实验二:正弦脉宽调制(SPWM)变频调速系统

电机控制实验二:正弦脉宽调制(SPWM)变频调速系统

课程名称:电机控制指导老师:成绩:实验名称:正弦脉宽调制(SPWM)变频调速系统实验类型:同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.加深理解自然采样法生成SPWM波的机理和过程2.熟悉SPWM变频调速系统中直流回路、逆变桥功率器件和微机控制电路之间的连接3.了解SPWM变频器运行参数和特性二、实验内容和原理1.实验内容(1)用SPWM变频器驱动三相异步电动机实现调速运行(2)改变调制方式,观察变频器调制波形、不同负载时的电动机端部电压、线电流波形(3)改变V/f曲线,观察版聘妻在不同低频补偿条件下的低速运行情况(4)改变变频调速系统的加速时间,观察系统的加减速过程2.实验原理SPWM变频调速系统主要由不控整流桥、电容滤波、直流环节电流采样(串采样电阻)、MOSFET逆变桥、MOSFET驱动电路、8031单片微机数字控制情况、控制键盘与运行显示等环节组成。

实验系统的组成如下图所示:本实验系统的性能指标如下:(1)运行频率f1可在1~60Hz的范围内连续可调(2)调制方式①同步调制:调制比F=3~123可变,步增量为3;②异步调制:载波频率f0=0.5~8kHZ可变,步增量为0.5kHZ;③混合调制:系统自动确定各运行频率下的调制比。

控制方式和运行显示控制图如下:SPWM变频器控制键盘与运行显示面板图(3)V/f曲线有4条V/f曲线可供选择,以满足不同的低频电压补偿要求,曲线如下图所示:曲线1:f1=1~50Hz, U1/f1=220/50=4.4V/Hzf1=51~60Hz, U1=220V曲线2:f1=1~5Hz, U1=21.5Vf1=6~50Hz, U1/f1=220/50=4.4V/Hzf1=51~60Hz, U1=220V曲线3:f1=1~8Hz, U1=34.5Vf1=9~50Hz, U1/f1=220/50=4.4V/Hzf1=51~60Hz, U1=220V曲线4:f1=1~10Hz, U1=43Vf1=11~50Hz, U1/f1=220/50=4.4V/Hzf1=51~60Hz, U1=220V(4)加速时间可在1~60s区间设定电机从静止加速到额定速度所需要的时间,10s以下步增量为1s,10s到60s步增量为5s。

正弦脉宽调制(SPWM)控制

正弦脉宽调制(SPWM)控制

正弦脉宽调制(SPWM)控制2010-09-18 ylw527+关注献花(4)为了使变压变频器输出交流电压得波形近似为正弦波,使电动机得输出转矩平稳,从而获得优秀得工作性能,现代通用变压变频器中得逆变器都就是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制得,只有在全控器件尚未能及得特大容量时才采用晶闸管变频器。

应用最早而且作为pwm控制基础得就是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。

图3-1与正弦波等效得等宽不等幅矩形脉冲波序列3、1正弦脉宽调制原理一个连续函数就是可以用无限多个离散函数逼近或替代得,因而可以设想用多个不同幅值得矩形脉冲波来替代正弦波,如图3-1所示。

图中,在一个正弦半波上分割出多个等宽不等幅得波形(假设分出得波形数目n=12),如果每一个矩形波得面积都与相应时间段内正弦波得面积相等,则这一系列矩形波得合成面积就等于正弦波得面积,也即有等效得作用。

为了提高等效得精度,矩形波得个数越多越好,显然,矩形波得数目受到开关器件允许开关频率得限制。

在通用变频器采用得交-直-交变频装置中,前级整流器就是不可控得,给逆变器供电得就是直流电源,其幅值恒定。

从这点出发,设想把上述一系列等宽不等幅得矩形波用一系列等幅不等宽得矩形脉冲波来替代(见图3-2),只要每个脉冲波得面积都相等,也应该能实现与正弦波等效得功能,称作正弦脉宽调制(spwm)波形。

例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分得正弦曲线与横轴所包围得面积都用一个与此面积相等得矩形脉冲来代替,矩形脉冲得幅值不变,各脉冲得中点与正弦波每一等分得中点相重合,这样就形成spwm波形。

同样,正弦波得负半周也可用相同得方法与一系列负脉冲波等效。

这种正弦波正、负半周分别用正、负脉冲等效得spwm 波形称作单极式spwm。

正弦脉宽调制SPWM及其控制方法

正弦脉宽调制SPWM及其控制方法
正弦脉宽调制spwm及其控制方法
$number {01}
目 录
• SPWM简介 • SPWM原理 • SPWM控制策略 • SPWM实现方法 • SPWM性能分析 • SPWM发展趋势与展望
01
SPWM简介
SPWM的基本概念
脉宽调制(PWM)
通过调节脉冲宽度来控制输出电压或电流的幅度,以实现对模拟信号的数字化 处理。
06
SPWM发展趋势与展望
SPWM在新能源领域的应用
要点一
太阳能逆变器
要点二
风力发电系统
利用SPWM技术实现太阳能电池板的高效逆变,提高能源 转换效率。
通过SPWM控制技术,优化风力发电机的并网性能和输出 功率稳定性。
SPWM在智能电网中的应用
智能配电网
智能微电网
利用SPWM技术实现分布式能源与电网的 协调优化控制,提高电网的可靠性和稳定性。
规则采样法
总结词
规则采样法是一种简单有效的PWM控制方法,通过在每个采 样周期内规则地选择开关状态来实现正弦波的逼近。
详细描述
规则采样法根据正弦波的幅值和相位信息,在每个采样周期 内按照一定的规则选择开关状态(开或关),从而控制输出 电压的幅度和频率。这种方法实现简单,但精度相对较低。
优化PWM(OPWM)
05
SPWM性能分析
谐波分析
谐波含量
SPWM产生的脉冲信号中包含多种谐 波成分,这些谐波成分会对电网造成 污染,影响其他设备的正常工作。
谐波抑制
通过优化SPWM的控制参数,可以降 低谐波含量,提高输出信号的纯净度。
效率分析
转换效率
SPWM的转换效率取决于调制波的占空比和载波比,通过合理设置这些参数,可以提 高转换效率。

脉宽调制(SPWM)变频调速系统分析

脉宽调制(SPWM)变频调速系统分析

s WM 系统 由 主 网路 和控 制 回路 两 部 输 入 端 :C , C ,C P F TV TR T和 O T H F 72芯 列 和相 应 正 弦部 分 面 积 f 量 ) 等 , 町得 C 。 E 45 冲 相 就
分 组 成 。 变频 的 主 电路 用 交 — — 直— — 交 片输 六 路 正 弦 脉 宽 调 制 脉 冲信 号 ,脉 冲 到 如 图 1 下 半 部 分 ) 示 的 脉 冲序 列 。 这 ( 所
MOV T i L, A
为 1 . 此 , 1为 1 3因 L 3个 机 器 周 期 。C U虽 P 在 执 行 第 一 条 指 令 C R T i 停 止 定 时 器 I R 后 计 数 , 在 T iT i 分 别 保 存 了 但 L 、H 中 的低
MO 0 O H R V R , O ;0清 零 #
S B # I H( 0 + 3;2 6的高 8 U B A. G 1 0 1) 1 H 0 位 减 去 ( +1的 高 8位 送 A L L) 0 L+2的高 8 送 T i 1L 1 位 H
S WM装置具有较全面 的电气保 护性 的 。 于 正 弦 波 的负 半 周 , 可 以用 同样 的 P 对 也
电路 。 流器 采 用 二 极 管 整 流 , 高 了 交 流 能 , 有 故 障 检 测 电路 , 整 提 设 能对 过 流 、 压 、 过 短 方法 得到 P WM 波形 。像 这种 脉冲 的宽度
电 网 的功 率 冈 数 , 善 了 电 网 波形 畸变 。 改 逆 路 等 故 障 进 行 检测 并 显 示 处 理 , 于 使 用 、 便 变 器 采用 晶体 管 桥 式 电 路 由 脉 宽 调 制 波 来 维 修 。 控 制 晶体 管 的 导 通 与关 断 ,供 给 电 机 可 变 1 S W M 变 频 调 速 基 本原 理 . 2 P 频 率 和可 变 电压 的 交 流 电 .使 电 动 机 电 流

交流调速实验报告

交流调速实验报告

实验一三相正弦波脉宽度调制(SPWM)变频原理实验一、实验目的(1)掌握SPWM的基本原理和实现方法。

(2)熟悉与SPWM控制有关的信号波形。

二、实验所需挂件及附件(1)接通挂件电源,关闭电机开关,调制方式设定在SPWM方式下(将控制部分S、V、P 的三个端子都悬空),然后开启电源开关。

(2)点动“增速”按键,将频率设定在0.5Hz,在SPWM部分观测三相正弦波信号(在测试点“2、3、4”),观测三角载波信号(在测试点“5”),三相SPWM调制信号(在测试点“6、7、8”);再点动“转向”按键,改变转动方向,观测上述各信号的相位关系变化。

(3)逐步升高频率,直至到达50Hz处,重复以上的步骤。

(4)将频率设置为0.5HZ~60HZ的范围内改变,在测试点“2、3、4”中观测正弦波信号的频率和幅值的关系。

四、实验报告1、画出条件(1)-(3)与SPWM调制有关信号波形,得出SPWM控制的结论,说明SPWM 的调频和调压基本原理。

(1)测试三角载波信号波形(2)测试SPWM调制之前的正弦波信号。

a)0.5Hzb)10Hz:c)20Hz:d)30Hz:e)50Hz:(3)测试SPWM调制之后的正弦波信号。

a)0.5Hzb)10Hz:c)20Hz:d)30Hz:e)50Hz:结论:SPWM信号是通过用三角载波信号和正弦信号相比较的方法产生,当改变正弦参考信号的幅值时,脉宽随之改变。

当改变正弦参考信号的频率时,输出电压的频率即随之改变。

即以正弦波作为逆变器输出的期望波形,以频率比期望波高得多的等腰三角波作为载波(Carrier wave),并用频率和期望波相同的正弦波作为调制波(Modulation wave),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄中间宽的一系列等幅不等宽的矩形波。

调频原理:改变参考波频率,即可调节SPWM波的基波频率;调压原理:改变参考波幅值,即可调节SPWM波的宽度,从而改变输出电压的有效值;2、测试在0.5HZ~50Hz范围内正弦波信号的幅值与频率关系表,把结果填入下表。

正弦脉宽调制(SPWM)控制

正弦脉宽调制(SPWM)控制

正弦脉宽调制(SPWM)控制正弦脉宽调制(SPWM)控制2010-09-18ylw527+关注献花(4)为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从⽽获得优秀的⼯作性能,现代通⽤变压变频器中的逆变器都是由全控型电⼒电⼦开关器件构成,采⽤脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特⼤容量时才采⽤晶闸管变频器。

应⽤最早⽽且作为pwm控制基础的是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。

图3-1 与正弦波等效的等宽不等幅矩形脉冲波序列3.1 正弦脉宽调制原理⼀个连续函数是可以⽤⽆限多个离散函数逼近或替代的,因⽽可以设想⽤多个不同幅值的矩形脉冲波来替代正弦波,如图3-1所⽰。

图中,在⼀个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数⽬n=12),如果每⼀个矩形波的⾯积都与相应时间段内正弦波的⾯积相等,则这⼀系列矩形波的合成⾯积就等于正弦波的⾯积,也即有等效的作⽤。

为了提⾼等效的精度,矩形波的个数越多越好,显然,矩形波的数⽬受到开关器件允许开关频率的限制。

在通⽤变频器采⽤的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。

从这点出发,设想把上述⼀系列等宽不等幅的矩形波⽤⼀系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的⾯积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。

例如,把正弦半波分作n等分(在图3-2中,n=9),把每⼀等分的正弦曲线与横轴所包围的⾯积都⽤⼀个与此⾯积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每⼀等分的中点相重合,这样就形成spwm波形。

同样,正弦波的负半周也可⽤相同的⽅法与⼀系列负脉冲波等效。

这种正弦波正、负半周分别⽤正、负脉冲等效的spwm波形称作单极式spwm。

伺服电机实验

伺服电机实验

实验一异步电机变频调速实验1. 正弦波脉宽调制(SPWM)方式的实验1.1实验目的1)过实验掌握SPWM的基本原理和实现方法2)悉与SPWM控制方式相关的信号波形1.2实验原理所谓正弦波脉宽调制就是把一个正弦波分成等幅而不等了与正弦宽的方波脉冲串,每一个方波的宽度,与其所对应时刻的正弦波的值成正比,这样就产生波等效的等幅矩形脉冲序列波,由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,逆变器输出脉冲的幅值就是整流器的输出电压。

当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应与逆变器的输出电压波形相似。

从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。

但较为实用的办法是引用“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波,而受它调制的信号称为载波。

在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽度线性对称变化的波形,当它与任何一个光滑的调制函数曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该调制函数值的矩形脉冲。

1.3 实验设备及仪器1)KR-1系列变频调速实验系统一套。

2)双踪示波器一台。

1.4 实验步骤1)接通电源,打开开关。

2)将P07号参数设置为00,选择SPWM控制方式。

将加速度设置到10,按“运行”键,控制电动机运行,观察电动机的加速过程,直至电动机达到稳速运行状态,按照60HZ的频率运行。

3)通过示波器,观察三相正弦波信号(在测试孔1、2、3)。

分别如下4)通过示波器,观察三角波载波信号,并估算其频率(在测试孔5)。

5)通过示波器。

观察SPWM波信号(在测试孔6、7、8、9、10、11)。

6)将频率设定值在0.1HZ—100HZ的范围内不断变化,通过示波器在测试孔1、2、3中观察信号的频率和幅值的关系。

1.5 实验总结2. 六脉冲型电压矢量控制方式的实验2.1实验目的1)通过实验,掌握空间电压矢量控制方式的原理和实现方法。

正弦脉宽调制(SPWM)变频器

正弦脉宽调制(SPWM)变频器

引言随着电力电子技术的飞速发展,正弦脉宽调制(SPWM)变频器也得到了大力的发展,在各个领域内得到了广泛的应用。

SPWM变频器主要应用于中小容量,高性能的交流调速系统中,这种新型的变频器具有如下的优点:(1)输出电压的幅值和频率均在逆变器内控制和调节,可以方便的实现压频比恒定控制或低频时幅值电压的补偿等功能,系统的动态性能较好;(2)功率变化只在逆变器内完成,逆变器可由二极管整流供电,电网的功率因数较高;(3)由SPWM逆变器供电的异步电机的电流波形接近正弦波,谐波分量较少,矩阵脉动小,改善了电动机的运行性能。

鉴于正弦脉宽(SPWM)变频器的上述优点,以及在实际电气传动系统中,不同设备对电源的不同需求。

本文采用了新型功率器件IGBT和8031AH单片机控制系统,设计了一种新型的单相桥式SPWM变频电源。

该变频电源采用恒压频比控制,即U/F 为常数,能使主频率在0 ~100Hz内可调,且将软件设计和硬件设计结合起来,减少了硬件电路的不必要的成本,又使软件编程不至于繁锁。

本设计由我和张建忠同学合作完成,我主要作硬件原理设计参数计算与软件编程、调试等工作,具体内容在本论文中有详述。

而有关硬件绘图、电路仿真及电路介绍等内容可参阅张建忠同学的毕业论文。

由于设计者的能力有限,在设计过程中得到了常宝林老师的悉心教导和大力协助,才将本设计顺利的完成。

在此,向指导老师并支持过我们的各位老师表示衷心的感谢。

目录第一章脉宽调制(PWM)逆变器一、脉宽调制技术(PWM)及其分类……………………..二、正弦脉宽调制技术………………………………………三、同步调制和异步调制……………………………………四、SPWM波形的软件生成………………………………第二章单相桥式正弦脉宽调制(SPWM)变频电源硬件设计……一、设计方案及总体框图…………………………………..二、电路原理与参数计算…………………………………..§1.主电路……………………………………………………§2.驱动电路…………………………………………………§3. 吸收电路…………………………………………………..§4.保护电路………………………………………………….§5. 控制及接口电路………………………………………….第三章软件设计………………………………………………. 一.对称规则采样法………………………………………….二.地址分配…………………………………………………. 三.程序设计………………………………………………….. 四.程序调试与仿真…………………………………………五.程序清单……………………………………………………结束语……………………………………………………………….参考文献……………………………………………………………外文翻译……………………………………………………………第一章脉宽调制逆变器一、脉宽调制(PWM)技术及其分类在电气传动系统中,广泛的应用的PWM控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲的宽度或周期以达到变压目的,或者控制电压脉冲宽度和脉冲序列的周期以达到变压变频的目的的一种控制技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
4、实验内容
* 运行频率f1=5Hz,比较研究 ① 载波频率f0=500Hz、1000Hz、2000Hz下,电机低 速运行的噪声、振动、转速平稳程度, ② 描述不同V/f曲线下的起动能力 ③ 记录f0=2000Hz时线电压/线电流波形
SPWM变频调速实验
5、实验注意
(1)操作注意 * 观测电机电压、电流时注意探头公共地线接法 以U相为例
探头1
U V W
示波器探头地线
M
探头2
采样电阻
* 波形采集 使用示波器采集,自带拍照工具。
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
5、实验注意
(1)实验报告注意 * 对实验波形,对照PWM调制理论进行分析,特别 是记录的波形 * 对观察、描述的实验内容作详尽的描述、分析, 得出和符理论的结论,特别报告: ① 不同调制比对运行性能的影响 ② 低速运行平稳性与调制比关系
(2)驱动电路 脉冲变换→光电隔离→施加在MOSFET栅极
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
(3)过流保护 Idc
——主电路4-5间接采样电阻,检测其上电压 ——过流后发出“OC”信号 ● 封锁驱动电路脉冲 ● MP保护电路工作,显示“OC”,并停机 解除停机,按复位键。
1. 加深理解自然采样法形成双极性SPWM的机理; 2. 熟悉SPWM变频器功率主电路、控制电路的结构和连接 关系; 3. 了解SPWM调制三种控制方式、控制参数及输出波形。
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
二、实验线路(图6-3)
1、主回路
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
3、控制面板
* 设定全部参数或改变某一参数,按“确认”按钮,再按“运行” 执行。 * 特例: ① 运行频率调整:直接按“上升”、“下降”和运行以执行 ② 当改变调制方式后,如不设定,有关参数按以下缺省值运行: 调制比 12,运行频率 50Hz 但V/f曲线和加速时间不变。
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
3、控制面板
* 按下所需调制按钮,用上升、下降按钮改变参数 参数变化范围: ① 运行频率:1~60Hz,步长1Hz ② 调制比:3~123,步长3 ③ 载波频率:0.5~8KHz,步长0.5KHz ④ 混合调制:自动分段调载波频率 ⑤ 加速时间:1~10秒,步长1秒 ⑥ V/f曲线:1,2,3,4共4条, 数字越大,低频电压提升越高,起动转矩越大。
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
机电运动控制系统
实验二
正弦脉宽调制(SPWM)变频 调速实验
浙江大学 电气工程学院
年珩 nianheng@
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
一、实验目的
(1)三相不控整流桥+电解电容滤波→电压源型
不控整流 软启动电路 0.1ohm
两倍额定电流保护, 通知MP封锁脉冲
数码管 操作部分
LED显示
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
二、实验线路(图6-3)
1、主回路
(1)三相不控整流桥+电解电容滤波→电压源型 (2)防电容充电电流冲击,设置软启动电路 当Uc<0.7Udc0,限流电阻接入 当Uc≥0.7Udc0,限流电阻自动切除ห้องสมุดไป่ตู้(3)三相PWM逆变器 VT1~VT6 VD1~VD6 P-MOSFET 开关管 反并联二极管
(4)电机电流采样电阻(7-U,8-V,9-W之间)测电机线电流波 形 主电路按图6-3标号连接、构成。
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
2、
控制电路
采用MP8031生成正弦调制波 三角载波
(1)频率调制微机控制系统
SPWM波
双极性
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
4、实验内容
(2)同步调制状态
必须采用第3条以上V/f曲线
* 运行频率f1=5Hz,载波比Fr=3下 ① 调制波/载波及SPWM波形 ② 电机空载运行时线电压/线电流波形 ③ 描述不同V/f曲线下的起动能力
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
4、实验内容
(1)异步调制状态 * 运行频率f1=50Hz,载波频率f0分别=500Hz、1kHz 下 ① 调制波/载波及SPWM波形 ② 电机空载运行时线电压/线电流波形 * 运行频率f1=25Hz,载波频率f0=500Hz下 ① 调制波/载波及SPWM波形 ② 电机空载运行时线电压/线电流波形
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
3、控制面板
(2)操作 挂箱接入220V电源后,数码管显示P 设置 * 按设置键: 数码管闪烁,进入设置状态 * 按异步、同步、混合等调制钮,进入该调制状态下的 选择,三种状态下设置参数有约制: ① 异步调制时,不允许使用调制比 ② 同步调制时,不允许使用载波频率 ③ 混合调制时,不允许使用调制比、载波频率
机电运动控制系统 机电运动控制系统 直流电动机的控制 SPWM变频调速
SPWM变频调速实验
3、控制面板
(1)布局 左半部分 显示:LED、数码管 * LED: 指示数码管显示内容 ② 设置状态: 闪烁显示 ③ 运行状态: 稳定显示 右半部分 按钮:设置按钮、显示按钮 * 数码管: ① 开机显示“P”——“上电”
相关文档
最新文档