PLC对工业锅炉燃烧控制的实验研究

合集下载

PLC在锅炉控制系统中的作用

PLC在锅炉控制系统中的作用

PLC在锅炉控制系统中的作用锅炉是工业生产中常用的热力设备,它负责将水或其他流体加热到所需温度,以满足生产过程中的热能需求。

为了保证锅炉能够高效、稳定地运行,控制系统的作用至关重要。

其中,可编程逻辑控制器(PLC)在锅炉控制系统中扮演着重要的角色。

一、PLC简介PLC是一种专门用于工业控制的计算机设备,它能够根据预先编写好的程序,对锅炉的各个部分进行自动控制。

PLC通常由CPU、输入输出模块和通信模块等组成,具备可编程、可扩展、可靠性高等特点。

二、PLC在锅炉控制系统中的应用1. 温度控制在锅炉中,温度控制是至关重要的,它直接影响锅炉的稳定性和效率。

PLC可以通过外部温度传感器获取实时温度数据,并对锅炉的加热器、循环泵等设备进行控制,以确保锅炉水温始终保持在设定范围内。

2. 压力控制锅炉的压力也是需要进行精确控制的参数之一。

过低的压力可能导致供热不足,过高的压力则可能引发爆炸等安全隐患。

PLC可以通过传感器实时监测锅炉的压力,并根据设定值自动调节燃烧器的工作状态,以保证锅炉的压力在安全范围内。

3. 水位控制锅炉的水位是影响锅炉正常运行的重要因素。

若水位过低,锅炉的加热管壁可能过热而损坏;若水位过高,又可能导致锅炉溢水。

PLC可以通过水位传感器监测锅炉的实时水位,并控制进水和排水设备的开关,以保持水位在安全范围内。

4. 烟气排放控制锅炉燃烧过程中会产生大量烟尘和有害气体,对环境造成污染。

PLC可以通过烟气传感器监测烟气的成分和排放浓度,并根据环保要求调整燃烧器的工作状态,以减少污染物的排放。

5. 故障诊断与报警锅炉系统中可能会出现各种故障,如传感器失效、设备故障等。

PLC可以通过自动检测和诊断系统中的故障,并根据设定的规则进行报警。

这样可以帮助运维人员及时发现和解决问题,保证锅炉的正常运行。

三、PLC在锅炉控制系统中的优势1. 稳定性高:PLC具备高性能的计算能力和稳定的特性,可以保证对锅炉各个参数的精确控制,提高系统的稳定性。

基于PLC单片机控制中小型蒸汽锅炉智能燃烧系统

基于PLC单片机控制中小型蒸汽锅炉智能燃烧系统

产。
4
3、锅炉引风控制
炉膛负压控制系统一般采用的控制流程图 如下图所示,调节原理比较简单属于单闭 环调节系统,它的输入量是炉膛负压输出 量是引风变频器,同时引入鼓风量作为前 馈信号。
给定蒸汽压力
+ -
引风调节单元
引风机变频器
锅炉系统
抗干扰滤波
炉膛负压信号
5
4、锅炉鼓风控制
鼓风控制系统一般采用的控制流程图如下图所示,
先通过蒸汽压力变送器经滤波后取得信号,与设 定蒸汽压力进行比较,判断出鼓风PID调节器调节 的方向和大小,通过鼓风PID调节单元计算出鼓风 变频器的输出大小
给定蒸汽压力
+ -
炉排调节单元
风煤比
炉排变频器
鼓风调节单元 抗干扰滤波
鼓风变频器 蒸汽压力信号
炉排系统
6
二、控制系统硬件设计
PLC不仅具有逻辑控制功能,而且还具有了 运算、数据处理和数据传送等功能 ,采用可编 程控制器设计的控制系统可以实现对锅炉精确地 实时自动控制,并且实现了整个系统的优化控制。 变频调速的基本原理是通过改变电动机工作电源 频率达到改变电机转速的目的,采用变频调速技 术来控制锅炉的泵与风机,可以使电动机不必总 在工频下运行,可以大大的节省电能。
2、程序设计结果,见论文P35~P37
13
四、上位机系统制作
MCGS (Monitor and Control Generated System, 通用监控系统)是一套用于快速构造和生成计算机 监控系统的组态软件,它能够在基于Microsoft (各种 32 位 Windows 平台上)运行,通过对现 场数据的采集处理,以动画显示、报警处理、流 程控制、实时曲线、历史曲线和报表输出等多种 方式向用户提供解决实际工程问题的方案,它充 分利用了 Windows图形功能完备、界面一致性好、 易学易用的特点,在自动化领域有着广泛的应用。

基于PLC的船用辅锅炉燃烧控制系统研究设计

基于PLC的船用辅锅炉燃烧控制系统研究设计

专科毕业设计(论文)设计题目:基于PLC的船用辅锅炉燃烧控制系统系部:电气工程系专业:电气自动化(港口方向) 班级:港电081301姓名:谢杰学号: 46指导教师:马建峰职称:讲师20 11 年6月南京摘要可编程序控制器(PLC)作为现代工业控制的四大支柱之一,而且具有体积小,编程简单,组装灵活,可靠性高及抗干扰能力强等优点,非常适合于在恶劣的工作环境下使用,被认为是工业上的无故障产品,将替代传统继电接触器控制系统设备成为自动化控制系统的主要控制设备。

本文将主要介绍PLC在船用辅锅炉燃烧控制系统中的应用。

关键词可编程序控制器船用辅锅炉燃烧控制AbstractProgrammable Logic Controller (PLC) as a modern industrial control one of the four pillars, and with small, simple programming, flexible assembly, high reliability and strong anti-interference, etc., is very suitable for use in harsh working conditions use, is considered to be non-defective products industry, will replace the traditional relay contactor control system equipment as the main control system of automatic control equipment. This article introduces the PLC in marine auxiliary boiler combustion control system.Keywords programmable controller for marine auxiliary boiler combustion control目录1 引言 (1)2 可编程序控制器概述 (1)2.1 PLC的产生、定义、分类 (1)2.1.1 PLC的产生 (1)2.1.2 PLC的定义 (1)2.1.3 PLC的分类 (2)2.2 PLC的基本结构 (2)2.2.1 PLC的硬件组成 (2)2.2.2 PLC的软件组成 (3)2.3 PLC的特点及主要功能 (3)2.4 PLC的应用领域及发展趋势 (3)3 锅炉概述 (4)3.1 锅炉的定义 (4)3.2 锅炉的重要性 (4)3.3 锅炉的分类 (4)3.4 锅炉的基本构造及工作过程 (4)3.4.1 锅炉的基本构造 (4)3.4.2 锅炉的工作过程 (5)4 船用辅锅炉的燃烧控制系统 (5)4.1 PLC系统在锅炉燃烧控制系统中的控制要求 (5)4.2 PLC选型及输入/输出端口的设计 (6)4.2.1 PLC的选型 (6)4.2.2 输入/输出点的设计 (6)4.3 PLC控制燃烧系统梯形图 (7)4.4 PLC 控制锅炉燃烧系统过程分析 (7)结论 (11)致谢 (12)参考文献 (13)1 引言可编程控制器(PLC)作为传统继电接触控制系统的替代产品,已广泛应用于工业控制的各个领域,由于它可通过软件来改变过程,而且具有体积小,编程简单,组装灵活,可靠性高及抗干扰能力强等优点,非常适合于在恶劣的工作环境下使用,被公认为是工业上的无故障产品。

基于PLC的锅炉燃烧控制系统设计

基于PLC的锅炉燃烧控制系统设计

基于PLC的锅炉燃烧控制系统设计【摘要】锅炉作为将一次能源转化成二次能源的重要设备之一,其控制和管理水平也日趋提高。

燃烧器是锅炉燃烧系统的核心和最大能耗部件,有必要设计先进的燃烧控制系统实现锅炉在最优的空燃比下高效燃烧,从而实现节能环保。

本文探讨了基于PLC的锅炉燃烧控制系统设计,以期对相关人员有所借鉴意义。

【关键词】PLC;锅炉;燃烧控制系统一、PLC的涵义与性能特点PLC是随着科学技术的进步与现代社会生产方式的转变,为适应多品种、小批量生产的需要而产生、发展起来的一种工业控制装置。

其特点有:1、抗干扰能力强PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。

此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。

在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。

这样,整个系统具有极高的可靠性也就不奇怪了。

2、功能完善,适用性强PLC不仅可以连接传统的编程与通用输输出设备,还可以通过总线构成网络系统,其应用范围涉及工业自动化的全部领域。

除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。

近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。

加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。

3、使用简单PLC是面向工矿企业的工控设备。

它接口容易,编程语言易于为工程技术人员接受。

梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC 的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。

为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。

4、维护方便,容易改造PLC技术因为其控制比较方便,也具有很强的灵活性,其采用内部编程进行对电路的控制,如果需要改进,只需要对其内部的程序重新写入就可以实现新的控制要求。

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。

作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。

本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。

文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。

然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。

在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。

通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。

也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。

二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。

该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。

锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。

其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。

锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。

燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。

燃烧器的性能直接影响到锅炉的热效率和污染物排放。

燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。

热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。

热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。

PLC控制在锅炉燃烧系统中的应用

PLC控制在锅炉燃烧系统中的应用

PLC控制在锅炉燃烧系统中的应用摘要锅炉的建模与控制问题一直是人们关注的焦点,而锅炉燃烧系统的有效控制是保证供气压力稳定、燃烧过程经济及运行安全可靠的重要保障,要实现锅炉燃烧系统的有效控制,必须根据锅炉负荷不断调节燃料量与送风量来保证燃烧所供热负荷与外界使用并达到经济燃烧,此时炉膛负压必随之变化,调整引风量以适应之。

由于锅炉的燃烧是一个复杂的过程,各调节参数(如燃料量、送风量、引风量)和被调节参数(如蒸汽压力、烟气含氧量、炉膛负压)之间存在着错综复杂的关系,它们又受燃料品质及运行状况等干扰的影响,因此仅靠传统的人工调节方式无法达到燃烧工况的要求。

而且各人水平、经验也参差不齐,适应不了生产工艺和现代企业管理的要求。

本设计阐述了应用PLC对锅炉燃烧系统进行自动控制,通过对PLC控制原理及燃烧控制方案的分析,认为应用PLC 控制系统对传统工业锅炉燃烧控制进行改造,对于企业节能降耗,提高锅炉运行安全可靠性,减少运行人员劳动强度和用工人数,提高锅炉运行整体管理水平大有好处。

关键词:工业锅炉;PLC自动控制;节能降耗PLC control in the application of boilercombustion systemAbstractThe problem about boiler of modeling and control has been the focus of attention. And the combustion system effective control is to guarantee the supply pressure stability, combustion economic and safe and reliable running. To implement an efficient combustion system control, we must constantly adjusting boiler fuel consumption and air supply under load to ensure that the heating load with the outside world to use and economical combustion. Furnace pressure will change with time, adjusting the air volume to meet the guidelines. As the combustion of boiler is a complex process. And there are a complex relationship between the adjustment parameters (such as fuel consumption, air supply, air flow lead) and the adjustable parameters (such as steam pressure, oxygen content in the flue gas, furnace pressure). They are also affected by fuel quality and the health effects of such interference, so only on the traditional manual adjustment mode does not meet the requirements of the combustio n conditions. And people’s level, experience recognizing, adapt the production process and the requirements of modern business management. The article gives the PLC on system for automatic control. Through the PLC control principles and combustion control methods, we argue that the transform of PLC control system on the traditional industrial combustion is good at heating energy enterprises, improving the boiler operation safety and reliability, reducing our labor and employment for the operating personnel, increasing the number of overall management of the boiler operation.Key words:industrial boiler, PLC automatic control, energy conservation目录摘要 (I)Abstract (I)目录 (II)1 绪论 (1)1.1 课题研究背景及意义 (1)1.2 锅炉燃烧控制系统的国内外发展现 (1)1.2.1 锅炉燃烧控制系统发展简介 (1)1.2.2 锅炉燃烧控制策略研究现状 (2)1.3 PLC控制在国内外的发展近况 (2)1.4 本课题研究内容 (3)2 锅炉燃烧系统设计 (4)2.1 锅炉的工作过程简介 (4)2.2 锅炉燃烧系统简介 (5)2.2.1 锅炉燃烧系统工艺 (5)2.2.2 锅炉燃烧控制系统要求 (6)2.3 锅炉燃烧控制系统设计 (6)2.3.1 锅炉燃烧控制系统结构 (6)2.3.2 锅炉燃烧控制总体框架 (7)2.3.3 燃料子系统设计 (7)2.3.4 送风子系统设计 (8)2.3.5 引风子系统设计 (8)3 锅炉燃烧控制系统硬件部分设计 (10)3.1 可编程控制器(PLC)简介 (10)3.1.1 可编程控制器(PLC)工作原理 (10)3.1.2 可编程控制器的主要特点 (11)3.2 可编程控制器(PLC)选型 (11)3.2.1 可编程控制器CPU选择 (11)3.2.2 模拟量输入/输出扩展模块 (12)3.3 PLC及其扩展模块接线 (12)3.3.1 PLC I/O地址分配表 (12)3.3.2 PLC及其模块接线 (12)3.4 变频器 (13)3.4.1 变频器基本结构 (14)3.4.2 变频器驱动风机原理 (15)3.4.3 变频器选择 (16)4 锅炉燃烧控制系统软件部分设计 (17)4.1 Step7软件简介 (17)4.2 PLC系统的软件设计 (18)4.2.1 控制算法流程 (18)4.2.2 梯形图 (19)结论 (24)致谢 (25)参考文献 (26)附录梯形图 (27)1绪论1.1课题研究背景及意义锅炉是工业生产中普遍使用的动力设备,是能源转换的重要工具。

基于PLC的锅炉燃烧控制系统设计_毕业设计论文正文 精品

基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。

锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。

工业过程中对于锅炉燃烧控制系统的要求是非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。

作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在内的参数,参数之间有着复杂的关系,并且相互关联[2]。

而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。

1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。

这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。

因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。

(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国内外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。

在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。

在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。

基于PLC控制的电锅炉控制系统

基于PLC控制的电锅炉控制系统电锅炉控制系统是现代工业制造中常见的一种设备,它通过PLC(可编程逻辑控制器)来实现对电锅炉的精确控制。

PLC控制技术具有灵活、方便、可靠等优点,能够实现复杂的逻辑控制和自动化控制功能。

本文将从PLC控制系统的原理、功能及特点入手,结合电锅炉的工作原理,详细介绍基于PLC控制的电锅炉控制系统的设计与实现。

1. PLC控制系统原理PLC控制系统是一种专门设计用于工业自动化控制的设备,其核心是一个可编程的CPU,通过不同的输入/输出模块和通信模块,与外部传感器、执行器等设备连接,实现对生产过程的控制。

PLC控制系统通过预先编写好的程序,根据不同的输入信号执行相应的逻辑控制,以达到自动化控制的目的。

2. 电锅炉工作原理电锅炉是一种利用电能进行加热的设备,通常由加热元件、控制系统、水泵等部件组成。

在工作过程中,电能被加热元件转换为热能,将水加热至设定的温度,为生产或生活提供热水或蒸汽。

电锅炉的控制系统通常包括温度传感器、压力传感器、水位传感器等,用于监测和控制锅炉的工作状态。

3. 基于PLC控制的电锅炉控制系统设计基于PLC控制的电锅炉控制系统主要由PLC控制器、传感器、执行器、人机界面等部件组成。

在设计过程中,首先需要根据电锅炉的工作原理和需求确定系统的功能要求和控制策略,然后编写PLC程序实现相应的逻辑控制。

通过合理的硬件布局和接线连接,将各部件连接到PLC控制器上,实现信号的采集和输出。

4. 控制系统功能与特点基于PLC控制的电锅炉控制系统具有如下功能与特点:1)灵活性:PLC控制系统可根据需要进行程序修改,实现不同的控制策略;2)可靠性:PLC控制器具有较高的稳定性和可靠性,可以长时间稳定运行;3)精确性:通过PLC控制系统可以实现对电锅炉的精确控制,提高生产效率和产品质量;4)扩展性:PLC控制系统可根据需要扩展输入/输出模块和功能模块,实现系统的功能扩展。

5. 控制系统优化与应用为了进一步优化电锅炉控制系统的性能,可以采用PID控制算法、模糊控制算法等先进的控制技术,提高系统的响应速度和稳定性。

基于PLC锅炉燃烧控制系统方案

基于PLC的锅炉燃烧控制系统1 简介燃烧控制系统是电厂锅炉的主要控制系统,主要包括燃料控制系统、风量控制系统和炉膛压力控制系统。

目前,电厂锅炉燃烧控制系统大部分仍采用PID控制。

燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统。

燃烧率控制包括燃料量控制、供气量控制和诱导空气量控制。

每个分控系统采用不同的测控方法。

保证经济燃烧和安全燃烧。

2 控制方案锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应锅炉输出蒸汽负荷的外部要求,同时保证锅炉的安全、经济运行。

锅炉的燃料量、送风量和引风量的控制任务不能分开。

可以使用三个控制器来控制这三个控制变量,但它们应该相互协调才能可靠地工作。

对于给定的出水温度,需要调整鼓风量与供煤量的比值,使锅炉运行在最佳燃烧状态。

同时,炉膛内应有一定的负压,以保持锅炉的热效率,防止炉膛过热向外喷火,以保证人员安全和环境卫生。

2.1 控制系统总体框架设计燃烧过程自动控制系统的方案与锅炉设备类型、运行方式和控制要求有关。

针对不同的情况和要求,控制系统的设计方案是不同的。

单位单元燃烧过程的受控对象被视为一个多变量系统。

在设计控制系统时,充分考虑了项目的实际问题,既保证了操作人员的操作习惯,又最大限度地实施了燃烧优化控制。

控制系统的总体框架如图1所示。

图1 机组燃烧过程控制示意图11徐亚飞,温箱温度PID与预测测控.2004,28(4):554-5572P 为单位负荷热信号。

控制系统包括:滑动压力运行的主蒸汽压力设定值计算模块(热力系统实验得到的数据,然后拟合成可以通过DCS折线功能块实现的曲线),负荷-送风量模糊计算模块,主汽压力控制。

系统及送风引风控制系统等。

主汽压力控制系统采用常规串级PID控制结构。

2.2 油量控制系统当外部对锅炉蒸汽负荷的要求发生变化时,锅炉燃烧的燃料量也必须相应改变。

燃料量控制是锅炉控制中最基本、最重要的系统。

由于给煤量不仅影响主蒸汽压力,还影响送风量和引风量的控制,还影响汽包内蒸汽蒸发量、蒸汽温度等参数,因此燃料量控制具有重要意义。

基于PLC的锅炉燃烧控制系统毕业设计正文

基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。

锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。

工业过程中对于锅炉燃烧控制系统的要非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。

作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在的参数,参数之间有着复杂的关系,并且相互关联[2]。

而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。

1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。

这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。

因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。

(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。

在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。

在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RS-232C 串行口通信方式的设置:系统寄存器 412 (默认值是 K0) ,选择一般通信方式时设为 K2;RS-232C 串行口通信格式的设置: 系统寄存器 413 (默认值是 K3) , 系统寄存器 413 的内容自动加到传送的数据中,而无需 写入结束符。RS-232C 串行口接收数据的设置:系统寄 存器 417(默认值为 K0)和 418(默认值为 K1660) 。系 统寄存器 417 指定从 RS-232C 串行口接收数据的缓冲器 使用的数据寄存器的首地址,系统寄存器 418 规定从 RS-232C 串行口接收数据的缓冲区容量。 计算机向 PLC 写数据的程序示例如下: (1)设置串口初始化程序 Private Sub Initialize() ’设置串行通信端口 2 MSComm1. CommPort=2 ’设置通信端口参数:传输速率 9600,奇校验,8 位 数据位,1 位停止位 MSComm1. Settings= “9600,O,8,1” ’打开串口程序 If MSComm1. PortOpen=False Then MSComm1. PortOpen=True End If ’设置传输数据为 ASCII 型数据 MSComm1. InputMode=comInputModeText ’没有握手协议 MSComm1. Handshaking=comNone ’设置串行口接收缓冲区大小的字节数为 1K MSComm1. InBufferSize=1024 End Sub (2)计算机向 PLC 发送数据 Private Sub send_Click() ’向 PLC 中写数据,分别将数据写入数据寄存器 DT1、DT2、DT3。发送的报文为: strSend = “%01#WDD00001000030500071500095D\ R” MSComm1. Output=strSend End Sub (3)关闭串行端口
《工业加热》 36 卷 2007 年第 3 期 第
图2
串行口通信格式设置
1
计算机与 PLC 之间的通信
PLC 与上位机的串行通信在现代工业控制中得到了 广泛的应用。PLC 作为下位机完成现场的各种开关量和 模拟量的采集、运算和控制;上位计算机可提供人机交 互界面, 实现数据存储、 打印以及实时显示等监视功能。 本文通过 VB6.0 的强大功能可以很方便地实现松下 FP0 和上位 PC 之间的通信。 松下 FP0 系列 PLC 与计算机之间的通信协议为松 下公司专用的 MEWTOCOL-COM 协议。 该协议采用异 步通信方式其波特率有“4 800,9 600,19 200” 等多 种可选,且报文长度可变可固定。该协议格式分为命令 消息,正常响应消息,出错响应消息三种。松下公司给 出的 FP0 可编程控制器指令格式,如图 1 所示。其中, “%” 为起始符,标记每一帧报文的开始, “CR” 为结 束符,标记每一帧报文的结束。AD 为 PLC 的站地址, 为两位 16 进制数,如 00 表示第一台 PLC。 “$、#、!” 标示该帧报文的类型。 指令信息中的指令代码是指计算 机图向 PLC 发送的命令。响应代码返回接收到的命令 消息中的命令代码。BCC ( H) 和 BCC (L ) 为前面字符 串的 BCC 校验码的高、低位,为两位 16 进制数。其初 值为 0,然后从起始符开始与该帧报文中每一字节按位 进行异或运算得到。
炉热效率下降,产生更多的污染物、噪声等,在极端 情况下可能引起锅炉炉膛灭火,甚至会诱发锅炉爆炸 造成严重事故。 据统计, 目前我国仅冶金行业就有 1 万 多台工业炉在运行, 其中燃油炉为 2000 多台。这些燃 油炉实现控制的仅占总数的 5%左右,长期以来运行效 率低下。实施自动控制的困难一方面在于使用燃油大 多为无标号的重油、渣油, 油质差且杂质多;另一方 面缺少有效监视燃烧工况的仪表,使调节、控制锅炉 (2)旋流器是平焰烧嘴的关键部件,其产生的旋转 速度的实际大小与喷口角度、小孔直径和流速、喷口通 道的内外径有关,在喷口直管段的一定长度内气体速度 均匀化,这对混合燃烧是必须的,但同时旋转速度衰减 也很大,降低了喷口的旋流强度。 (3)模拟计算得出:为保证平焰烧嘴的火焰和燃烧 特性,空煤气喷口的动力学特征,如:旋流数 、喷口动 量等,之间必须保持一定的变化规律,这个规律可以作 为平焰烧嘴设计的依据。
由于点火过程工艺较复杂,为清楚表明动作的顺序 和条件。绘制其控制流程图,如图 3 所示。
《工业加热》 36 卷 2007 年第 3 期 第
基于 CCD 对锅炉火焰图像的诸多优点 4~6 ,实验中 通过 CCD 系统对燃烧火焰进行监测,所得图像传给计 算机后,利用图像采集软件来显示和处理火焰图像,并 将其保存在计算机硬盘上。软件系统计算出火焰图像的 亮度值写入 PLC,通过与设定值比较来调节油路中回油 量的大小,从而调节进入燃烧器油量的大小,这样每经 过 1 ~ 2 s 对火焰图像进行采集处理来得到火焰的亮度 值,从而实现了火焰燃烧的实时控制。 PLC 反馈控制系统流程如图 4 所示。
计算和试验对比分析,可以初步得到以下结论: (1)煤气在烧嘴喷口处的强烈旋转运动、轴线中心 区域的回流和球形负压区,是平焰烧嘴流动的基本特征, 这些特征的共同作用形成气流的贴壁效应。特征区域的 尺寸大小和分布在某种程度上决定了烧嘴的各种性能。
50
加热设备
的运行缺乏依据, 现有的燃烧控制系统大多以炉温为主 要控制参数, 该参量热惯性大, 分布不易测量, 很难 在炉温和被控量之间建立控制模型。以人的观察为调 节依据的手动控制系统, 通常能够正确判断炉内的燃 烧状况, 但是由于难以准确给定控制量、劳动强度大 等原因, 很难达到满意的控制效果。 PLC 是 80 年代发展起来的新一代工业控制装置,由 于可靠性高、适应性好、抗干扰和接口能力强、编辑简单 等诸多优点, 在工业控制领域得到了广泛的应用 2 。 PLC 但 不能向用户提供工艺流程和动态数据画面显示,人机交互 性能差,不利于操作者的实时操纵。为弥补这种不足,采 用 VB6.0 实现上位机和 PLC 的串行通信,实现数据采集、 数据处理,成功运用到锅炉燃烧系统的反馈控制中。
Abstract: The program is written with Visual Basic to realize the serial communi cation between the computer PC and PLC. The feedback control on combustion in boiler is realized by adjusting the burner by using PLC. The practice proved that the system was successfully applied in the combustion and it had performed steadily. Key words: boiler;feedback control;PLC;serial communication
加热设备
《工业加热》 36 卷 2007 年第 3 期 第
PLC 对工业锅炉燃烧控制的实验研究
王 斌,仇性启,王丽飞
东营 257061) (中国石油大学(华东)机电工程学院,山东
摘要:利用 VB6.0 编制完成了上位 PC 机和下位机 PLC 之间的串行通信程序;通过 PLC 对燃烧机进行调节,完成对锅炉的燃烧控 制;实验证明,通过这一方法对锅炉燃烧进行控制,系统运行稳定、良好。 关键词:锅炉;反馈控制;可编程控制器;串行通信 中图分类号:TK17 文献标识码:A 文章编号:1002-1639(2007)03-0050-04
图1
FP0 可编程控制器的指令格式
计算机与 FP0 之间的通信是通过 9 芯的 RS-232C 串 行口来实现的。RS-232C 串行口设置如图 2 所示。
51
加热设备
Private Sub close_Click() If MSComm1. PortOpen=True Then MSComm1. PortOpen=False End If End Sub
2 PLC 控制锅炉燃烧 实验中所用的燃烧机由全自动压力喷嘴、使燃油雾
化的单元机组、可调节压力的进油泵、风机、驱动油泵 和风机的电机、电磁阀、燃油预热器和高压点火变压器 等组成。燃油由油泵打入预热器预热,经一阶段喷嘴雾 化喷出,和风机输入的空气混合后,被高压点火器点燃, 进入一阶段燃烧。一阶段燃烧一段时间后,加大送风量, 二阶段喷嘴开始喷油,进入二阶段燃烧,既正常燃烧状 态。调节回油量,即调节喷嘴的喷油量,可以控制燃烧 机的温度。PLC 的控制输入输出分配如表 1 所示。
3 系统调试和实验验证
实验在中国石油大学(华东)小型燃烧炉内进行, 燃 料为工业用乳化重油,锅炉实物如图 5 所示。 实验过程中燃料油用泵由燃料罐打入燃烧器进行雾 化燃烧,油量在进入燃烧机之前经由电磁阀,点火前调 节油量达到一定的压力,大小约 2.5 MPa。燃烧系统的助 燃风由鼓风机提供,助燃风进入风道和火道,参与雾化 燃烧。油泵和鼓风机由电机带动,通过调节伺服电机的 凸轮调节挡板角度,从而实现风量的调节。高温火焰摄 像探头安装在加热炉的一侧,它实时摄取燃烧火焰图像, 通过火焰图像控制器的调节, 产生亮度合适的火焰信号。 该火焰信号经图像采集卡,转变为数字信号,传入计算 机中,利用图像采集软件来显示和处理火焰图像,并将 其保存在计算机硬盘上。软件系统计算出火焰图像的亮 度值写入 PLC,通过与设定值比较来调节油路中回油量 的大小,从而调节进入燃烧器油量的大小,这样每经过 几秒钟对火焰图像进行采集处理来得到火焰的亮度值, 从 而实现了火焰燃烧的实时控制。
图9
在试验炉上拍摄的额定能力下火焰形状
3
结论
通过使用 Fluent 软件对烧嘴燃烧情况进行整体模拟
参考文献: [1] LAUNDER BE,SPALDING DB. The Numerical Computation of Turbulent Flows [J]. Comput Meth Appl Mech Engng, 1974, (3) 269. : [2] 周力行. NOx 生成湍流反应率数值模拟的进展 [J]. 力学进 展,2000,30(1) 77-82. : [3] 王福军. 计算流体动力学分析——CFD 软件原理与应用 [M]. 北京:清华大学出版社,2004,120-124 [4] 《钢铁厂工业炉设计参考资料》编写组. 钢铁厂工业炉设计 参考资料 (上册) [M]. 北京:冶金工业出版社,1979.
相关文档
最新文档